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Enabling gaze interaction in real-time on handheld mobile devices has attracted significant attention in recent
years. An increasing number of research projects have focused on sophisticated appearance-based deep
learning models to enhance the precision of gaze estimation on smartphones. This inspires important research
questions, including how the gaze can be used in a real-time application, and what type of gaze interaction
methods are preferable under dynamic conditions in terms of both user acceptance and delivering reliable
performance. To address these questions, we design four types of gaze scrolling techniques: three explicit
technique based on Gaze Gesture, Dwell time, and Pursuit; and one implicit technique based on reading speed
to support touch-free, page-scrolling on a reading application. We conduct a 20-participant user study under
both sitting and walking settings and our results reveal that Gaze Gesture and Dwell time-based interfaces are
more robust while walking and Gaze Gesture has achieved consistently good scores on usability while not
causing high cognitive workload.
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1 INTRODUCTION
In recent years, we have witnessed a significant improvement in the quality of cameras on our
smartphones. This has attracted increasing attention to appearance-based gaze research on handheld
mobile devices. This paper aims to understand and assess to what degree state-of-the-art gaze

Authors’ addresses: Yaxiong Lei, yl212@st-andrews.ac.uk, University of St Andrews, St Andrews, UK, KY16 9SX; Yuheng
Wang, yw99@st-andrews.ac.uk, University of St Andrews, St Andrews, UK, KY16 9SX; Tyler Caslin, tc80@st-andrews.ac.uk,
University of St Andrews, St Andrews, UK, KY16 9SX; Alexander Wisowaty, arkw1@st-andrews.ac.uk, University of St
Andrews, St Andrews, UK, KY16 9SX; Xu Zhu, xz32@st-andrews.ac.uk, University of St Andrews, St Andrews, UK, KY16
9SX; Mohamed Khamis, Mohamed.Khamis@glasgow.ac.uk, University of Glasgow, Glasgow, UK; Juan Ye, Juan.Ye@st-
andrews.ac.uk, University of St Andrews, St Andrews, UK, KY16 9SX.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in Proceedings of the ACM on Human-Computer Interaction, https://doi.org/10.1145/3591127.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 158. Publication date: May 2023.

HTTPS://ORCID.ORG/0000-0002-0697-7942
HTTPS://ORCID.ORG/0000-0003-3335-8706
HTTPS://ORCID.ORG/0009-0008-0158-2563
HTTPS://ORCID.ORG/0009-0004-6660-6512
HTTPS://ORCID.ORG/0000-0002-2801-3271
HTTPS://ORCID.ORG/0000-0001-7051-5200
HTTPS://ORCID.ORG/0000-0002-2838-6836
https://doi.org/10.1145/3591127
https://orcid.org/0000-0002-0697-7942
https://orcid.org/0000-0003-3335-8706
https://orcid.org/0000-0003-3335-8706
https://orcid.org/0009-0008-0158-2563
https://orcid.org/0009-0004-6660-6512
https://orcid.org/0000-0002-2801-3271
https://orcid.org/0000-0001-7051-5200
https://orcid.org/0000-0002-2838-6836
https://doi.org/10.1145/3591127


158:2 Lei et al.

estimation techniques can support real-time applications. To this end, we design four gaze user
interfaces for controlling page scrolling actions on a reading application.

Reading on a handheld mobile device is an everyday scenario [1]. The average time people spend
on their mobile phones is around 4.8 hours, and 7 out of every 10 minutes are spent on news,
social media, and other similar apps for content reading. Scrolling with touch is often needed for
continuing reading longer articles or consuming news feed. As the screen size of smartphones
grows, it becomes cumbersome to perform touch-based scrolling, especially in a single-handed
use scenario where one hand is occupied with other tasks; for example, holding coffee. Thus, we
rely on the other hand holding the phone and scrolling at the same time. However, in this case, the
hand might not be able to reach the right scrolling region easily or may accidentally activate some
other action.
To support touch-free scrolling, we propose to use various gaze interaction methods to enable

and control scrolling. Gaze-based scrolling on reading applications has been studied for as long
as eye movement data have been deemed valuable in reading and other information-processing
tasks [30]. Various projects have experimented with off-the-shelf eye-tracking devices such as Tobii
T60 and designed automatic scrolling techniques for reading on desktop screens [23, 30, 35].

Our gaze user interface design is built on these existing projects and the main difference from
them is that we use cameras in smartphones for gaze estimation and evaluate the usability of gaze
interaction methods in real-time in mobile settings. The key challenge is that the spatial relation
(i.e., distance and angle) between a user and the screen of their smartphones is constantly changing
with different holding postures and motion states. This dynamic factor has presented as a barrier
to adopting appearance-based gaze interfaces on smartphones [19, 20].

To assess the usability of gaze interaction methods on real-time mobile applications, we design
and develop a variety of gaze scrolling techniques, including implicit gaze where automatic scrolling
is dynamically adapted to real-time reading speed, and explicit gaze where scrolling is explicitly
activated by intentional gaze actions, i.e. Dwell, Pursuit and Gesture. We aim to explore the research
questions, RQ1: How different types of gaze interaction methods work in real-time and in different
scenarios, with focus on how human motion impacts gaze estimation, and RQ2: What type of gaze
interaction methods is more robust while a user is walking. To the best of our knowledge, we are
the first to evaluate the usability of various types of gaze-based scrolling techniques in real-time
mobile applications under both sitting and walking conditions. The user study results have shed
insight on gaze interface design on handheld mobile devices. We also identify the pitfalls where
gaze does not work well, which opens future research directions. The main contributions of this
paper are summarised as follows:

• We design and develop four gaze scrolling techniques to enable touch-free scrolling and
develop a reading application to support the full pipeline from collecting images from camera,
to estimating gaze, and to activating gaze interfaces.

• We conduct a 20-participant within-subjects user study and systematically evaluate four
types of gaze interaction methods (Dwell, Pursuit, Gesture and reading speed estimation)
and compare with the touch-based method for reading under sitting and walking settings.
The eye movement dataset is available for further investigation.

• We analyse the results and uncover the new possibility of using gaze in mobile applications.

2 RELATEDWORK
This section reviews the recent research appearance-based gaze estimation and gaze-supported
scrolling techniques, both of which form the foundation of our work. We also look into the recent
work on assessing gaze estimation under dynamic conditions.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 158. Publication date: May 2023.

https://doi.org/10.5281/zenodo.7806945


DynamicRead on Mobile 158:3

2.1 Gaze Estimation on Smartphone
Gaze interaction is to make use of gaze to facilitate interactions with computing devices. Gaze
refers to a point on a screen or a direction in space and can be inferred from pupil positions, facial
structure, and head movements. Benefiting from high-resolution cameras and high-performance
processors, the appearance-based approach makes it easy to provide eye-tracking functionality
in smartphones. In recent years, many deep learning architectures are proposed for appearance-
based gaze estimation and the performance on both 2D and 3D tasks has achieved significant
progress [7, 9]. Convolutional neural networks (CNN) and convolutional layers are the most
commonly used techniques in appearance-based methods to obtain facial and eye features [2, 4–
6, 12, 22, 28, 38, 39]. Krafka et al. collected a large in-the-wild gaze dataset on mobile devices,
GazeCapture, and proposed a deep-learning based model, iTracker. iTracker is a multi-branch CNN
model, which takes images of a face, eyes, along with a face grid as input. It reaches a prediction
error of 1.86cm and 2.81cm on iPhones and iPad respectively [7]. For each of the three images,
there are CNN branches to learn the features, and each branch consists of several convolutional
layers. Because of its promising results, iTracker and its variants have been adopted in many
gaze-interaction applications [22]. GoogleGaze [33] is another popular CNN model that takes
images of the left eye and right eye along with the landmark positions of eye corners. Similar to
iTracker, GoogleGaze also employs one convolutional branch for each image for visual feature
learning and then concatenates features on landmarks for final gaze point estimation. On Pixel 2
XL smartphones, GoogleGaze can reach the prediction error of 1.92cm and 0.54cm after 100-frame
calibration.

