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Abstract— Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the
spectrum’s efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular
and other D2D users, which creates an excessive technical challenge for allocating the spectrum. Despite this, massive
connectivity is another issue in the 5G and beyond networks that need to be addressed. To overcome this problem, non-
orthogonal multiple access (NOMA) is integrated with the D2D groups (DGs). In this paper, our target is to maximize
the sum throughput of the overall network while maintaining the signal-to-interference noise ratio (SINR) of the cellular
and D2D users. To achieve the target, a discriminated spectrum distribution framework dependent on multi-agent deep
reinforcement learning (MADRL), termed a deep deterministic policy gradient (DDPG) is proposed. Here, it shares the
global historical states, actions, and policies using the duration of central training. Furthermore, the proximal online
policy scheme (POPS) is used to decrease the computation complexity of training. It utilized the clipping substitute
technique for the modification and reduction of complexity at the training stage. The simulation results demonstrated that
the proposed scheme POPS attains 16.67%, 24.98%, and 59.09% higher performance than the DDPG, Deep Dueling and
deep Q-network (DQN).

Index Terms— D2D, NOMA, DGs, SINR, MADRL, DDPG, POPS, and DQN

I. INTRODUCTION

DEVICE-to-device communication (DDC) is an optimistic
technologies for 5G and beyond networks. It benefits the

system by lowering network latency and enhancing through-
put. DDC can increase energy efficiency (EE) of wireless net-
works by off-loading data traffic in cellular networks to prevent
congestion [1]. Despite these potential advantages co-channel
and cross-channel interference poses a significant challenge
that must be addressed to increase spectrum efficiency and
meet the end-user quality of service (QoS) requirements [2],
[3]. Regardless of these interferences, massive connectivity is
another issue in the 5G and beyond networks that need to
be addressed. To solve this problem, researchers from both
academia and industry proposed NOMA technique.
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The NOMA is an emerging technique for 5G and beyond
networks, which have the ability to tackle the pressure of
massive data traffic [4]. The NOMA technique allows sev-
eral users to share the same kind of frequency resources at
the same span of time while using different power levels.
Therefore, it can address massive connectivity opportunities
as well as improve overall network throughput compared to
traditional multiplexing techniques [5]. Also, the presence of
successive interference cancellation (SIC) at the receiver’s side
mitigates the effect of intra-user interference. Additionally, it
has been shown that SIC can improve broadcast quality at
the expense of a more complex receiver design [6]. However,
the performance of NOMA is degraded in the condition of a
dynamic environment. To tackle this challenge, the model-free
reinforcement learning (RL) approach is used [7].

The RL is an effective method in which an autonomous
agent makes successive judgments utilising a variety of math-
ematical operations. In RL, an agent learns via trial and
error how to interact with the changing environment. Also,
an agent improves the efficiency of its prior activity using
previous learning environment. The agent then performs new
action, evaluates the results of the encounter, and makes
a choice using interactive learning techniques [7]. The RL
method, however, performs sluggishly in large, stochastic,
and unpredictable networks. It is therefore inappropriate for
massive networks [8]. The deep learning (DL) methods have
recently been employed to address this issue. These methods
are capable of providing versatile and efficient solutions for
reducing computational complexity even with big datasets.
To overcome RL’s limitations, DL is combined with RL and
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referred to as deep reinforcement learning (DRL) [8].
The DRL is a powerful technique for embedded opti-

mization that can operate quickly in wireless communication
networks [9]. DRL approaches train neural networks offline
before deploying them on terminal devices or controllers. It
uses the learned model to forecast the optimal transmission
power scheduling with minimum processing complexity for
resource management. Also, the DRL technique learn in an
online fashion find the best relationship between each state-
action pair and its aggregate reward [9], [10].

A. Related work

In this section, the existing techniques to manage cellular
users (CUs) and D2D transmitters (DTs) transmit power in
order to mitigate interference between D2D users (DUs) and
CUs to enhance overall sum-rate have been investigated and
studied. In a centralised architecture, the agent is each D2D
link. The training centre (usually the base state or local AP)
receives channel state information (CSI) from the agent and
conducts training and testing in a centralised fashion. In [8],
the authors designed a DRL-based joint resource block (RB)
scheduling and power control scheme to improve the sum-rate
of the network while considering the user’s fairness among
all the links. In [11], the authors developed statistical-feature-
based power regulation to increase overall sum throughput
by minimizing co-channel interference induced by DTs and
CUs. The authors of [12] investigated the resource allocation
problem using interference control and proposed a heuristic
technique to optimize the system’s sum throughput while
meeting the interference limitations. In [13], [14], the authors
examined the resource allocation problem of DDCs in diverse
environments by merging millimeter wave (mmWave) and
cellular bands, proposing a coalition building method and a
heuristic approach to increase system’s sum throughput. In
[15], authors used the static and repeated game model to
examined the resource allocation problem of multi-cell D2D
communications. Here, each player’s transmission information
is kept secret from other players and the D2D links use
shared resources of multiple cells. The power allocation issue
for DDCs embedded in cellular networks in the context of
SWIPT was examined in [16]. In this, a game model has
proposed in which each D2D link selects the transmit power
and power splitting ratio that will maximise its utility. In [17],
authors maximized the energy efficiency for content sharing
with Collaborative Mobile Clouds.

