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Deep learning enables satellite-based mon-
itoring of large populations of terrestrial
mammals across heterogeneous landscape

Zijing Wu 1,14, Ce Zhang 2,3,14, Xiaowei Gu 4,14, Isla Duporge 5,6,7,14,
Lacey F. Hughey 8, Jared A. Stabach 8, Andrew K. Skidmore 1,9,
J. Grant C. Hopcraft 10, Stephen J. Lee6, Peter M. Atkinson2,11,
Douglas J. McCauley12, Richard Lamprey 1, Shadrack Ngene13 &
Tiejun Wang 1

New satellite remote sensing andmachine learning techniques offer untapped
possibilities to monitor global biodiversity with unprecedented speed and
precision. These efficiencies promise to reveal novel ecological insights at
spatial scaleswhich are germane to themanagement of populations and entire
ecosystems. Here, we present a robust transferable deep learning pipeline to
automatically locate and count large herds ofmigratory ungulates (wildebeest
and zebra) in the Serengeti-Mara ecosystem using fine-resolution (38-50 cm)
satellite imagery. The results achieve accurate detection of nearly 500,000
individuals across thousands of square kilometers and multiple habitat types,
with an overall F1-score of 84.75% (Precision: 87.85%, Recall: 81.86%). This
research demonstrates the capability of satellite remote sensing and machine
learning techniques to automatically and accurately count very large popula-
tions of terrestrialmammals across a highly heterogeneous landscape.We also
discuss the potential for satellite-derived species detections to advance basic
understanding of animal behavior and ecology.

The African continent has the greatest diversity and abundance of
mammals in theworld1. This status, however, is threatenedby intensive
land use changes driven by increasing natural resource extraction and
infrastructure development2,3. Even in protected areas, Africa’s large
mammal populations have declined by 59% in three decades4, and
many are now categorized as endangered or threatened by the Inter-
national Union for Conservation of Nature. Climate change promises
to only accelerate these losses, underscoring the need for advanced

monitoring techniques that can provide managers with information at
a rate that keeps pace with local environmental changes5,6.

Conventional methods for surveying large wildlife, especially in
Africa, have relied on crewed aerial surveys for decades7–11. This
approach has generated some of the longest-running ecological
datasets in the world and formed the foundation of leading con-
servation strategies across the continent. However, crewed surveys
introduce risks to human and wildlife and in many cases can only
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provide animal counts with coarse location precision. Moreover, all
crewed aerial survey techniques are subject to biases arising from
detection probability, observer experience and double counting8,12.
Uncrewed aerial vehicles (UAVs) with imaging sensors offer a pro-
mising alternative to crewed surveys in some cases13–18. However, like
crewed flights, UAVs are generally limited by fuel or battery life and,
thus, are limited in scale and can be difficult to maintain in remote
locations19. Moreover, UAVs can disturb wildlife when flown at low
altitudes20–22, which has led to flight restrictions in some protected
areas23.

Recent advances in satellite technology have dramatically
increased the feasibility of conducting uncrewed surveys in remote
landscapes and at greater scales than UAVs are currently capable of.
Many of the first applications of this technology focused on visualizing
and analyzing easier-to-view environmental markers that, in certain
contexts, provide insights to estimate population size (e.g., guano
stains24, nests25, mounds and burrows26). It took less than a few years,
however, for the technology to accommodate manual counts at the
scale of individual animals for species in unobscured contexts (e.g.,
polar bears27, albatrosses28, and Weddell seals29,30). However, reliance
on labor-intensive manual detection has restricted uptake by the
conservation community, highlighting the need for automated tech-
niques for processing fine-resolution satellite images.