2.2 Gaze-based Scrolling Techniques
Gaze-based scrolling techniques have been extensively investigated with off-the-shelf eye tracking
devices. Kumar et al. [23] have designed four types of scrolling techniques: smooth scrolling that
uses explicit gaze interactions to activate automatic scrolling and the activation is triggered by the
dwell time of gaze in pre-defined regions; eye in the middle that dynamically adjusts scrolling rate
based on the estimated reading speed so that the users’ gaze is kept at the middle of the screen;
gaze-enhanced page up and page down that highlight the region where the user is reading when
the user presses the page down key; discrete scrolling that uses dwell time to activate page-down
command. Their results show that the participants prefer page-by-page scrolling rather than reading
moving text. This work has inspired our explicit gaze-based scrolling techniques.

Sharmin et al. [29, 30] have designed an automatic scrolling technique in order to find preferred
reading regions. Their experiment is conducted with Tobii T60 remote eye-tracking devices on a
17-inch monitor. Through a user study they investigate the preferred reading region on the screen
and the impact of the font size on eye movement. Turner et al. [32] have proposed a gaze-enhanced
scrolling technique that is based on the observation on manual scrolling. The observation can
inform the design on automatically scrolling to make sure that the user is reading the content in
their preferred reading region. Wilson and Williams [35] have introduced “autopager” to render
the unread text in the periphery so that viewers can continuously read without manual scrolling.
A page is divided into the upper and lower section and as the user is reading one section, the
other section will be presented at the periphery, allowing for continuous scrolling. The render
automatically initiates based on the readers’ current reading speed estimated from their gaze scan
path.

Our gaze scrolling techniques are inspired by the findings in the above work in terms of what gaze
interfaces can be useful for scrolling. Our work is the first one to study real-time gaze-based scrolling
using cameras of smartphones and appearance-based gaze estimation. For example, Autopager [35]
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estimates gaze positions via a commercial eye tracker and renders text on a 24" screen. We assess
the usability of these gaze interfaces under both sitting and walking conditions, which can uncover
different reading patterns.

2.3 Gaze Interaction Under Dynamic Conditions
Mobility has a significant impact on the accuracy of gaze estimation. Most of the existing research
focuses on the stationary conditions, where a user interacts with gaze while sitting or standing, and
the example projects are FGFlick [36], GAVIN [21], and EyeSayCorrect [40]. WorldGaze [26] is the
only project that has applied both rear and front cameras for gaze-voice interaction and evaluated
it under both stationary and dynamic conditions. However, their focus is on coarse-grained gaze
direction estimation using head vector, rather than fine-grained on-screen point estimation.

3 SYSTEM DESIGN
This section illustrates the design and implementation details of our gaze interfaces, gaze estimation
model and the reading application.

3.1 Gaze Reading Interface
Our main objective is to evaluate the usability of scrolling techniques in real-time on a reading
mobile application. We design four types of gaze scrolling techniques to demonstrate typical ways
of utilising gaze, including gesture, dwell time, and pursuit. We focus on the scrolling functionality
in a reading application, which represents the main behaviour on smartphones.
Gaze-based scrolling has been extensively studied with off-the-shelf eye-tracking devices in a

desktop setting. Our design is built on top of these studies [23]. Firstly, we opt for page-by-page
scrolling rather than continuous scrolling as the study has shown that readers find it disconcerting
to read moving text. Secondly, instead of completely turning to a new page, we perform 95% turning;
that is, only 95% of the page will be updated and the last line of the previous page will move to the
top with an indication arrow. This prevents sudden scrolling, where readers might need to scroll
back to check their last reading. In the following, we will introduce four types of gaze interfaces
for page scrolling.
Eye-Swipe is an explicit gaze gesture-based scrolling technique where the gesture is a vertical

transition from the bottom to the top of a screen, shown in Fig 1. This gesture mimics the natural
reading behaviour; that is, when we complete reading one page of content, our eye naturally comes
to the beginning of the second page. The different stages of the gaze gesture can be abstracted as a
finite-state machine. While the user is reading the text, they are in the reading state. Then, if the
user dwells at the bottom of the screen – in other words if the y-position of the gaze estimation
remains greater than 690 pixels (the last two lines) for at least 500 milliseconds, the user is then
in the primed state. This step is makes Eye-Swipe more robust to accidental eye movements. At
this stage, the user can either look back to the text and keep reading, or move their gaze from the
bottom to the top, indicating the final stage is reached. Then the colour of the top area turns green
and the page is scrolled.
Hitbox is another explicit gaze scrolling technique based on dwell time; that is, when a reader

finishes reading a page, they can fixate their gaze at the bottom box of the page, called Hitbox. During
the gaze fixation, the colour of the box will change from light to dark. After a certain period of
dwell time from 0.50s to 2.00s, the page will be automatically turned, shown in Fig 2a. Shorter dwell
times may come from random saccade and may afford faster operation manipulation, but the risk
of errors due to false activation is higher, commonly recognised as the “Midas Touch problem" [17].
The period of dwell time threshold is set by the readers themselves and the recommended range is
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Page 2Page 1 Page 1Page 1

Fig. 1. Eye-Swipe: Gaze Gesture-based explicit gaze scrolling technique that a vertical gaze gesture moving
from the bottom to the top of a page, simulating natural reading behaviours

0.72s to 1.50s [25, 27]. To reduce accidental fixation, we exclude any gaze points whose dwell time
is less than 300 milliseconds.

Page 1 Page 2

(a) Hitbox

Page 1 Page 2

(b) Moving bar

Page 1Page 1 Page 2

(c) Auto-Scrolling

Fig. 2. (a) Hitbox: a Dwell-time-based explicit gaze scrolling technique where a reader is asked to fix their
gaze at the bottom box for a period in order to trigger page scrolling action; (b) Moving bar: a Pursuit-based
explicit gaze scrolling technique that requests readers to follow a moving bar to trigger page scrolling action;
and (c) Auto-scrolling: an implicit gaze scrolling technique that predicts reading speed and turns the page
automatically.