In [18], authors suggested a lightweight blockchain to
help swarms of heterogeneous unmanned aircraft systems
(UASs) enhance routing security while working with limited
computing resources. The swarm UASs can reduce assaults
from malicious UASs and restrict their connections to the
swarm UAS networking by using lightweight blockchain.
Similar to the authors of [18], authors in [19] conducted
a thorough review of the literature that has already been
published in the field of UAS detection and mitigation,
identified the difficulties in preventing the use of unauthorised
or unsafe UAS, and assessed the trends in detection and
mitigation for defending against UAS-based threats. The

authors investigated a bio-inspired routing for UAS swarm
networking in [20]. Each UAS swarm exhibits the key traits of
cell wall construction, which was modelled after the biological
cell paradigm. To increase the viability and throughput of
heterogeneous UAS swarm networking, the authors in [21]
developed a cell wall structure for intercommunication
between the networks. In [22], authors proposed an ideal cell
wall model to increase the throughput in heterogeneous UAS
swarm networking. In [23], authors developed the model of
biological cell wall communication for heterogeneous swarm
UAS networking. Also, the authors addressed the edge-
coloring problem of cell wall communication scheduling with
the use of reinforcement learning in order to obtain the highest
throughput possible between the heterogeneous swarm UAS
networking on a global scale. The methodologies proposed
in the aforementioned literature required almost accurate
network knowledge to adequately solve the optimization
challenge. Also, traditional optimization methodologies are
greatly hampered by the increasing complexity and variety of
wireless networks. In particular, resource allocation problems
in complicated wireless networks are frequently described
as non-convex, combinatorial, or mixed integer non-linear
programming problems. Furthermore, in a dynamic wireless
communication environment, the unpredictability of channel
status information is readily detrimental to the performance
of traditional systems [24].

In order to solve the resource allocation problem in D2D
communication, a more adaptable architecture is required.
RL has been a potent strategy for resource management
concerns, particularly in wireless communication networks
[25]. Additionally, the agent may interact directly with the
environment, manage resources, and interfere to maximise its
own strategy [26]. Using a distributed power allocation system
based on Q-learning, the transmission rate of DTs may be
enhanced while keeping the QoS of CUs was investigated in
[27]. However, it was observed that the increases in state and
action spaces result in the curse of dimensionality, making it
more difficult for Q-learning to store all state-activity values
in a table form. Therefore, DRL has been found to be suitable
to solve the challenge of intelligent resource management
because DRL yields more robust learning in high dimensions
state and action spaces.

In [28], the authors studied a DQN approach to improve
the total data rate by investigating user association and
power allocation, which investigated the challenge of
increasing non-LoS transmission performance in 5G wireless
communication. In [29], the authors developed a DQN-based
system for energy-efficient resource allocation in ultradense
networks. The DRL-based resource management systems
proposed in [28], [29] were implemented in a centralised
architecture, with the central controller controlling the
optimization problem. Large transmission overheads caused
by rising network sizes place an additional computing burden
on the central controller. To address this issue, distributed
resource allocation systems based on DRL was developed
in order to decrease computing complexity. In [30], the
authors addressed the problem of throughput optimization.
Here, the proximal online policy technique is used for quick
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sampling. Also, to the enhance capacity and quality of service
(QoS) of the network, a DRL technique based on DQN is
considered. In [31], the authors describe a multiagent DQL
strategy to handle the problem of throughput maximization.
The proposed technique delivers better performance that is
comparable to the fractional programming technique, although
it needs discrimination of the power management parameters.
The authors in [32] investigated the application of DQN,
RL, and DDPG approaches to solve the sum throughput
optimization problem. The DQL and RL algorithms need
discretization of the power allocation parameters, which
creates uncertainty because no known process for selecting
the best discretization parameter exists. In [33], authors
proposed a deep reinforcement learning approach to tackle
the resource allocation problem for one-to-many DDCs
underlaying cellular networks.

B. Motivation

In the above-mentioned works, it has been observed that the
author’s aim is to optimize the resources for D2D users under-
laying cellular networks. Firstly, the authors from [11]- [24]
used conventional algorithms to maximize the sum throughput
of the overall network. Also, the authors want to mitigate cross
and co-channel interference by optimizing the resources and
power of the DUs and CUs. The solutions provided by these
authors are not scalable due to the time-varying environment.
Secondly, the authors from [26]- [32] aimed to maximize the
sum throughput of the D2D network while maintaining the
SINR of the CUs. To achieve the target, these authors applied
DRL models such as DQN, deep dueling, and DDPG with the
D2D network. Here, the continuous characteristics in space
and action were discretized. The discretized in continuous
space generates the quantization noise into state and action
space, making it challenging for these models to attain the
best policy. Moreover, in all these papers, the authors did
not focus on the massive connectivity. To overcome all these
issues, we integrated NOMA with DGs underlaying cellular
networks in this paper. Additionally, we gather historical data
to train the model rather than using it to make decisions.
Here, each agent develops a generalizable model that allows
it to make decisions based on actual state observations in real
time. The states addressed the minimum SINR requirements,
co-channel interference, and channel gain. To reduce the co-
channel interference, we also optimize the power of the DTs.
Furthermore, we applied the POPS to reduce the computation
complexity of training by utilising the clipping substitute
technique.

C. Contributions

To handle the challenges mentioned above, we examined
the sum throughput maximization for NOMA-enabled DGs
underlaying cellular networks. Firstly, the DDPG is engaged
in learning the optimum policy from continuous and action
space. Then, the POPS is used to decrease the computation
complexity of training by utilizing the clipping substitute

technique. The key contributions of the paper are described
below:
• First of all, the joint channel scheduling and power con-

trol problem in NOMA-based DGs underlay cellular net-
works is formulated. The aim of the formulated problem
is to maximize the sum throughput of the overall network
while minimizing cross and co-channel interference.

• The formulated optimization problem is transformed into
a machine learning (ML) form using the Markov decision
process (MDP) model. Here, we consider that the DT
in DGs acts as an agent that learns experiences in a
trial-and-error way to acquire the best optimal policy,
without having the complete information from a time-
varying wireless environment.