Machine learning and the associated sub-field of deep learning,
have offered promising solutions to the challenge of conducting
wildlife surveys from space. Over the past decade, deep learning has
been a key driver of progress in science and engineering31. Such
advancements have had a transformative impact on the field of com-
puter vision, where the performance of somedeep learning algorithms
has achievedor surpassedhuman-level performance inmany tasks32–36.
At the same time, new collaborations between ecologists and com-
puter scientists have provided several key advancements in automated
animal detection from satellite imagery, including detection of the
world’s largestmarine and terrestrial vertebrates, such as whales37 and
elephants38, using object detection algorithms. However, the perfor-
mance of current object detectors suffers from the small size of the
objects in imagery39–41. The feasibility of successfully using object
detection methods is dependent on the body size of the animal:
mature whales have a body length of more than 20m42, and African
elephants are generally 3–5m long43, both of which have more than
eight pixels along the body length axis in submeter-resolution (e.g.,
0.3–0.5m) satellite imagery.

A few studies have conducted automated surveys for smaller
species with satellite images, such as for seals44 and albatrosses45 using
pixel-based semantic segmentation algorithms. Image segmentation
deep learning architectures such as U-Net46 predict the class prob-
ability for every pixel, showing the potential to detect animals with a
smaller size in satellite imagery. However, these early successes were
limited to high-contrast species in homogeneous environments.
The capability to reliably distinguish smaller animals (e.g., ≤9 pixels in
size in satellite imagery, such as wildebeest, one of the African ungu-
late species) from complex backgrounds (e.g., mixed forest and
savanna ecosystems) remains uninvestigated and continues to be a
major question in satellite-based techniques for wildlife surveys47.

Here, we address this shortcoming by presenting a robust fra-
mework for efficiently locating and counting wildebeest-sized animals
with a body length of 1.5–2.5m from submeter-resolution satellite
imagery across a large, highly heterogeneous landscape.We do this by
integrating a post-processing clustering module with a U-Net-based
deep learning model, which uses high-precision pixel-based image
segmentation to locate animals at theobject level.Wedemonstrate the
power of this frameworkbydeploying it to locate and count the largest
terrestrial mammal migration on the planet—the migration of white
bearded wildebeest (Connochaetes taurinus) and plains zebra (Equus
quagga) across the Serengeti-Mara ecosystem. Wildebeest have an

estimatedpopulation of ~1.3million individuals,making them themost
numerous species in the ecosystem by an order of magnitude48,49.
There are also over 250,000 zebras and other ungulate species that
move seasonally across the system in tandem with wildebeest48. As a
result, their annualmigration drivesmultiple ecological processes that
support the health of humans and wildlife across the region (i.e.,
nutrient cycling, trophic interactions, biomass removal and habitat
recovery from over utilization50–53). In addition, the spectacle of the
great migration supports a robust tourism industry, which underpins
regional economies across Kenya and Tanzania. However, with the
migration subject to seasonality of rainfall and habitat preference, this
iconic system is facing unprecedented threats from rapid climate and
environmental change54–57. Thus, the ability to frequently and accu-
rately assess the status of migratory ungulate populations is key to
forming conservation policies that address current threats and pro-
mote ecosystem function. In addition to supporting conservation
planning in East Africa, thesemethodological advances stand to inform
basic scientific understanding of ecological patterns and processes,
such as quantitatively describing the emergent properties of animal
aggregations58,59 and answering long-standing questions about the
mechanisms that drive behavioral shifts from individuals to popula-
tions. Such insights are crucial for advancing the fields of functional
ecology and collective behavior, yet the technological challenges
associated with studying animal aggregations in the wild have hin-
dered scientific understanding outside of a laboratory environment60.
Here, we take a germinal step towards overcoming such challenges by
presenting amethod for locating and counting large groups of animals
in fine-resolution satellite imagery.