Moving bar is an explicit pursuit-based gaze scrolling technique where a reader fixates their
gaze on a bar and follows the bar to move from one end to the other at the bottom operation area,
shown in Fig 2b. When the bar reaches the right end, the page will be turned. This involves two
steps: activating the moving bar with a dwell time (300 ms) and then triggering page scrolling by
successfully following the bar to the right end in a distance of 2.7cm within a period time. The
period threshold is set by the readers themselves and the recommended range is 0.50s to 1.70s. To
prevent accidental gaze falling on the bar area, only continuous points of gaze on the bar area are
counted. Note that Hitbox and Moving bar interfaces are set at the bottom of the screen, which
enables a natural transition from reading to actuating scrolling; however, the bottom is the least
accurate region of the screen for gaze estimation as it is further away from the camera and it may
only capture the eyelids of users. It would be interesting to assess the usability of gaze in these
challenging regions.
Auto-Scrolling is an implicit gaze scrolling technique that predicts the reading speed based on

the observed gaze trajectory, shown in Fig 2c. Specifically, we estimate the speed and time for a
user to finish reading the last few lines based on the speed at which the user reads at the start
and middle part of a page. Reading speed varies with individuals and materials, and we need to
constantly monitor the gaze to be able to accurately predict their reading speed. However, constant
gaze estimation can be costly in terms of computational power and battery, and lead to high latency.
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We adopt a trade-off approach that collects gaze points immediately after the page scrolling and
samples gaze points after a few seconds. This design decision has taken two factors into account:
the accuracy on the top region of the screen was often higher in our pilot test, as it is closer to the
camera and has better coverage of face and eye images; and the reader’s preferred reading region is
in the middle of the page [30].

3.2 Real-Time Gaze Estimation
We adopt iTracker [22] as our gaze estimation model, which is one of the most popular models for
gaze estimation on mobile devices. Given an image from a camera, the system first crops the images
for the face, left eye, and right eye, and then rescales them to the size of 224×224 and 128 × 128 for
face and eyes respectively. iTracker will take as input these rescale images and a face grid that is
a 25 × 25 binary mask indicating the face position in the original image. The output of iTracker
is the estimated gaze position as a coordinate, indicating their relative distance to the camera on
a mobile device. We implement the iTracker model in PyTorch and train it on the GazeCapture
dataset [22]. The mean euclidean error of iTracker is 2.05cm on the test set of the GazeCapture
dataset and 2.23cm on our test phone.
We use support vector regression (SVR) as a calibrator from GoogleGaze [33]. We adopt the

pursuit-based calibration method to balance time efficiency, using a moving dot to guide the
user’s gaze around the screen. More specifically, at the beginning of each experiment, we instruct a
participant to fixate on one moving dot which crosses 125 points distributed around the boundary of
a screen to maximise the mapping of the screen coordinate system. The image frames are processed
and sent to iTracker to extract the features. The features along with the true point positions are
fed to train a SVR model for calibration. We experiment with various calibration time durations,
ranging from 50 frames (2 seconds) to 1500 frames (60 seconds), and find that fewer frames result in
poorer performance, while more frames take longer to collect and train the model, offering only a
marginal improvement in accuracy. In the end, we opt for a 5-second calibration process, collecting
125 frames. The pilot test on our device has shown a mean Euclidean error of 0.95cm for sitting
and 1.98cm for walking after calibration.

3.3 Implementation and System Deployment
We implement our Gaze Reading application in Flutter [10], a cross-platform mobile app develop-
ment framework built by Google. To facilitate debugging and testing, the system consists of an
app deployed on the iOS device as client-side and an inference service on the server as server-side,
both connected via a local area network (LAN), as shown in Fig 3.
First, images are captured of the user from the device’s front-facing camera; that is, 25 frames

per second. For each image, we use ML Kit [11] to detect face and eyes, which will be used to create
the input required for the relevant gaze estimation model. ML Kit is a machine learning toolkit
for iOS and Android [11] and it provides facial landmark and contour detection. With ML Kit, we
process each input image and generate the face and eye images and face grid. The total processing
time is between 10ms and 25ms.
The server that runs the iTracker model and SVR model receives the input and infers with the

gaze position. After processing, all the inputs will be deleted from the server and the inferred gaze
points along with timestamps are stored for further analysis. The data transport latency ranges
around 7ms-50ms and the model inference latency is 60-75ms, which is the highest in the whole
system.

4 USER STUDY DESIGN
We design our user study to answer the following questions:

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 158. Publication date: May 2023.



DynamicRead on Mobile 158:7

1

-5

25fps

Gaze Estimation Model

Calibrator Model

Python TCP

Server

[1, -5]

Send model input

Send gaze position
x=1, y=-5

ML Kit

Face Detection
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Fig. 3. System Architecture

• Q1: Which gaze scrolling technique is most preferred by users in a reading application?
• Q2: How do gaze scrolling techniques perform in a mobile condition and which technique
performs the best?

• Q3: Is there any learning effect of using gaze scrolling techniques?

To address these questions, we evaluate the differences in user experience between touch and
gaze-based scrolling and investigate the impact of mobility on the effectiveness of gaze interfaces.
We design and conduct a within-subjects user study where we ask each participant to use each of
these five scrolling techniques. We use a 4× 4 Latin Square to balance the sequential effect between
the four gaze scrolling techniques.

4.1 Participant
We recruit 20 participants (13 male and 7 female) from the undergraduate and postgraduate
population at our university. The age of these participants ranges from 20 to 31 years, with a mean
of 25.05 and a standard deviation of 6. They all have normal eyesight or vision correction and 14
of 20 wear glasses, with left eye myopia (𝑀 = 399.4, 𝑆𝐷 = 185.2) and right eye myopia (𝑀 = 424.5,
𝑆𝐷 = 181.9). From the demographic questionnaire, English language proficiency is assessed on a
scale ranging from 1 as Elementary proficiency to 5 as native or bilingual level. The participants’
English level is assessed with mean of 3.2 (𝑆𝐷 = 1.05). Their familiarity with gaze technologies has
the mean of 1.5 (𝑆𝐷 = 0.5) within the range of 1 and 5.

The study is approved by the university ethics committee under the reference number CS-15883.
We provide each participant with an information sheet stating the objective of our user study and
what data will be collected. They have 24 hours to consider whether to take part. Each experiment
takes approximately 1 to 1.5 hours and each participant is compensated with a £10 Amazon voucher.

4.2 Text Selection
We select 10 text samples from 5 categories including Fiction, Nonfiction, Fairy Tale, Fantasy Story
and Poetry. Each sample contains around 5000 words and has 5 or 6 pages in the reading application.
The content collection is evaluated by Lexile Index [31](𝑀 = 1065L, 𝑆𝐷= 265). The higher the index,
the more difficult a reading sample is. The selection caters for a wide range of leisure reading
materials to simulate different reading scenarios on handheld mobile devices.
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4.3 Apparatus
We conduct our user study on an iPhone 13 Pro Max (6.7-inch, 240 grams, 256GB, iOS 16.0.2), with
a display of 428 pixels in width and 926 pixels in height. We left the top area (i.e., 100 pixel in
height) for instructions and activation signals, and the bottom area (i.e., 150 pixels in height) for
gaze interfaces. The remaining area (i.e., 676 pixels in height) is for reading. All versions of the
reading interface use 17 font size, 2-line space, and black font colour.