• Now, to characterize the agent’s behavior with respect to
the environment we used continuous states and actions.
Also, to achieve the best optimal policy, the DDPG tech-
nique is applied. The suggested approach blends value-
based and determination-policy-based approaches to ar-
chitecture while taking into account both actor and critic
networks. Actor networks are responsible for creating
deterministic actions, and critic networks are responsible
for assessing actor networks.

• Lastly, POPS is applied that used the clipping substitute
technique to reduce the complexity and difficulty that
arise at the training stages.

D. Organization

The remainder of the paper is arranged as described. Section
II elaborates on the system model and problem formulation.
The proposed approach is discussed in Section III. The per-
formance of the suggested system is evaluated, and its results
are contrasted with those of the most recent state-of-the-art
schemes, in Section IV. Finally, the conclusion of the paper
is stated in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A unicellular underlay cellular network with the base sta-
tion (BS) denoted as b, M CUs, and G DGs in an uplink
transmission scenario as shown in Fig. 1. The BS is in the
center, while the M ∈ {1, 2, . . . ,m, . . . ,M} CUs and G ∈
{1, 2, . . . , g, . . . , G} DGs are evenly and randomly distributed
around the cell. There is one DT and D ∈ {1, 2, . . . d, . . . , D}
DUs in each DG. Since the velocity of DTs and DUs is
very low, their positions are constantly changing. Let DTs be
denoted as G ∈ {1, 2, . . . , g, . . . , G}, implying that the number
of DGs equals the number of DTs. To interact with the BS,M
CUs and G DGs used OMA technique, and DT in each DG
used the NOMA technique to deliver services to DUs. Con-
sider that K ∈ {1, 2, . . . , k, . . . ,K} RBs are allocated to CUs
and DTs for communicating with the BS and corresponding
DUs. Let B be the network’s total bandwidth, which is divided
equally into K RBs. Also, the quasi-static Rayleigh fading
channel model is utilized where the constant coefficients of
channels pursue a Gaussian complex distribution.
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Fig. 1. System Model.

B. Channel Model

To develop a NOMA-based DG, each group must have at
least two DUs. This condition can be shown as follows:

2 <

D∑
d=1

λkg,d < D, (1)

where D represents the total number of DUs in each DG, and
λkg,d represents the DT-DUs group index, respectively. λkg,d
can be expressed as follows:

λkg,d =

{
1, if the dth DU is associated with the gth DT,
0, otherwise.

(2)
1) CU Channel Model: The mth CU send a signal to the

BS, which could be shown as below:

Ykm,b = |hkm,b|
√
P kmx

k
m,b+

G∑
g=1

λkg,dθ
k
g,m|hkg,b|

√
P kg x

k
g,b+ζ

k
m,b,

(3)
where

θkg,m =


1, if the mth CU and the gth DT are scheduled

across the kth RB,
0, otherwise.

(4)
In Eq.(3) P km and P kg represents transmitted power of mth

CU, and gth DT, hkm,b represents channel gain between mth

CU and BS, hkg,b represents channel gain between gth DT and
BS, xkm,b and xkg,b represents the transmitted message for mth

CU and gth DT, respectively. ζkm,b is additive white Gaussian
noise (AWGN) with mean = 0 and variance σ = 1.

Now, using Eq. (3) , the SINR is determined as follows:

γkm,b =
P km|hkm,b|2

IFDG + σ2
m,b

, (5)

where IFDG represents the interference caused by DGs and
defined as follows:

IFDG =

G∑
g=1

λkg,dθ
k
g,mP

k
g |hkg,b|2. (6)

Defining |hkm,b|2 = |ĥkm,b|2z
−β
m,b, and |hkg,b|2 = |ĥkg,b|2z

−β
g,b .

ĥkm,b and ĥkg,b represent small scale fading along with ĥkg,b∼
CN (0, 1) and ĥkg,b∼ CN (0, 1), respectively. The distance from
the mth CU to b and from the gth DT to b is denoted by zm,b
and zg,b, respectively. The path loss exponent is β.

2) DUs Channel Model: For multiplexing of power signals,
DT uses superposition coding in the PD-NOMA approach. On
the other hand, DUs use SIC, resulting in a reduction of inter-
ference (intra-user). The signal sent by DT via superposition
coding to the D DUs having various power allocation factors
is now as follows:

ηg,1x
k
g,1+ηg,2x

k
g,2+· · ·+ηg,dsxkg,ds+ηg,dwx

k
g,dw · · ·+ηg,Dx

k
g,D,
(7)

where {η1, η2, . . . , ηD} and {x1, x2, . . . , xr} is the power
allocation factor and messages for DUs. The strongest and
weakest DU related to the DT are denoted by ds and dw,
respectively. According to [4], [9], the signal received at dw
DUs in the gth DG across the kth RB is given as follows:

Ykg,dw =
√
Pgηg,dw |hkg,dw |x

k
g,dw +

D∑
d=2

√
Pgηg,ds |hkg,ds |x

k
g,ds

+

G∑
g′ 6=g

θkg′,g
√
Pg′ |hkg′,g,dw |x

k
g′,g,dw

+λkg,d
√
Pm|hkm,g,dw |x

k
m,g,dw + ζkg,dw , (8)

where ζkg,dw is the AWGN, and θkg′,g denotes interference (co-
channel), that is expressed as:

θkg′,g =


1, if the (g′)th and the gth DT are scheduled

across the kth RB,
0, otherwise.