Results
A U-Net-based ensemble learning model for wildebeest
detection
As a network designed for image segmentation tasks, U-Net allows
precise pixel-level localization of a target class in an image46. However,
it is not directly suitable for object detection applications. To address
this issue, we present a U-Net-based detection pipeline that involves a
post-processing module using a clustering method (Fig. 1). The pipe-
line is composed of three main blocks. In the first block, we subdivide
the raw satellite image scenes into 336 by 336-pixel images (hereafter
patches) as the input images for themodel. Thewildebeest in the input
images are annotated as points, which are expanded to 3 by 3-pixel
segments and are then converted to binary wildebeest/non-wildebeest
image segmentation masks. In the second block, the satellite image
patches and the corresponding masks of labeled wildebeest are fed
into the U-Net model, which predicts the probability of wildebeest
presence for each pixel. The U-Net model has a U-shaped symmetrical
encoder-decoder structure that consists of a contracting path on the
left, which extracts high-level features, an expanding path on the right
that increases the resolution, and multiple levels of skip connections
between two paths that allows for precise localization. To increase the
robustness of themodel, we adopt ensemble learning through a K-fold
splitting method. The training dataset is split into ten folds, with nine
folds used for training and the remaining fold used for validation. This
ensemble block introduces variation in the training and validation
datasets and achieves 10 individual base models. We then summarize
the predictions by averaging the probability maps produced by these
10 basemodels. In the last post-processing block, we convert the pixel-
wise prediction into wildebeest individuals through K-means cluster-
ing. The clumped wildebeest pixels were disaggregated by K-means
clustering to separate individual wildebeest (Supplementary Fig. 1),
which were used as the final outputs for evaluation at the individual
level. Note that as wildebeest is the dominant ungulate species in the
system andmost animals we located and counted were wildebeest, we
refer hereafter to the migratory ungulates detected by our model as
wildebeest for the purpose of simplicity.
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We applied the pipeline to satellite images acquired over six years
(August 2009, September 2010, August 2013, July 2015, August 2018,
and October 2020) covering 2747 km2 in the Serengeti-Mara ecosys-
tem (Fig. 2). The images were captured by different satellite sensors
with distinct spatial resolutions ranging from 38 cm to 50 cm, includ-
ing GeoEye-1 (GE01), WorldView-2 (WV02) and WorldView-3 (WV03).
Each individual wildebeest in the satellite imagery was represented by
~3-to-4 pixels in length and 1-to-3 pixels in width, with 1 or 2 relatively
darker pixels in the center, including the shadow of the body (Fig. 3).
The training dataset contained 1097 image patches captured from
these six years, including 53,906 manually labeled wildebeest points
across various environmental conditions. We incorporated labels cre-
ated by four independent expert observers by majority voting. The
details about the level of their agreement are presented in

Supplementary Table 1. During the labeling process, we used a set of
reference satellite images acquired on different dates, but with the
same background landscapes for cross-referencing to ensure the
labels weremoving animals and were not similar-looking static objects
(e.g., termite mounds, small bushes). The acquisition dates and spatial
resolutions of the reference images are presented in Supplementary
Data 1. During model training, the training dataset was split randomly
into 10 folds, among which nine folds were used for training and the
remaining one fold was used for validation.

To evaluate model performance, we used a stratified random
sampling method to select test sample plots across the images in each
year to ensure their representativeness and independence from the
training dataset. The strata are based on the number of animals in the
image patches. The distribution of the number of animals per image is

Fig. 1 |Model framework.Thewildebeest detection pipeline consists of threemain
blocks: 1) The wildebeest are labeled in the satellite imagery and the masks are
generated; 2) The satellite images and the masks are fed into the U-Net-based
ensemble model for model training/validation and to produce the wildebeest
probability maps; 3) The probability maps produced by the 10 base models are
averaged to obtain the final predictions and thewildebeest individuals are detected
using K-means clustering. The blue dots on example image of wildebeest labels