4.4 Experimental Procedure
Each participant was asked to use touch and four gaze-based scrolling techniques: Eye-Swipe,
Hitbox,Moving bar, and Auto-Scrolling in a sequence under both sitting and walking conditions. For
each sequence, the order of the gaze techniques was counterbalanced while touch-based scrolling
was always the first to allow the participants to familiarise themselves with the reading application.
Touch-based scrolling also served as the baseline condition for training and we do not expect
significant learning effects or bias from this as most participants likely have used touch interfaces
already. This touch interface has two buttons at the bottom of the screen on the left and right
edges with a distance of 360 pixels between them, for turning the page backwards and forwards
respectively. Participants were advised to simulate a single-hand scenario: using one hand to hold
the phone and scroll the page. However, some participants found the phone too big or too heavy,
and they opted to use one hand to hold and the other hand to scroll.

At the end of each scrolling technique session, each participant is asked to fill in the questionnaires
of System Usability Scale (SUS) and NASA-Task Load Index (NASA-TLX). SUS contains 10 usability
questions, each being assessed on a scale from 1 (strongly disagree) to 7 (strongly agree). The higher
the score, the better the perceived usability. We also use 7-likert NASA-TLX to assess the task
load on 6 dimensions including mental demand, physical demand, temporal demand, performance,
effort, and frustration. Participants self-rate each dimension on a scale from 1 (lowest load) to 7
(highest load).

At the end of an experiment, a semi-structured interview is conducted. SUS is a standardised
questionnaire for assessment of perceived usability and has been widely used in HCI for user
interface evaluation and has proven its validity [3, 24]. We use a standard version of SUS [35] and
add the following 6 questions for collecting subjective experience of mobility conditions (sitting
and walking), in Table 1. NASA-TLX [13] was originally used to evaluate subjective workloads for
simulations and flight experiments, and has also been used extensively to evaluate user workload
requirements in user interfaces [14, 37]. In a semi-structured questionnaire, we ask each participant
to rank their preference and record their experience on all the five scrolling techniques.

Table 1. Additional questions of SUS for Subjective Experience of Mobility Conditions

No. Questions
Q11/14 I was aware of when new text is introduced to the display when sitting / walking
Q12/15 I could read as slow as I like when sitting / walking
Q13/16 I felt in control while reading when sitting / walking

The experiments are conducted in a lab and the participants are asked to hold the phone to
read in their most natural, comfortable postures. For the sitting condition, they can either sit up or
rest on the chair. For the walking condition, they are asked to walk at their natural speed along
the marked space in the lab. More details of the experiment formulation has been provided in the
supplementary materials.
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5 RESULTS
This section will analyse the results to answer the questions in Section 4. We start from overall
comparison between touch and gaze scrolling techniques, investigate the effect of mobility condi-
tions on the use of scrolling techniques, study the learning effect on gaze scrolling techniques, and
look into gaze patterns using scan-path and heatmaps.

5.1 Analytical Plan
This section will describe the analytical plan based on the research questions in Section 4, including
hypotheses and analysis methodologies.

For Q1 on comparison of different scrolling techniques, we hypothesise that there is significant
difference in usability, cognitive load, and reading behaviours between these scrolling techniques.
To test, we run one-way repeated measures ANOVA on SUS, NASA-TLX (the overall scores), and
the reading time with the scrolling techniques as the independent variable. Also we analyse the
semi-structured interview for qualitative insight. The results are reported in Section 5.2.
For Q2 on the impact of mobility, we hypothesise that there is significant difference in the

usability of scrolling techniques between the sitting and walking conditions. We run two-way
repeated measures ANOVA with scrolling techniques and mobility conditions as the independent
variables on the scores from additional Likert questions of SUS for Subjective Experience of Mobility
Conditions in Table 1, and on the reading time under different mobility conditions. We then analyse
the semi-structured interview data and compare their gaze scan-path and heatmaps. The results
are reported in Section 5.3 and 5.4.
For Q3 on the learning effect, we hypothesise that there is a learning effect among the gaze

scrolling techniques; that is, after experimenting one type of gaze interface, participants can become
more proficient at using the other type of gaze interfaces. To test, we run two-way repeatedmeasures
ANOVA on SUS and NASA-TLX (the overall scores) with scrolling techniques and experiment order
of gaze techniques as the independent variables, and three-way repeated measures ANOVA on
reading time with scrolling techniques, mobility conditions and experiment order of gaze techniques
as the independent variables. The results are reported in Section 5.5.

5.2 Comparison of Touch and Gaze Scrolling Techniques
To assess the usability of gaze-assisted scrolling techniques, we look into the following measures.
First, on the SUS result, Eye-Swipe gets the highest score (𝑀= 90.75, 𝑆𝐷= 9.15), and Auto-Scrolling
has the lowest score (𝑀= 85.65, 𝑆𝐷= 13.50). For the other scrolling techniques, Touch has the SUS
score (𝑀= 89.55, 𝑆𝐷= 10.25), Hitbox (𝑀= 89.20, 𝑆𝐷= 9.30), and Moving bar (𝑀= 86.25, 𝑆𝐷= 9.60).
The comparison of SUS scores are presented in Fig 4a.
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Fig. 4. Overall comparison of scrolling techniques
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Secondly, on the NASA-TLX scale, Eye-Swipe has the lowest score (𝑀= 21.43, 𝑆𝐷= 6.60), and
Auto-Scrolling has the highest score (𝑀= 26.97, 𝑆𝐷= 10.41). For the other scrolling techniques,
Touch (𝑀= 22.02, 𝑆𝐷= 6.86), Hitbox (𝑀= 24.29, 𝑆𝐷= 9.03), Moving bar (𝑀= 23.10, 𝑆𝐷= 6.56). The
comparison of NASA-TLX scores is presented in Fig 4b. The one-way repeated measures ANOVA
shows that there is no significant difference between these five scrolling techniques on NASA-TLX
(F (4, 76) = 1.913, p = .117 ) and SUS (F (4, 76) = 2.453, p = .053).