(9)
Defining |hkg,dw | = |ĥkg,dw |z

−β
g,dw

, |hkg,ds | = |ĥkg,ds |z
−β
g,ds

,
|hkg′,g,dw | = |ĥkg′,g,dw |z

−β
g′,g,dw

,and |hkm,g,dw |=|ĥ
k
m,g,dw

|z−βm,g,dw .
Here, ĥkg,dw∼ CN (0, 1), ĥkg,ds∼ CN (0, 1), ĥkg′,g,dw∼
CN (0, 1) and ĥkm,g,dw∼ CN (0, 1). The distance from the gth

DG to the dw DU and from the (g′)th DG to dw DU in the gth

DG are denoted by z−βg,dw and z−βg′,g,dw , respectively. Similarly,
the distance from the gth DG to the ds DU and from the mth

CU to dw DU in the gth DG are denoted by g, ds and z−βm,g,dw ,
respectively.

Now, using Eq. (8) , the SINR for ds DU is determined as
follows:

γkg,ds =
|hkg,ds |

2Pgηg,ds

IFNOg,ds
+ IFCOg,ds + IFCRg,ds + σ2

, (10)



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MONTH 2022) 5

where IFNOg,ds
is the NOMA interference and expressed as

follows:

IFNOg,ds =

D∑
d=2

√
Pgηg,ds |hkg,ds |x

k
g,ds (11)

IFCOg,ds is the co-channel interference and expressed as follows:

IFCOg,ds =

G∑
g′ 6=g

θkg′,g
√
Pg′ |hkg′,g,dw |x

k
g′,g,dw . (12)

IFCRg,ds is the cross-channel interference and expressed as
follows:

IFCRg,ds = λkg,dθ
k
g,m

√
Pm|hkm,g,dw |x

k
m,g,dw . (13)

Now, γ(dthDU) ≥ γ(d′ 6=dDUs) for efficient SIC, i.e.

|hkg,ds |
2Pgηg,ds

IFNOg,ds
+ IFCOg,ds + IFCRg,ds + σ2

≥
D∑
d=2

|hkg,dw |
2Pdηg,dw

IFNOg,dw
+ IFCOg,dw + IFCRg,dw + σ2

. (14)

So, Eq. (14) can be reformulated as follows:

∆(θ) = |hkg,ds |
2(IFNOg,dw + IFCOg,dw + IFCRg,dw + σ2).

−
D∑

dw=2

|hkg,dw |
2(IF d,NOg,ds

+ IFCOg,ds + IFCRg,ds + σ2) ≥ 0 (15)

To decrypt its own data, ds DU first performs a successful
SIC, and then it eliminates interference from dw DUs. As
a result, using Eq. (8), the received SINR at the ds DU is
represented as follows:

γkg,ds =

( |hkg,ds |
2Pgηg,ds

IFCOg,ds + IFCRg,ds + σ2

)
. (16)

Accordingly, for the rest DUs, the SINR is computed as
follows:

γkg,dw =

D∑
d=2

( |hkg,dw |
2Pgηg,dw

IF d,NOg,dw
+ IFCOg,dw + IFCRg,dw + σ2

)
. (17)

C. Data Rate and Overall Sum Throughput Estimation

As per the Shannon capacity theorem, mth CU’s throughput
considering Eq. (5) is defined as follows:

Tkm,b = log2(1 + γkm,b). (18)

Accordingly, the throughputs of DUs using Eq. (16) and Eq.
(17) are represented as:

Tkg,ds = (1 + γkg,ds). (19)

Tkg,dw =

D∑
dw=2

(1 + γkg,dw). (20)

The sum throughput of M CUs and G DGs with D DUs is
expressed as:

STkm =

M∑
m=1

log2(1 + γkm,b). (21)

STkg =

G∑
g=1

(
λkg,dθg,m(Rkg,ds +

D∑
dw=2

Rkg,dw)

)
. (22)

Now, the total sum-rate is computed as follows:

STkm+g =

M∑
m=1

(
Rkm,b +

G∑
g=1

λkg,dθg,m(Rkg,ds +

D∑
dw=2

Rkg,dw)

)
.

(23)

D. Problem Formulation

The main aim of this paper is to achieve maximum overall
network’s sum throughput while retaining the SINR of CUs
and DGs. Therefore, the sum-rate optimisation problem can
be described as follows:

P.F. : max
θ,P

STkm+g, (24)

s.t. V1 : 2 <

D∑
d=1

λkg,d < D, ∀G,

V2 :

G∑
g=1

λkg,d ≤ 1, ∀G,

V3 : Rkm,b ≥ Rk,min
m,b , ∀M,K,

V4 :

G∑
g=1

θg,mpg|hkg,m|2 ≤ IF thm , ∀M,

V5 : ∆(θ) ≥ 0, ∀G,
V6 : Rkg,ds ≥ Rmin

g,ds ,R
k
g,dw ≥ Rmin

g,dw , ∀K,
V7 : θkg,m, θ

k
g′,g ∈ {0, 1}, ∀M,G,K,

V8 : P km ≤ P k,max
m , ∀M,

V9 : ηg,ds +

D∑
dw=2

ηg,dw ≤ 1, ∀G,D,

V10 : ηg,ds ≥ 0,

D∑
dw=2

ηg,dw ≥ 0, ∀G,D.

V11 : P km ≥ 0, ∀m ∈M
V12 : P kg ≥ 0, ∀g ∈ G

V1 assures that each DT provides service to at least two
DUs to accomplish downlink NOMA. V2 assures that each
DU must be linked to one DT. CU’s minimal data rate demand
is denoted by V3. The V4 defines the combined interference
threshold for CUs. V5 specifies the effective SIC, whereas V6

specifies the minimal SINR need of ds and dw DUs for each
DG. V7 guarantees that each RB can only be used by one CU
and one DG at a time. The C8 and C9 imply that Smax shares
the same RB and Smax is the maximal number of DGs and
Tmax is the maximal number of RBs that could be utilized
again by the constraints of DGs. The major limitation of the
transmitted power of CUs and DTs is ensured by V8 and V9.
V10 assures that transmission power must be positive. V11 and
V12 specify that the power of CUs and DTs must be a positive
integers.
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III. PROPOSED SCHEME

In this section, first of all, the optimization problem for-
mulated in (24) is transformed into RL form using the MDP
concept. After that, the DDPG is used to lower the computing
burden in order to find the best policy. Also, it improves
the training process stability. Finally, the POPS is applied to
reduce the computation complexity of the training process by
using the clipping substitute technique.