representmanually annotatedwildebeest labels. The red dots on example image of
detected wildebeest represent wildebeest detected by the framework. In the U-Net
architecture visualization, each box ingray color represents amulti-channel feature
map layer. The gray box with dashed line represents copied feature map from the
left part. Each arrow represents an operation. Satellite image © 2010 Maxar
Technologies.
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summarized in Supplementary Fig. 2. In total, we selected 2700 test
images containing 11,594 wildebeest individuals. Key information
about the images used and the size of training and test dataset is
summarized in Supplementary Table 2. More details about the sam-
pling method and data preparation process are described in the
Methods section. We calculated the model performance for each year
and also calculated the overall accuracy by combining all the test
datasets. The accuracy (precision, recall, F1-score) was evaluated on a
per-individual basis as demonstrated in Fig. 4. The model achieved an
overall F1-score of 84.75% with a precision of 87.85% and a recall of
81.86%. The model performed well in each year (Supplementary
Table 3): all F1-scores were above 80% (between 80.40% and 91.70%).
The precision across the six years varied between 82.68% and 97.80%
and recall between 74.00% and 87.52% (Fig. 5a). This indicates that the
model has good generalization ability across varied image resolution
(from 38 to 50cm), despite the great temporal and spatial variation in
landscape type, ecological conditions, and mode of image acquisition
over different years.

To validate the advantage of using an ensemble model, we also
compared the performance of the ensemblemodel with the individual
base models. The original training dataset was split into 10 folds, nine
of which were used for training and the remaining fold for validation,
resulting in 10 models trained on various datasets. The predictions of
the 10 models were averaged to obtain the final results. We assessed
the performance of each individual model using the Precision-Recall
curve and Area Under the Curve (AUC). The ensemblemodel achieved
an AUCof 0.88, which is significantly higher than all other basemodels
(Fig. 5b). We also compared the F1-score: the F1-score of 10 base
models on average is 78.22% (±0.86%), also lower than the F1-score of
ensemble model (84.75%). A more detailed comparison is listed in
Supplementary Table 4.

Model transferability
To assess the temporal and spatial transferability of the model, we ran
two tests:
1. Transferability of the model to a temporally different dataset: we

selected the image from 2015 as an independent test dataset and
trained themodel with wildebeest labels from the other five years
(2009, 2010, 2013, 2018, 2020). The 2015 dataset was an unseen
image captured with a different sensor, with the finest spatial
resolution (38 cm of WV03 versus 42–50 cm of GE01 and WV02).
The model achieved high accuracy on this new dataset, with a
precision of 90.77%, recall of 95.61%, and F1-score of 93.13%. Such
high accuracy indicates the model can be transferred to a
temporally different dataset without adding additional training
samples and still demonstrate excellent performance.

2. Transferability of the model to a spatially different dataset: we
selected the images from2020 as an independent test dataset and
trained themodel with wildebeest labels from the other five years
(2009, 2010, 2013, 2015, 2018). The coverage of the 2020 data is
on the east side of Masai Mara National Reserve and Serengeti
National Park, which is outside the coverage of the remaining
datasets, and its spatial resolution is the coarsest (50 cmofWV02)
of all years. Themodel achieved a 96.98% precision, showing that
the model is able to avoid false positives without adding any new
training samples for this new task with different landscapes and
ecological conditions. The recall score is 60.65% (with F1-score of
74.63%), indicating the ability to detect all positives can still be
improved by adding more samples from the 2020 dataset.

Wildebeest detection and counting
To detect and count migratory wildebeest within the area, we applied
the U-Net-based ensemble model trained with full training datasets
from all six years to the entire satellite imagery dataset that covered a
large portionof the dry-season range ofmigratorywildebeest. Figure 6
shows examples of the detection across varied landscape character-
istics including savanna, woodland and riverine forests. The detection
results demonstrate the model’s robustness to variation in three
dimensions: (1) variation between different satellite sensors, namely,
various spatial resolutions over the six different years; (2) variation in
the landscape context, such as river, woodland, bushland and grass-
land, with the risk of confusion with background objects such as ter-
mite mounds, small bushes and shadows caused by terrain, and (3)
variation in the wildebeest aggregation patterns, such as scattered,
linear and clustered. Further examples of detectedwildebeest patterns
across very large areas can be found in Supplementary Fig. 3-8 and
Supplementary Data 2. Themethod resulted in a sumcount of 480,362
(ranging between 470,121 and 490,603) individual wildebeest (F1-
score: 84.75 ± 0.18%) across the whole dataset (Table 1). See Fig. 7 for
the location and coverage of the imagery of each year and Table 1 for
the number of animals detected in each year.