In the semi-structured questionnaire, Eye-Swipe is ranked highest for being the most preferred
scrolling technique: 11 times (55%) being ranked first. Figure 5a compares the weighted ranks of
the scrolling techniques, where we assign a score 5 for being ranked first, 4 for second, and 1 for
the last. As we can see, Eye-Swipe has the highest score, and Eye-Swipe and Hitbox are consistently
better perceived than Touch under the different mobility conditions. Participants have commented
Eye-Swipe as “a fun and easy way to read”.
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Fig. 5. Compare User Subjective Ranking on their preferred scrolling techniques and reading time

In addition, we compare average reading time per page (RTPP) between these scrolling techniques
in Fig 5b. Individuals can have different reading speeds on different materials because of their own
reading patterns, such as pauses, regressions (re-read), slowdowns and line skips. However, we
hypothesise that the modality of interfaces (Touch vs Gaze) will not impact users’ reading patterns;
that is, they can read naturally in their own pace, no matter which scrolling technique is adopted.We
conduct a one-way repeated measure ANOVA of overall mean of RTPP with scrolling techniques
as the independent variable, while not differentiating between walking and sitting. There is a
significant difference in RTPP among the five scrolling techniques (F (2.55, 48.36) = 4.616, p = .009).
The post hoc t-test with Bonferroni correction demonstrates that Auto-scrolling has significantly
shorter reading time compared to the Touch method (t (39) = −4.07 , p = .002), and there are no
significant difference between the other scrolling techniques.
Except for Auto-Scrolling, the other gaze interfaces have similar reading time to Touch. More

specifically, Touch has the reading time (𝑀= 35.81s, 𝑆𝐷= 20.30), followed by Eye-Swipe (𝑀= 33.50s,
𝑆𝐷= 14.66), Hitbox (𝑀= 31.15s, 𝑆𝐷= 16.47), Moving bar (𝑀= 30.75s, 𝑆𝐷= 14.30), and Auto-Scrolling
(𝑀= 26.65s, 𝑆𝐷= 13.54). Auto-Scrolling has the shortest page-turning time and causes frustration
for users; that is, the page is turned sometimes before a user finishes. This is reflected in its low
SUS score and high NASA-TLX score.

5.3 Impact of Mobility on Gaze
We compare the above measures under the sitting and walking conditions to find out which
gaze interface is most significantly impacted by the mobility. We will first compare the scrolling
techniques under each condition and then between conditions.
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Following Table 1, we group the questions as (11, 14), (12, 15), and (13, 16), each pair correspond-
ing to the same question under the sitting and walking conditions. We run two-way repeated
measures ANOVA with scrolling techniques and mobility conditions as the two independent
variables. The results showed that subjective experience has a significant difference among the
five scrolling techniques (F (4, 236) = 15.75, p < .001), and a significant difference on mobility
conditions (F (1, 59) = 57 .302, p < .001), but there is no significant difference in their interactions
(F (4, 236) = 2.272, p = .062).

For post hoc comparison, we run the pairwise Wilcoxon test instead of t-test, because the Likert
score is ordinal rather than continuous. The results suggest that there is significant difference
between sitting and walking conditions (W = 56257 .5, p < .001) and there is significant difference
between Auto-Scrolling and Hitbox (W = 5256, p < .001), Auto-Scrolling and Eye-Swipe (W =

4564, p < .001), Auto-Scrolling and Moving bar (W = 5244, p < .001), Auto-Scrolling and Touch
(W = 4877 , p < .001), while there is no significant difference between the remaining scrolling
techniques.

We compare the user ranking of the scrolling techniques under the sitting and walking conditions
in Figure 5a. From sitting to walking, the rank of Touch, Hitbox, and Moving bar increases while the
rank of Eye-Swipe and Auto-Scrolling decreases. However, the overall ranking of preferred scrolling
techniques is still the same. It suggests that Eye-Swipe and Hitbox can still perform well under the
walking condition, more robust and tolerant to unstable gaze estimation.
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Fig. 6. Comparison of reading time per page under sitting and walking conditions

We conduct two-way repeated measure ANOVA of RTPP with scrolling techniques and mobility
conditions being the two independent variables. The result shows that the mobility condition itself
(F (1, 19) = 3.894, p = .063) does not affect the reading time, but the interactions between scrolling
techniques and mobility conditions (F (4, 76) = 3.844, p = .007 ) have a significant effect on RTPP.
Under the walking condition, Auto-scrolling also has significantly shorter reading time compared to
Touch (t (19) = −3.53, p = .022), while no significant differences under the sitting condition. When
using Touch scrolling technique, we find that the RTPP of walking is significantly longer than when
sitting (t(19) = −4.23, p < .001), with no significant differences observed across the gaze scrolling
techniques.

5.4 Gaze Trajectories and Patterns
We present gaze scan-path and heatmaps on these gaze interfaces under both sitting and walking
conditions in Figure 7. First of all, we can observe gaze estimation works well in that gaze covers all
the text and gaze patterns that activate the explicit gaze interfaces are visible. Especially, Eye-Swipe
– a green vertical trajectory from the bottom to the page, and Hitbox – a cluster of consecutive gaze
points at the bottom area, are robust to the inaccuracy of gaze estimation. The results are really
promising, demonstrating the potential of the use of gaze estimation in real-time.
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Fig. 7. Gaze scan-path and heatmap of gaze scrolling techniques under sitting and walking. A scan-path
image shows a trajectory of gaze points on a page and its colour changing from red to green indicates the
transition. A heatmap image visualises the clusters of gaze points. For the explicit gaze interaction methods,
we mark the gaze patterns that activate the scrolling technique on the scan-path images.
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Fig. 8. Challenging examples of gaze patterns observed under walking condition

Secondly, under the walking condition, gaze patterns are more sparse and more likely out of the
reading area. This makes it challenging to predict the correct reading speed for Auto-Scrolling, the
implicit gaze interface. Moving bar is difficult to operate as it can abort once the gaze jumps out of
the area. Participants feel frustrated trying to get it working several times. Thirdly, gaze patterns
can be skewed to one side during walking, as sometimes participants tilt the phone, which does
not capture the right, front face for gaze estimation. We have shared a few challenging examples of
gaze patterns in Figure 8.

5.5 Learning Effect of Gaze Interfaces
We present the learning effect in SUS, NASA-TLX, and RTPP in Fig 9a, 9b and 9c; that is, the scores
in usability and cognitive load, and reading time per page on the order of each gaze interface
being introduced. For the learning effect on NASA-TLX and SUS, we run a two-way repeated
measures ANOVA with scrolling techniques and experiment order of gaze technique as the two
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Fig. 9. Learning effect on gaze scrolling techniques

independent variables. The results show that the order has a significant effect on NASA-TLX
(F (3, 48) = 2.988, p = .040), but no significant effect on SUS (F (3, 48) = 2.224, p = .097 ). The post
hoc pairwise t-test on NASA-TLX suggests that there is significant difference when a gaze interface
is introduced first or after learning two gaze interfaces (t (19) = 2.60, p = .017 ).

For learning effect on RTPP of mobility condition, we run a three-way repeated measures ANOVA
with scrolling techniques, mobility conditions, and experiment order of gaze technique as the three
independent variables. We found the order has a significant effect on RTPP (F (3, 49 .34) = 5.350, p =

.003), and there is an interaction effect between order and mobility conditions (F (3, 683.85) =

12.844, p < .001).
The post hoc pairwise t-test with Bonferroni correction is conducted on assessing the order

effect of each gaze scrolling technique; that is, whether there is a difference when a technique
is introduced earlier or later. The results showed significant differences in RTPP between the
following order pairs (1𝑠𝑡 , 3𝑟𝑑 ) (t (418) = 3.68, p = .002), (1𝑠𝑡 , 4𝑡ℎ) (t (353) = 4.53, p < .001), (2𝑛𝑑 , 3𝑟𝑑 )
(t (362) = 3.65, p = .002), (2𝑛𝑑 , 4𝑡ℎ) (t (341) = 4.40, p < .001).