A. Model for Markov Decisions Process

Let the MDP consists of five tuples as (S,A,P,z,Γ). In
MDP, tuple S stands for a set of states, tuple A stands for
actions, tuple P stands for mapping association between states
s and s’, tuple z stands for rewards, and tuple Γ ∈ [0, 1) stands
for the discount factor. The MDP model’s detailed description
is as follows:

1) Agent: In the proposed system model each DT is an
agent and there are G such agents.

2) State Space: The agent (DT) examines the state in
order to characterise the environment, which is comprised of
various parts: channel gain of different links, link’s previous
interference, and D2D link’s RB. Also, DT optimize resource
allocation by exploiting local information and previous non-
local information. The state space with respect to environmen-
tal parameters is defined as follows:

skg,t =

[
hkm,b, h

k
g,b, h

k
g,dw , h

k
g,ds , IF

NO
g,ds , IF

CO
g,ds , IF

CR
g,ds , Rg

]
. (25)

The state space can be given as S = {skg,t|g = 1, . . . 2, . . . G}.

3) Action Space: Depending on the current state and deci-
sion policy, the gth agent takes an action akg ∈ A. The agent’s
overall action can be defined as follows:

akg,t =

[
(θk1,m, θ

k
g,m, θ

k
G,m); (P k1 , P

k
m, . . . , P

k
M ); (P k1 , P

k
g , . . . , P

k
G)
]
.

(26)
Agent executes the action akg,t in the state skg,t. Agent goes
to the next state skg,t+1 after executing the action akg,t. A =
{akg,t|g = 1, . . . 2, . . . G} is used for representing the action
space.

4) Reward Function: The reward function in RL techniques
control the training process. With the help of the environment’s
interactions, each agent decides how to maximize its reward.
The reward function is defined as:

z =

{
STkm+g, if constraints satisfied,
zneg, otherwise.

(27)

The Eqn.(27) shows that the reward is positive, i.e., STkm+g

for an agent when it satisfies all the constraints, otherwise it
is negative, which is a penalty for the DGs.

B. Multi-Agent Deep Deterministic Policy Gradient
(MAD2PG) Scheme

We used the DDPG [31] for obtaining the best policy for
the reward described in (27). The benefits of actor-critic (AC),
deterministic policy gradient (DPG), and DQN are integrated
into the DDPG. The actor-critic concept is used in DDPG and
is integrated with the DPG to lower the computing burden on
the agent in order to find the best policy. The configuration
in multi-agent DDPG (MAD2PG) is done by an AC network,
and each of them consists of two DNNs. Moreover, we settle
the experience replay buffer for gathering experiences, so as
the reduction the relevance of sample data. Moreover, the
MAD2PG algorithm improves the training process stability
by including DQN’s network with the AC model.

The DDPG algorithm improves the training process stability
by including DQN’s network model for the actor and critic
models as well as the updating of policy and Q networks,
which are defined below:

1) Value Function: When an agent moves from a random
state s to a state S(T ), the predicted return following the
policy π is known as the state-value function and is defined
as:

Vπ(s) = Eπ

[ T∑
t=1

Γtz(t)|s0 = 0

]
, (28)

where s0 represents the initial state and Γ is used to mitigate
the effect of future awards on the present one. Now, for
the previous state s and action a, the state value function
formulates the predicted return for a policy and is defined
as:

Qπ(s, a) = Eπ
[
z(t) + ΓVπ

(
s(t+ 1)

)]
. (29)

The Qπ(s, a) can be transformed to the Bellman equation as
per MDP [34].

Qπ(s, a) = E
[
z(t) + ΓE

[
Qπ
(
s(t+ 1), a(t+ 1)

)]]
. (30)

Consider a Performance Objective Function (POF), which is
described on the basis of performance under the policy π and
given as:

J(π) = Eπ
(
Qπ(s, a)

)
=

∫
S
Dπ(s)

∫
A
π
(
a|s
)
Qπ(s, a)dads. (31)

2) Actor Method: The policy gradient approach is used in
the actor method to estimate and enhance parametric policies,
with the gradient ascent approach supports the improvement
of policies and updating the specification of the policy net-
work in an iterative manner. The actor framework consists
of two DNNs: an Online-Policy (OP) network and a Target
Policy (TP) network. Let φ$ =

[
φ1, φ2, . . . , φn

]
denotes OP

network’s parameters, φ$
′

=
[
φ

′

1, φ
′

2, . . . , φ
′

n

]
denotes TP

network’s parameters and $φ(s, a) denotes policy. At each
time slot t, an action is generated by the OP network, which
depends on DPG. The agent then collects state vectors from
the environment and is represented as:

a(t) = $
(
s(t)|φ$

′)
+WN , (32)
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Fig. 2. DQN Model.

where WN ∈ (0, 1) is white noise, which is added to make
exploration process easier in continuous action space. Using
Eq.(32) POF is reformulated as follows [35]:

J($φ) =

∫
S
D$φ(s)Q

(
(s,$φ(s))

)
ds

= E$φ
[
Q
(
s,$φ(s)

)]
. (33)

The actor calculates the gradient of the POF in order to
improve policy. The DPG of Eq. (33) according to [17] is
calculated as follows:

∇φJ($φ) =

∫
S
D$φ(s)∇φ$φ(s)∇φQ

(
(s, a

)
|a=$φds

= E$φ
[
∇φ$φ(s)∇φQ

(
s, a
)
|a=$φds

]
. (34)