To further analyze the spatial distributionpatternof themigrating
wildebeest in the Serengeti-Mara ecosystem, we calculated the wild-
ebeest count per km2 in each scene and plotted the resulting histo-
gram (see Fig. 7a–f). The maximum wildebeest density displays great
variation across months in the dry season (July–October). Peaks in
wildebeest density appear in August in the western Masai Mara
National Reserve (more than 4000 to 6000 individual wildebeest per
km2). In September, the peak wildebeest density is ~3000 per km2,
while in July and October, the maximum density is between 1500 and
2000 per km2. The spatially and temporally varied density is visualized
in the hotspot maps in Fig. 7.

We also present the enlarged hotspot map in Fig. 8. The high
densities and dense clusters of wildebeest were observed in the three
representative images from August (2009, 2013, 2018). Variation in
this pattern is evident in the lowerwildebeest densities observed in the
representative image analyzed from September 2010 and the more

Fig. 2 | Study areamap.The satellite imageryused in this researchcovermainly the
Masai Mara National Reserve and the northernmost section of the Serengeti
National Park (the area outlined in red). The wildebeest typically migrate over
1500 km on average every year (the purple dashed line). During June and August,
the wildebeest migrate from the Serengeti plains in Tanzania into the Masai
Mara National Reserve and then spread to the east crossing the Mara River in
September. Then during November and December, they move south to the
southern Serengeti. Image credit: EreborMountain/Shutterstock.com for the
wildebeest art photo.
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scattered distribution observed spread out over a larger area in the
October 2020 image. Thedistributiondynamicsobserved complywith
the general wildebeest migration patterns shown in Fig. 2. The wild-
ebeest migrate to the north towards the Mara Triangle in July and
August, and aggregate there for grazing before moving further
southeast across the Masai Mara National Reserve in September, and
spread south into the vast Serengeti National Park in October, as
shown in the sparse distribution in the hotspot map.

Discussion
The detection pipeline presented here demonstrates the potential for
deep learning techniques to efficiently track fine-scale environmental
changes through automated, satellite-basedwildlife surveys. To create
outputs that would have real-world utility to researchers and man-
agers, we deployed our model at an especially large spatial scale
(2747 km2) and validated it on a dataset that varied in space, time, and
resolution. This approach yielded highly accurate results (with an
overall F1-score of 84.75%) and the largest training dataset ever

published from a satellite-based wildlife survey (53,906 annotations).
In addition to its size, the landscape diversity captured by this dataset
will facilitate model transferability to applications in similar environ-
mental contexts, such as future satellite-based wildebeest census
surveys at the ecosystem scale. Although generalization of our model
is inherently limited to wildebeest-like animals in open landscapes, the
pipeline itself is generic and can be applied to other animal detection
applications after retraining.

Beyond providing a truly open-source and transferable method
for satellite-based wildlife surveys, our approach holds extreme pro-
mise for scaling spatially to produce the first ever total counts of
migratory ungulates in open landscapes. Such information is particu-
larly important to the management of aggregating species like wild-
ebeest because their heterogeneous and autocorrelated grouping
patterns violate the assumptions of most statistical methods for esti-
mating population abundance from survey data61. As a result, tradi-
tional methods are prone to systematic undercounts and high
uncertainty61. An automated total count would eliminate the need for
statistical inference and potentially produce a correction factor that
could be used to reduce error in historic estimates through post-hoc
analysis. While a total count would still assume near-perfect detection
of animals, we note that this ideal may be achieved in open systems
where biological cycles drive predictable periods of aggregation. For
example, wildebeest could be censused while gathered to calve on the
nutritious shortgrass plains of Serengeti, caribou could be censused
whilegathering to cross seasonal icefloes in the arctic, andwhite-eared
kob could be imaged while concentrated in low-lying meadows along
the margins of major watercourses during the dry season.