Similarly, the orders of gaze scrolling techniques have a significant impact on the participants’
reading time. The participants spend longer on reading when first using a gaze scrolling technique.
The possible reason is that the participants are unconsciously distracted by the gaze interface and
need more time to learn. The reading time decreases when using the gaze scrolling techniques
subsequently.

6 DISCUSSION
Here we reflect on what we have learnt through the user study and identify further research
directions.

6.1 Real-time Gaze-assisted Scrolling
Our work presents a collection of real-time gaze-assisted scrolling techniques for a reading applica-
tion. Our approach is different from the existing gaze-assisted scrolling techniques in Section 2
in terms of gaze estimation techniques, types of gaze interfaces, and the testing platform. More
specifically, we take advantage of front camera of a smart phone, and adopt appearance-based gaze
estimation to perform real-time gaze estimation. We explore a wider range of explicit gaze interac-
tion methods from dwell-time and pursuit to gaze gesture, and implicit gaze interaction method,
the Auto-Scrolling. Our reading application is deployed on a phone, which is much smaller than a
desktop screen used in the previous studies and thus has higher requirement on the precision of
gaze estimation. More importantly, we assess our gaze interfaces under both stationary and mobile
conditions, which can shed light on whether gaze interfaces can support real-time interaction for
real-world mobile applications, and if so, what type of interaction performs better.
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6.2 Limitation of Our Study
The main limitation of our work is that the gaze estimation model is deployed on a server, which can
incur extra latency and raises privacy concerns. To address these issues, our future work will focus
on moving the gaze estimation model to the device and performing on-device inference. However,
the computation cost can be high so we will look into approaches to reduce computational footprint
and optimise battery usage. Also comparisons with other gaze-assisted scrolling techniques will be
further explored.

In terms of our user study, our recruited participants had relatively low English proficiency levels
(3.2 out of 5), which may have affected their reading speed and patterns. Future studies should
include participants who can read in their native languages. In terms of experiment procedure,
touching-based scrolling is always the first tested, which may have introduced bias into the study
due to counterbalanced issue. In the future, the counterbalanced order of all the scrolling techniques
will be applied after a warm up training session.

6.3 Impact of Mobility and Environment on Gaze Interaction
Our results have shown that Eye-Swipe and Hitbox can perform well under the dynamic condition.
For Eye-Swipe, the system only needs to observe a vertical trajectory from the bottom to the top;
while for Hitbox, a short period of fixation on the bottom area is sufficient. From the semi-structured
interview, some participants reflect that Hitbox, dwell-time based technique is easier to control
while walking. Auto-Scrolling is still under-performing due to irregular reading patterns under
walking, which is caused by inaccurate gaze estimation due to the changing holding postures and
also natural, occasional gaze out of the screen area for checking the walking path [34].
Mobility makes it challenging to use demanding gaze interfaces like Moving bar that requires

the execution of complicated gaze actions in an accurate manner. Users can experience too many
abortions of the action due to sporadic deviation of gaze. Participants have commented on it as
“tiring” and “complicated”.

Mobility not only changes the holding postures, but also aggravates “Midas Touch Problem”.
Our user study is conducted in an uncluttered, controlled environment, and each participant is
asked to walk on an anticipation-based route. They will only use peripheral vision while walking
but occasionally we observe that they will still direct their gaze to checking obstacles and plan
paths [8, 15, 18, 34]. This is a natural behaviour while people walk and is also reflected in the longer
reading time while walking compared to sitting, presented in Figure 6. In a cluttered environment,
users have no anticipation-based path and will have more irregular gaze patterns [8, 15, 16, 18,
34]. During walking, trajectory and dwell can still be captured and have enough tolerance for
unstable gaze points; for example, ballistic trajectories and dwell fixed in one area are more easily
distinguished from noisy raw gaze data.

6.4 Further Improvement on Gaze Estimation
Appearance-based gaze estimation needs to be more accurate under the mobile condition. First
of all, the gaze estimation model is trained on the data collected under the stationary condition,
so the model is not tolerant to various distances and tilting angles between the screen and face.
Collecting more data under a diversity of dynamic conditions has already been recognised as an
important direction.

Calibration works even for a short 5-second calibration using a lightweight SVR. However, when
participants change holding postures, the model becomes less accurate. It is desirable to perform
continuous calibration. The key will be on when and how to perform implicit calibration; that is,
without interrupting the current task, could we find a surrogate or proxy to get the true points?

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 158. Publication date: May 2023.



DynamicRead on Mobile 158:15

6.5 More Thoughts on Implicit Gaze
Auto-Scrolling, implicit gaze interface, is not well perceived in our experiment. There are various
reasons behind that; for example, our reading speed prediction is a simple regression algorithm
and only takes a few nonconsecutive gaze points at the top and middle regions of the screen.
Auto-Scrolling can work well on some participants who pay high attention on the reading

material and reads in a continuous, regular pace. They comment it as “good for reading novels”,
“very natural to turn the pages as I read for fun”, and “fit my reading habits very well”. By examining
this participant’s data, we can see that his eye movements cover the whole page and the transition
of gaze from the top to the bottom is clear. However, it does not work for most participants when
they do not have linear reading patterns. For example, one participant comments “while reading the
poem, the technique prevented me from thinking.” Readers may divert their gaze out of the screen
or fixate at some particular words for thinking or mind-wandering. This adds extra complication
and ways to improve better prediction include using more gaze points, using extra information
about the reading material such as textual features to infer users’ preference, and adopting a more
sophisticated prediction algorithm.

7 CONCLUSION AND FUTUREWORK
In this study, we evaluated four gaze interaction methods for scrolling pages in a mobile reading
application through a user study and a detailed empirical analysis. Overall, explicit gaze interaction
methods perform well under the mobile condition, and are consistently ranked higher as user pre-
ferred techniques than touch-based scrolling. Participants found explicit gaze interaction methods
enjoyable and easy to use and and felt they maintained control over their reading pace. Gesture
and Dwell-time based gaze interaction methods proved more robust than Pursuit during walking.
This is a promising result, confirming the usability of gaze in mobile applications and encouraging
further innovative designs on handheld mobile devices.

ACKNOWLEDGMENTS
We thank all of our participants for their time and contribution to the project. We thank Shijing
He for his valuable support on paper figure design and Jason Jacques, Kenneth Boyd and Angela
Miguel for their constructive feedback and comments. And Lei, Y. and Wang, Y. acknowledge the
financial support by the University of St Andrews and China Scholarship Council Joint Scholarship.

REFERENCES
[1] App Annie. 2022. state of mobile 2022. https://www.data.ai/en/go/state-of-mobile-2022/
[2] Y. Bao, Y. Cheng, Y. Liu, and F. Lu. 2021. Adaptive Feature Fusion Network for Gaze Tracking in Mobile Tablets. In 2020

25th International Conference on Pattern Recognition (ICPR). IEEE Computer Society, Los Alamitos, CA, USA, 9936–9943.
https://doi.org/10.1109/ICPR48806.2021.9412205

[3] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation in industry 189, 194 (1996), 4–7.
https://doi.org/10.1201/9781498710411-35

[4] Zhaokang Chen and Bertram E. Shi. 2019. Appearance-Based Gaze Estimation Using Dilated-Convolutions. In Computer
Vision – ACCV 2018, C.V. Jawahar, Hongdong Li, Greg Mori, and Konrad Schindler (Eds.). Springer International
Publishing, Cham, 309–324.