The training set is considered to be independent and uniformly
distributed when employing neural networks to estimate the
state value function. But, the data gathered by the agent
frequently contains a high degree of correlation, making the
RL model is unstable if such data is considered for training.
Experience replay technique has the ability to break the
correlation between the collected data.
Let experience at time slot t is represented by(
skg,t, a

k
g,t,zkg,t, skg,t+1

)
and it is recorded in the experience

replay buffer using a bounded storage capacity of U . The
buffer updates the experience on a regular basis by gathering

new samples and removing old ones. The Monte-carlo
approach [32] is used to compute the prediction in the replay
buffer by randomly sampling mini-batch of capacity V .
Therefore, Eq. (43) is reformulated as:

∇φJ($φ)

≈ 1

V

V∑
v=1

(
∇φQ(s, a)

)
|s=ske,t,a=$(ske,t)

∇φ$φ(s)|s=ske,t , (35)

where Q(s, a) represents the state value function created by
the critic network.

C. Critic Method

The actor network’s performance is evaluated by the critic
network. It consists of two DNN networks similar to the actor
network: the critic Q network and the target Q′ network.
Conventional-table based RL techniques perform well when
state space is small and action space is discrete. However,
the value function approximation process estimates the value
function using a set of parameters. It reduces computation
complexity, dimension of input samples, enhances generality
and eliminates over-fitting. DNN is applied in the critic
network for estimation of the value function and is defined as
Qψ(s, a) ≈ Q(s, a).Let ψQ =

[
ψ1, ψ2, . . . , ψn

]
denotes critic
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Q network’s parameters, ψQ
′

=
[
ψ

′

1, ψ
′

2, . . . , ψ
′

n

]
denotes tar-

get Q′ network’s parameters. Now mini-batch of eth transition
samples, i.e., s(e) and a(i), is extracted from the replay buffer
in critic Q network. Then these samples are given to the DNN
to evaluate the Q value Q

(
s(e), a(e)|ψQ

)
. Concurrently in the

target Q′ network, the mini-batch sample z(e) and s(e + 1)
are given to DNN to create the target Q′ value y(e), which is
determined as follows:

y(e) = z(e)ΓQ′
(
s(e+ 1), $′

(
s(e+ 1)|ψQ

′))
, (36)

where $′
(
s(e + 1)|ψQ′

indicates the estimation of a(t + 1)
and is generated by the target actor network $′.

The loss function must be minimized for each learning step
in order to modify the critic network and defined as follows:

Lf ∼=
1

V

V∑
v=1

(
y(e)−Q

(
s(e), a(e)

)
|φQ
)2

(37)

D. The Network Update Procedure
The learning method of model-free RL approaches is relies

on policy iterative process. policy iterative process is catego-
rized into two stages, known as policy assessment and policy
improvement. In policy assessment, Monte-Carlo evaluation
and temporal difference training methods are used to estimate
action-value functions.

On the other hand greedy policy is used in policy im-
provement to optimize the value of the action function. But
optimization of the action value function is not possible in
policy evaluation because of infinite states and action values in
continuous space. Therefore, the value of the action function
is estimated with the use of DNNs, and policy is improved
by modifying the DNN policy functions’ parameters. The OP
network’s DNN parameters are modified as follows:

φ(t+ 1) = φ(t) + χφ∇φ$φ

(
s(t), a(t)

)
|
a=$φ

(
s(t)
), (38)

where OP network’s learning rate is denoted by χ.
In contrast to OP networks, online Q networks update

their parameters using a gradient-based approach and single-
step temporal difference (TD) error. In comparison to the
Monte-Carlo approach, the TD method is more efficient. The
Monte-Carlo only modifies the value function once in each
episode. However, the TD method integrates Monte-Carlo
using dynamic programming to improve the performance. The
TD error is now calculated by taking the deviation from the
target Q value and is defined as follows:

δ(t) = z(t)+ΓQψ
′(
s(t+1), $φ′

(
s(t+1)

))
−Qψ

(
s(t)−a(t)

)
.

(39)
In Eq. (48) Qψ′(

s(t+1), $φ′
(
s(t+1)

))
is the target Q value

and Qψ
(
s(t) − a(t)

)
is the estimated online Q value. The

updated parameters are define as follows:

ψ(t+ 1) = ψ(t) + χψδ(t)∇φQψ
(
s(t), a(t)

)
. (40)

Now, Soft-update technique is used to modify the parameter
φ$ and ψQ. Therefore updated parameters are defined as
follows:

φ$
′
← αφ$ + (1− α)φ$ (41)

ψQ
′
← αψQ + (1− α)ψQ, (42)

where α is the soft updated step size.
The description of the MAD2PG scheme is shown in the

Algorithm 1. As the BS has a larger processing capacity than
the CUs and DUs, the training part of the algorithm is finished
there, and users need to download the weights of the trained
target actor network φ$

′
from the BS in order to utilize the

actor component of the algorithm to disperse its execution. In
order to train the DNNs for the actor part and critic portion,
the MA-DDPG technique leverages historical data, and it then
returns the target actor network’s weights. When the algorithm
is run, fresh information is produced, which may be added to
the experience replay buffer V to further adjust weights.

Algorithm 1 DDPG Algorithm for Sum Throughput Network.
Input
• Environment: (a) DGs,DUs and CUs (b) BS with OFDMA

scheme(uplink).
• OP network’s learning rate: χφ
• Online Q network’s learning rate: χψ
• Soft updated step size: α

Initialization:
• OP network: φ$ .
• TP network: φ$

′
.

• Critic Q network: ψQ
′
.

• Target Q network: ψQ
′
.

• Replay buffer: V
• Maximum Episodes: Φ.
• Time Slot: T .