A next valuable step in the science of enumerating large mammal
populations using theproposed satellite-basedmethodwill be ground-
truthing the predictions against both historical and contemporary
estimates of population size derived using traditional methods (e.g.,
ground-based or aerial counts). For the present case of the wildebeest
population, satellite-derived counts should be compared against the
data collected every 2–3 years using aircraft surveys in the Serengeti
National Park7,62. Comparisons can be conducted both at the transect
level (with satellite image acquisition synced to the timing of aircraft
transects—although noting that temporal alignment of surveys with
suitable conditions for both survey types can be challenging) and at
the whole population level via data extrapolation.

In addition to facilitating total counts for multiple species, the
ability to observe expansive herds of migratory ungulates from space
presents an exciting opportunity for the study of the ecology of animal
aggregations from an entirely novel perspective. For example, the
spatially explicit point data produced by our model can be readily
analyzed as an ecological point process63 to facilitate the first-ever
quantitative descriptions of wildebeest herding patterns in the wild.
Such insights are crucial for answering key ecological questions about
social and environmental drivers of animal behavior and identifying
emergent biological patterns that scale from individuals to
populations63. Likewise, a robust time series of satellite imagesmay be
used to extend previous work on the ecology of large-scale aggrega-
tion patterns of wildebeest across the landscape64. We demonstrate
the potential for our pipeline to inform this approach by producing
density plots from model outputs, which can then be mapped and
analyzedwithin their native environmental context (Fig. 8). This ability
to track the distribution of large animal aggregations over time is
important for guiding adaptivemanagement ofmobile species and for
deriving a systematic understanding of population-level responses to
rapid environmental change.

Another potentially promising application of the proposed
method would be the detection of largemammalmigrations that have
not previously been documented. Despite the charisma of such fauna,
the migrations can go uncharacterized and are infrequently dis-
covered or rediscovered (e.g., the Burchell’s zebra migration in

Fig. 3 | Labeling the wildebeest on the satellite image. a The reference satellite
image that was used for cross-referencing while labeling the wildebeest. This
example image was acquired on May 17th,2012. b The satellite image acquired on
September 24th, 2010 for wildebeest labeling. c Wildebeest labels on B. The red
points denote wildebeest annotations. The zoomed boxes are three examples of
the wildebeest labels on the GE01 image with 44-cm resolution. Satellite image ©
2010 Maxar Technologies.
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Fig. 4 | Examplesofmodel evaluationon individualwildebeest. In the Evaluation
column, the predictions that match the ground references are True Positives (TP,
red crosses), and those that do not match are False Positives (FP, blue crosses).
Ground references that were not detected by the model are False Negatives (FN,

yellow crosses). The examples are taken from the test set of 2009–2020, showing
that the model avoids most of the background objects that have similar size and
color to wildebeest objects, such as small bushes, shadows on the edges of ponds,
and roads. Satellite image © 2009–2020 Maxar Technologies.
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Nambia/Botswana;65 white-eared kob in South Sudan66). Given the
advantages of surveying at large scales, satellite imaging techniques,
coupled with GPS tracking of individual animals, could provide a
powerful methodological combination for detecting or confirming
such migrations. GPS tracking data could benefit the survey by giving
prior information about the potential range, while regularly acquired
satellite imagery can be used to identify the migration routes of large
animal groups over time, as satellite imaging at high time frequency
becomes possible. Such methods are also especially useful for
detecting and studying wildlife migrations in remote or insecure
regions66.

Despite the clear potential for satellite-based wildlife surveys to
advancebothbasic and applied research, this technology is still limited
by the inherent challenge of distinguishing small objects from only a
few pixels on satellite imagery. While the commonly used deep-
learning based object detectors for animal detection are confined by
the size of the object on the image37,67,68, our method addresses this
challenge by utilizing a class of convolutional neural networks (speci-
fically the U-Net model) designed for pixel-level segmentation, thus
enabling detection of objects that occupy less than 9 pixels. This
method uses ensemble learning to further increase the accuracy of
individual U-Net models. By combining the clustering module, the
ensemble model can separate multiple clustered animals and identify
individual animals with high accuracy and efficiency. This is an
advancement compared to previous studies, which had lower detec-
tion accuracy for similarly sized animals (e.g., seal detection with <50%
accuracy44), or focused on identifying large animals in homogeneous
environments (e.g., whales37).