[5] Yihua Cheng, Shiyao Huang, Fei Wang, Chen Qian, and Feng Lu. 2020. A Coarse-to-Fine Adaptive Network for
Appearance-Based Gaze Estimation. Proceedings of the AAAI Conference on Artificial Intelligence 34, 07 (Apr. 2020),
10623–10630. https://doi.org/10.1609/aaai.v34i07.6636

[6] Y. Cheng and F. Lu. 2022. Gaze Estimation using Transformer. In 2022 26th International Conference on Pattern Recognition
(ICPR). IEEE Computer Society, Los Alamitos, CA, USA, 3341–3347. https://doi.org/10.1109/ICPR56361.2022.9956687

[7] Yihua Cheng, Haofei Wang, Yiwei Bao, and Feng Lu. 2021. Appearance-based Gaze Estimation With Deep Learning: A
Review and Benchmark. arXiv preprint abs/2104.12668 (2021).

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 158. Publication date: May 2023.

https://www.data.ai/en/go/state-of-mobile-2022/
https://doi.org/10.1109/ICPR48806.2021.9412205
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1609/aaai.v34i07.6636
https://doi.org/10.1109/ICPR56361.2022.9956687


158:16 Lei et al.

[8] Michael E Cinelli, Aftab E Patla, and Fran Allard. 2009. Behaviour and gaze analyses during a goal-directed locomotor
task. Quarterly Journal of Experimental Psychology 62, 3 (2009), 483–499. https://doi.org/10.1080/17470210802168583

[9] Shreya Ghosh, Abhinav Dhall, Munawar Hayat, Jarrod Knibbe, and Qiang Ji. 2021. Automatic Gaze Analysis: A Survey
of Deep Learning Based Approaches. arXiv preprint abs/2108.05479 (2021).

[10] Google. 2022. Flutter dev. https://flutter.dev
[11] Google. 2022. ML Kit. https://developers.google.com/ml-kit
[12] Tianchu Guo, Yongchao Liu, Hui Zhang, Xiabing Liu, Youngjun Kwak, Byung In Yoo, Jae-Joon Han, and Changkyu Choi.

2019. A Generalized and Robust Method Towards Practical Gaze Estimation on Smart Phone. arXiv:1910.07331 [cs.CV]
[13] Sandra G Hart. 1986. NASA task load index (TLX). (1986).
[14] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and

Ergonomics Society Annual Meeting 50, 9 (2006), 904–908. https://doi.org/10.1177/154193120605000909
[15] Takahiro Higuchi. 2013. Visuomotor control of human adaptive locomotion: understanding the anticipatory nature.

Frontiers in psychology 4 (2013), 277. https://doi.org/10.3389/fpsyg.2013.00277
[16] Mark A Hollands and Dilwyn E Marple-Horvat. 2001. Coordination of eye and leg movements during visually guided

stepping. Journal of motor behavior 33, 2 (2001), 205–216. https://doi.org/10.1080/00222890109603151
[17] Robert J. K. Jacob. 1991. The Use of Eye Movements in Human-Computer Interaction Techniques: What You Look at is

What You Get. ACM Trans. Inf. Syst. 9, 2 (apr 1991), 152–169. https://doi.org/10.1145/123078.128728
[18] Jelena Jovancevic-Misic andMary Hayhoe. 2009. Adaptive gaze control in natural environments. Journal of Neuroscience

29, 19 (2009), 6234–6238. https://doi.org/10.1523/JNEUROSCI.5570-08.2009
[19] Mohamed Khamis, Florian Alt, and Andreas Bulling. 2018. The Past, Present, and Future of Gaze-Enabled Handheld

Mobile Devices: Survey and Lessons Learned. In Proceedings of the 20th International Conference on Human-Computer
Interaction with Mobile Devices and Services (Barcelona, Spain) (MobileHCI ’18). Association for Computing Machinery,
New York, NY, USA, Article 38, 17 pages. https://doi.org/10.1145/3229434.3229452

[20] Mohamed Khamis, Anita Baier, Niels Henze, Florian Alt, and Andreas Bulling. 2018. Understanding Face and Eye
Visibility in Front-Facing Cameras of Smartphones Used in the Wild. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173854

[21] Anam Ahmad Khan, Joshua Newn, Ryan M. Kelly, Namrata Srivastava, James Bailey, and Eduardo Velloso. 2021.
GAVIN: Gaze-Assisted Voice-Based Implicit Note-Taking. ACM Trans. Comput.-Hum. Interact. 28, 4, Article 26 (aug
2021), 32 pages. https://doi.org/10.1145/3453988

[22] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhandarkar, Wojciech Matusik, and Antonio
Torralba. 2016. Eye Tracking for Everyone. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, Las Vegas, NV, USA, 2176–2184. https://doi.org/10.1109/CVPR.2016.239

[23] Manu Kumar and Terry Winograd. 2007. Gaze-Enhanced Scrolling Techniques. In Proceedings of the 20th Annual
ACM Symposium on User Interface Software and Technology (Newport, Rhode Island, USA) (UIST ’07). Association for
Computing Machinery, New York, NY, USA, 213–216. https://doi.org/10.1145/1294211.1294249

[24] James R. Lewis. 2018. The System Usability Scale: Past, Present, and Future. International Jour-
nal of Human–Computer Interaction 34, 7 (2018), 577–590. https://doi.org/10.1080/10447318.2018.1455307
arXiv:https://doi.org/10.1080/10447318.2018.1455307

[25] Päivi Majaranta, Ulla-Kaija Ahola, and Oleg Špakov. 2009. Fast Gaze Typing with an Adjustable Dwell Time. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). Association
for Computing Machinery, New York, NY, USA, 357–360. https://doi.org/10.1145/1518701.1518758

[26] SvenMayer, Gierad Laput, and Chris Harrison. 2020. EnhancingMobile Voice Assistants withWorldGaze. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3313831.3376479

[27] Martez E. Mott, Shane Williams, Jacob O. Wobbrock, and Meredith Ringel Morris. 2017. Improving Dwell-Based
Gaze Typing with Dynamic, Cascading Dwell Times. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA,
2558–2570. https://doi.org/10.1145/3025453.3025517

[28] Cristina Palmero, Javier Selva, Mohammad Ali Bagheri, and Sergio Escalera. 2018. Recurrent cnn for 3d gaze estimation
using appearance and shape cues. In Proceedings of British Machine Vision Conference (BMVC). The British Machine
Vision Association(BMVA), Northumbria, UK.