1: for episode = 1,. . . ,Φ do
2: Initialize the state s0 by generating QoS demands for all users

(CUs and DUs) randomly.
3: for iteration = 1,. . . , T do
4: Choose action a(t) in accordance with (320.
5: Allocate λkg,d according to (2).
6: Allocate θkg,m according to (4).
7: Calculate sum-rate of M CUs according to (21).
8: Calculate sum-rate of M DGs according to (22).
9: Formulate the total sum throughput as in (23) to generate

the reward function z.
10: Collect all UEs’ QoS requirements and compute the next

state, skg,t(t+ 1).

11: Store transition
(
skg,t, a

k
g,t,zkg,t, skg,t+1

)
in experience

replay buffer of capacity U
12: Select randomly a small batch of transitions

(ske , a
k
e ,zke , ske+1) from the replay buffer of capacity V .

13: Set the value of y(e) according to (36).
14: Update Lf according to (37).
15: Update POF in actor netwok according to (35).
16: Renew φ$

′
according to (41)

17: Renew ψQ
′

according to (42).
18: Renew the state ske = ske+1
19: if (Present state s(t) = (1.0,1.0,. . . ,1.0 )) then,
20: break
21: end if
22: end for
23: end for
24: Output: α
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E. Proximal Online Policy Scheme

To boost performance, we used the proximal online policy
scheme (POPS) in this section. Here, the present and past
policies are compared in order to maximize the objective
function, which is provided as:

F(s, a,Φ) = E

[
Π(s, a,Φ)

Π(s, a,Φold)

]
ΥΠ(s, a)

F(s, a,Φ) = E PtΦΥΠ(s, a), (43)

where PtΦ signifies probability ratio and ΥΠ(s, a) =
OΦ(s, a)−VΠ(s) is the approximates advance function [36].

SGD is used to maximize the objective of training networks
with a mini-batch Ω. As a result, the policy is updated with
the assistance of

Φt+1 = arg max E
[
F(s, a; Φt)

]
(44)

In order to limit the objective value in this method, we
utilize the clip function (f tΠ, 1−Θ, 1 + Θ) as follows:

Fclip(s, a; Φ) =

E
[
min(f tΦ,Υ

Π(s, a), clip(f tΦ, 1−Θ, 1 + Θ)ΥΠ(s, a)
]
,

(45)
where Θ is a low value constant.

If ΥΠ(s, a) becomes greater than zero with respect to the
upper bound 1 + Θ, then the objective is reformulated as
follows:

Fclip(s, a; Φ) = min

[
Π(s, a; Φ)

Π(s, a;φold)
, (1 + Θ)

]
ΥΠ(s, a).

(46)
In (46), the objective’s value rises if the advantage ΥΠ(s, a)

becomes greater than zero. The minimal term, however, limits
the rising value. When (1 + Θ)Π(s, a; Φ(old)) Π(s, a; Φ) >
(1 + Θ)ΥΠ(s, a; Φ), the objective value is limited by factor
(1 + Θ)ΥΠ(s, a; Φ).

On the other side, when ΥΠ(s, a) becomes less than zero
at the lower limit 1 − Θ. In this situation, the objective is
redefined as follows:

Fclip(s, a; Φ) = max

[
Π(s, a; Φ)

Π(s, a;φold)
, (1−Θ)

]
ΥΠ(s, a).

(47)
Similarly, when the advantage ΥΠ(s, a) falls below zero in

(47), the objective value decreases. However, the decreased
value is constrained by the maximum term when Π(s, a; Φ)
< (1−Θ)Π(s, a; Φ(old)), then factor (1−Θ)ΥΠ(s, a) restricts
the objective value.

The objective is constrained by the minimum and maximum
terms of (46) and (47), ensuring that the new tactic doesn’t
stray from the previous one. Consequently, the following
definition of "advantage function" is defined as follows [31]:

ΥΠ(s, a) = rt + [VΠ(st+1)− VΠ(st)]. (48)

Now, the policy is trained and the parameters are updated
using a mini-batch Ω as follows:

Φt+1
i = arg max

ΦΠ

E
[
Fclip(s, a; Φt)

]
(49)

Algorithm 2 POPS Based Throughput Enhancement Algo-
rithm.
Initialization:
• Π = Policy with parameter Φ
• Θ = Penalty Parameter.

Output: θ(t), Q(t)

1: for (b = 1, b ≤ B, b+ +) do
2: Set an initial state as s0

3: for (ψ = 1, ψ ≤ Ψ, ψ + +) do
4: Perform the action at achieved at state st

5: Modify the reward rt in accordance with (26)
6: Check the next state st+1

7: Update the state st = st+1

8: Collect a set of partial trajectories with E transi-
tions

9: Calculate the advantage function using (50)
10: end for
11: Modify policy parameters using SGD & mini-batch E

using (51)
12: end for

IV. PERFORMANCE EVALUATION

The performance of the proposed approach is estimated
and discussed in this section. It comprises three sections: (i)
Numerical Settings (ii) Baseline Schemes (iii) Results and
Discussions

A. Numerical Settings

1) Simulation Parameters of D2D Underlaying Cellular net-
works: The BS b is assumed to be deployed at centre of
the cell, and M CUs and G DGs are evenly and randomly
distributed around the BS. The radius of the cell and DGs are
set to be 500 m and 50 m, respectively [37]. The DT used
NOMA protocol to communicate with the DUs, and on the
other hand, the CUs used OMA to transmit data to the BS.
The carrier frequency and BS transmission power are set to
be 5MHz and 5W, respectively. The details of the remaining
parameters are shown in Table 1 [38], [39].