Nevertheless, the current limitation of satellite image resolution
impacted our study by preventing distinction between wildebeest and
other species of similar size, including domestic cattle (Bos taurus),
topi (Damaliscus korrigum), Coke’s hartebeest (Alcelaphus buselaphus
cokii), and eland (Taurotragus oryx). While we controlled for the most
numerous species (e.g., cattle) by limiting collections to sites and
seasons with minimal overlap, finer-resolution imagery (for example,
<10 cm) will be required to discriminate these species. We also note
that smaller-bodied species (e.g., gazelle) were not visible at the cur-
rent resolution, but larger species (e.g., hippos and elephants) were
successfully excluded by themodel. Given these promising results, we
are confident that pending technology will rise tomeet the demand to
resolve smaller species, as multiple satellite companies have already
announced the arrival of breakthrough technologies that will make
sub-daily, sub-50 cm imaging a reality. One limitation in satellite ima-
ging wildlife currently is the cost of very-fine-resolution imagery.

However, costs are falling as more companies are now offering sub-
meter imaging capabilities from multiple constellations at lower
prices. In addition, many satellite providers (e.g., Maxar, Airbus and
Planet) are providing more opportunities for researchers to access
sub-meter imagery at low or zero cost.

As more fine-resolution constellations come online, we anticipate
that satellite-based wildlife surveys will become increasingly afford-
able and accessible.We aim to capitalize on this technologicalmoment
by validating a data pipeline, which advances the scale and scope of
current techniques to include medium-sized mammals in highly het-
erogeneous landscapes. While there are many applications for this
pipeline, we wanted to demonstrate its potential to monitor animals
across an area of unprecedented size by counting hundreds of thou-
sands of wildebeest in the Serengeti-Mara ecosystem.When combined
with anticipated advances in satellite imaging, the outputs of our
model will improve the frequency and accuracy of population esti-
mates for multiple species in open landscapes and produce novel
datasets for investigations of animal behavior, ecosystem ecology, and
global change biology.

Methods
Satellite imagery
The satellite imagery used for wildebeest detection and counting
includes nine multispectral images captured by three satellite
sensors (GeoEye-1, WorldView-2, and WorldView-3) over six years
in the Serengeti-Mara ecosystem. We selected these images from
the archived very-fine-resolution satellite images acquired by the
Maxar Worldview constellation, which can cover more than 3.8
million square kilometers per day and has a revisit rate of 1-2 times
per day. The images we used mainly cover the Masai Mara National
Reserve and the northernmost section of the Serengeti National
Park (see Fig. 2 of the study area). The images cover 2747 km2

within the delimited boundary. The spatial resolution varies from
38 to 50 cm (see Supplementary Table 2 of image resolution and
date). Most of the acquired images were delivered as pan-
sharpened products, while the WorldView-2 images in 2020 were
pan-sharpened using the UNB-pansharp method69. The pre-
processed satellite images have four bands: Red, Green, Blue and
Near-Infrared. All the images are covered by cloud by less than 2%.
In addition, another set of eight satellite images covering the same
area as the images above, but acquired on different dates are used
as a set of reference images for wildebeest labeling. Details of
the input satellite images and the reference images are listed in
Supplementary Data 1.