[29] Kari-Jouko Räihä and Selina Sharmin. 2014. Gaze-Contingent Scrolling and Reading Patterns. In Proceedings of the
8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational (Helsinki, Finland) (NordiCHI ’14).
Association for Computing Machinery, New York, NY, USA, 65–68. https://doi.org/10.1145/2639189.2639242

[30] Selina Sharmin, Oleg Špakov, and Kari-Jouko Räihä. 2013. Reading On-Screen Text with Gaze-Based Auto-Scrolling. In
Proceedings of the 2013 Conference on Eye Tracking South Africa (Cape Town, South Africa) (ETSA ’13). Association for

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 158. Publication date: May 2023.

https://doi.org/10.1080/17470210802168583
https://flutter.dev
https://developers.google.com/ml-kit
https://arxiv.org/abs/1910.07331
https://doi.org/10.1177/154193120605000909
https://doi.org/10.3389/fpsyg.2013.00277
https://doi.org/10.1080/00222890109603151
https://doi.org/10.1145/123078.128728
https://doi.org/10.1523/JNEUROSCI.5570-08.2009
https://doi.org/10.1145/3229434.3229452
https://doi.org/10.1145/3173574.3173854
https://doi.org/10.1145/3453988
https://doi.org/10.1109/CVPR.2016.239
https://doi.org/10.1145/1294211.1294249
https://doi.org/10.1080/10447318.2018.1455307
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1145/1518701.1518758
https://doi.org/10.1145/3313831.3376479
https://doi.org/10.1145/3025453.3025517
https://doi.org/10.1145/2639189.2639242


DynamicRead on Mobile 158:17

Computing Machinery, New York, NY, USA, 24–31. https://doi.org/10.1145/2509315.2509319
[31] A. Jackson Stenner. 2023. Measuring Reading Comprehension with the Lexile Framework. Springer Nature Singapore,

Singapore, 63–88. https://doi.org/10.1007/978-981-19-3747-7_6
[32] Jayson Turner, Shamsi Iqbal, and SusanDumais. 2015. Understanding Gaze and Scrolling Strategies in Text Consumption

Tasks. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2015 ACM International Symposium on Wearable Computers (Osaka, Japan) (UbiComp/ISWC’15
Adjunct). Association for ComputingMachinery, New York, NY, USA, 829–838. https://doi.org/10.1145/2800835.2804331

[33] Nachiappan Valliappan, Na Dai, Ethan Steinberg, Junfeng He, Kantwon Rogers, Venky Ramachandran, Pingmei Xu,
Mina Shojaeizadeh, Li Guo, Kai Kohlhoff, et al. 2020. Accelerating eye movement research via accurate and affordable
smartphone eye tracking. Nature communications 11, 1 (2020), 1–12. https://doi.org/10.1038/s41467-020-18360-5

[34] Griet Warlop, Pieter Vansteenkiste, Matthieu Lenoir, Jérôme Van Causenbroeck, and Frederik JA Deconinck. 2020.
Gaze behaviour during walking in young adults with developmental coordination disorder. Human movement science
71 (2020), 102616. https://doi.org/10.1016/j.humov.2020.102616

[35] Andrew D. Wilson and Shane Williams. 2018. Autopager: Exploiting Change Blindness for Gaze-Assisted Reading.
In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (Warsaw, Poland) (ETRA ’18).
Association for ComputingMachinery, NewYork, NY, USA, Article 46, 5 pages. https://doi.org/10.1145/3204493.3204556

[36] Yuki Yamato, Yutaro Suzuki, and Shin Takahashi. 2021. FGFlick: Augmenting Single-Finger Input Vocabulary for
Smartphones with Simultaneous Finger and Gaze Flicks. In Human-Computer Interaction – INTERACT 2021, Carmelo
Ardito, Rosa Lanzilotti, Alessio Malizia, Helen Petrie, Antonio Piccinno, Giuseppe Desolda, and Kori Inkpen (Eds.).
Springer International Publishing, Cham, 421–425. https://doi.org/10.1007/978-3-030-85607-6_50

[37] Michael Juntao Yuan, George Mike Finley, Ju Long, Christy Mills, and Ron Kim Johnson. 2013. Evaluation of User
Interface and Workflow Design of a Bedside Nursing Clinical Decision Support System. Interact J Med Res 2, 1 (31 Jan
2013), e4. https://doi.org/10.2196/ijmr.2402

[38] Xucong Zhang, Michael Xuelin Huang, Yusuke Sugano, and Andreas Bulling. 2018. Training Person-Specific Gaze
Estimators from User Interactions with Multiple Devices. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/3173574.3174198

[39] Xucong Zhang, Yusuke Sugano, and Andreas Bulling. 2019. Evaluation of Appearance-Based Methods and Implications
for Gaze-Based Applications. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/
10.1145/3290605.3300646

[40] Maozheng Zhao, Henry Huang, Zhi Li, Rui Liu, Wenzhe Cui, Kajal Toshniwal, Ananya Goel, Andrew Wang, Xia
Zhao, Sina Rashidian, Furqan Baig, Khiem Phi, Shumin Zhai, IV Ramakrishnan, Fusheng Wang, and Xiaojun Bi. 2022.
EyeSayCorrect: Eye Gaze and Voice Based Hands-Free Text Correction for Mobile Devices. In 27th International
Conference on Intelligent User Interfaces (Helsinki, Finland) (IUI ’22). Association for Computing Machinery, New York,
NY, USA, 470–482. https://doi.org/10.1145/3490099.3511103

Received November 2022; revised February 2023; accepted March 2023

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 158. Publication date: May 2023.

https://doi.org/10.1145/2509315.2509319
https://doi.org/10.1007/978-981-19-3747-7_6
https://doi.org/10.1145/2800835.2804331
https://doi.org/10.1038/s41467-020-18360-5
https://doi.org/10.1016/j.humov.2020.102616
https://doi.org/10.1145/3204493.3204556
https://doi.org/10.1007/978-3-030-85607-6_50
https://doi.org/10.2196/ijmr.2402
https://doi.org/10.1145/3173574.3174198
https://doi.org/10.1145/3290605.3300646
https://doi.org/10.1145/3290605.3300646
https://doi.org/10.1145/3490099.3511103

	Abstract
	1 Introduction
	2 Related Work
	2.1 Gaze Estimation on Smartphone
	2.2 Gaze-based Scrolling Techniques
	2.3 Gaze Interaction Under Dynamic Conditions

	3 System Design
	3.1 Gaze Reading Interface
	3.2 Real-Time Gaze Estimation
	3.3 Implementation and System Deployment

	4 User Study Design
	4.1 Participant
	4.2 Text Selection
	4.3 Apparatus
	4.4 Experimental Procedure

	5 Results
	5.1 Analytical Plan
	5.2 Comparison of Touch and Gaze Scrolling Techniques 
	5.3 Impact of Mobility on Gaze
	5.4 Gaze Trajectories and Patterns
	5.5 Learning Effect of Gaze Interfaces

	6 Discussion
	6.1 Real-time Gaze-assisted Scrolling
	6.2 Limitation of Our Study
	6.3 Impact of Mobility and Environment on Gaze Interaction
	6.4 Further Improvement on Gaze Estimation
	6.5 More Thoughts on Implicit Gaze

	7 Conclusion and Future Work
	Acknowledgments
	References