2) Simulation Parameters DQN Model: The DQN training
model is built on a fully connected neural network. This
network contains an input layer, a hidden layer, and an output
layer. Each of the three connected layers uses 500, 500, and
250 neurons respectively. The proposed model uses the ReLu
as an activation function and the adaptive moment as an
optimizer. With the POPS approach, we apply a learning rate
of lr = 0.00001. Tensorflow 2.5 on Python 5 is utilized to
simulate the model [40]. The final simulation settings are listed
in Table I.

B. State-of-art Schemes

For analysing the proposed scheme’s performance, we con-
trasted our proposed scheme with three algorithms which are
described as follows:
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Fig. 3. Comparative Analysis (a) Expected Sum Throughput v/s Number of DGs (b) Expected Sum Throughput v/s DTs Transmission Power (c)
Expected Sum Throughput v/s Number of CUs.
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TABLE I
SIMULATION PARAMETERS

Parameters Values
Radius of Cellular cell 500 m
Radius of DGs 50 m
Carrier Frequency 5 MHz
Bandwidth 180KHz
BS transmission power 5 W
Number of DGs 10 ∼ 50 dBm
Number of DGs 10 ∼ 50 dBm
DTs transmission power 10 ∼ 50 dBm
Channel Gain -30 dB
Noise spectrum density -174 dBm/Hz
Path loss exponent 4
Actor’s Learning Rate 0.01
Critic’s Learning Rate 0.01
Discount Factor 0.9
Initial Exploration 1
Final Exploration 0.01
Total Exploration steps 1000
Replay Size 1000
Small-batch Size 32
Number of Steps in Each Epoch 20
Power discretization level 10
Clipping Parameter 0.2
Episodes 100

1) DDPG [41]: In this, the multi-agent actor-critic frame-
work was suggested as a distributed spectrum allocation

method based on DDPG. During centralised training, DDPG
used global historical states, actions, and policies. It requires
no signal involvement during the execution, and relies on user
cooperation to enhance system performance.

2) Deep Dueling DQN [35]: In this, an autonomous trans-
mission system for D2D communication networks employing
dueling DQN was presented. The dueling DQN learns the
value of every state except study the consequence of each
action. This method was effective when actions do not have a
recursive effect on the environment.

3) DQN Scheduling [42]: In this, the investigation on the
selection of joint channels and problem of power control for
multi-channel Device-to-Device (D2D) networks was done.
Here, the algorithm based on DRL for each D2D pair for
learning the diverse patterns of its radio environment from the
local information only and the former estimations.

C. Results and Discussion

1) Performance Comparison: The estimated cumulative
throughput of the proposed system in comparison to the
baseline schemes is investigated and discussed in Fig. 3.

The variation in predicted cumulative throughput is shown
in Fig. 3(a) as a function of the number of DGs in the cell.
The graph shows that compared to DDPG, Deep Dueling and
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DQN scheduling, the proposed technique offers a greater sum
throughput. This is so because the recommended method is
based on an online training policy, which improves the ability
to choose how to allocate resources in real-time.

Fig. 3(b) depicts a graph of sum throughput versus DTs
transmission power. According to the results, the recom-
mended strategy outperforms DDPG, Deep Dueling, and DQN
scheduling. The proposed technique optimises the power of
DTs to regulate co-channel interference more than state-
of-the-art solutions due to its online learning methodology.
Furthermore, the proposed method reduces co-channel and
cross-channel interferences received from other DTs.

Fig. 3(c) depicts the effect of the number of CUs on
total throughput. The graph shows that the proposed scheme
provides greater throughput than DDPG, Deep Dueling, and
DQN scheduling. The key reason for this circumstance is
that the proposed scheme trains the BS and CUs quickly to
recognize resources owing to their online policy mechanism.
The online neural network is capable to detect resources more
quickly because it has an ability to train itself more faster in
a dynamic environment.

2) Parameter Analysis: In Fig. 4, the proposed scheme’s
average rewards with respect to the variation in different
parameters are examined.

The variance in average reward with regard to the episode
for different batch size values is shown in Fig. 4(a). The
graph shows that lower batch sizes result in more frequent
changes in the proposed scheme’s policy settings. As a result,
the suggested system performs at its peak more rapidly.

Fig. 4(b) describes the impact of adjusting the value of ε on
average reward with regard to episode. The graph indicates that
when ε = 0.2, the suggested POPS algorithm performs better.
This happened because the POPS is based on the clipping
approach, which makes it possible to get optimal performance
more quickly than using state-of-the-art methods.

The average rewards v/s episode with a variable ψ is shown
in Fig. 4(c). The graph illustrates that the proposed scheme at
ψ = 0.9995 provides superior performance and achieves the
best solution at a faster pace than the other ψ values. Beyond
this, the proposed technique for ψ = 0.9995 allows the agents
to learn at a faster pace, improving their optimum value and
convergence speed.

V. CONCLUSION

This study investigates the management of resources for
D2D links underlying cellular networks and formulates the
problem of spectrum distribution as a decentralized multi-
agent deep reinforcement learning model. The primary objec-
tive of this model is to maximize the sum throughput of D2D
links, while simultaneously ensuring the quality of service
(QoS) for CUs. The proposed approach towards realizing the
desired outcome involves the development of a discriminated
spectrum distribution framework, MAD2PG, that is based
on the principles of MADRL. In this context, the technique
involves sharing global historical states, actions, and policies
across the duration of central training. This approach not
only enhances network efficiency but also facilitates faster

convergence. Moreover, to decrease the computational com-
plexity of training, the proposed approach employs the POPS
which utilizes a clipping substitute technique. The simulation
results reveal that POPS outperforms DDPG, DDQN, and
DQN by 16.67%, 24.98%, and 59.09%, respectively. As a
future direction, we suggest the integration of the proposed
approach with continuous-valued power control, to develop a
combined DRL framework that repeatedly employs resource
block and power transmission, to enhance the algorithm’s
efficiency and robustness.
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