Fig. 5 | Model performance. a The wildebeest detection accuracy of the U-Net-
based ensemble model for each of the six years and the whole dataset. Error bars
represent mean values ± SD (n = 5). b The Precision-Recall curve of the ensemble

model and each base model. The red line (representing the ensemble model) lies
above all other blue curves (representing the individual base models), indicating
greater accuracy.
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Labeling the wildebeest
In the satellite imagery, we labeled the individual wildebeest as points
in vector format. On the true color composite image, a wildebeest is a
group of gray-brownish pixels with a dark black pixel commonly in the
center representing the animal’s neck and spine with a black mane.
Each wildebeest individual in the image was about 3 to 4 pixels in

length and 1 to 3 pixels in width, with 1 or 2 relatively darker pixels in
the center as shown in Fig. 3. Therefore, for each wildebeest, we
labeled one point at the center of this wildebeest segment, and then
expanded the point to a polygon with a size of 3 by 3 pixels, such that
the polygon covers most of the wildebeest pixels. The wildebeest
labels were derived using majority voting from visual interpretation

Fig. 6 | Detecting wildebeest across different landscapes with variation in
wildebeest spatial clustering patterns. The figures in the first column show the
detected wildebeest (red circles). The second column is a zoom of the imagery
covered by the white square in the first column. aDetected wildebeest in GeoEye-1
imagery acquired onAugust 11th, 2009. In the zoomed-in image, thewildebeest are
crossing the road near a dry riverbed. b Detected wildebeest in GeoEye-1 imagery
acquired on August 10th, 2013. Wildebeest herd in open grasslands. c Detected
wildebeest in WorldView-3 imagery acquired on July 17th, 2015. The wildebeest

prepare to cross the Mara River. d Detected wildebeest in GeoEye-1 imagery
acquired on August 2, 2018. Herds of wildebeest avoid the closed woodlands.
eDetectedwildebeest inWorldView-2 imagery acquired onOctober 8th, 2020. The
wildebeest herds move through open woodlands and grasslands. These examples
also show the heterogeneity between the satellite images, inclusive of spectral
variation and different levels of contrast between the wildebeest and the back-
ground. Satellite image © 2009–2020 Maxar Technologies.
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undertaken by four expert observers of the same satellite image, cross-
referenced against another (reference) satellite image acquired in a
different year. The purpose of using reference images was to distin-
guish between wildebeest and spectrally similar background objects,
such as small bushes and the shadows of termite mounds, which are
static in both images.

Training and test dataset
For each satellite image, we built a grid system with a cell size ranging
from 150m to 170m, dependent on image resolution. Each grid cov-
ered 336× 336 pixels, which was the size of the image patch for model
training. The training and test datasets were sampled based on the cell
units of the grid. In the training dataset, we selected a total of 1097
training grids, covering different types of landscapes and various
wildebeest abundances across all six years. The training dataset con-
tains 53,906 wildebeest, occupying 27.13 km2, which is 0.7% of the
whole area. The test datasets were sampled using the proportionate
stratified random sampling method on each image date, containing
2700 sample grids with 11,594 wildebeest. We adopted this method to
guarantee the representativeness of the test dataset.

The strata of the testdatasetwerebasedon thewildebeest density
in the grids in accordance to the spatially imbalanced distribution of
wildebeest, ensuring the test dataset contains sample grids with dif-
ferent levels of animal density. Therefore, preliminary information on
wildebeest density was required. We first built an initial test dataset
using a random sampling method and trained a model to achieve an
acceptable detection performance on the initial test dataset. Then we
applied the preliminary model to the whole imagery dataset to detect
and count the wildebeest, which were used to estimate the wildebeest
density in all the grid cells. The grid-level wildebeest density was used
as the criteria to classify the grid cells into one of four categories (low
density, medium density, high density and very high density) based on
the mean and standard deviations. Supplementary Fig. 9 shows an
example of the wildebeest density map in the year 2009 for sampling.
Majority of the grids have low density of animals. We determined the
test sample size as 100 or 200 test grid cells depending on the area
covered by each image, and then selected a proportionate number of
samples randomly within each category to build the final test dataset.
For example, as there was a single image collected on 10 August 2009,
100 test samples were selected from it. Since there are two images on
13 August 2013, 200 test samples were chosen from them. For images
collected on 08 October 2020, the area was much larger and the
wildebeest density was rather low. As a result, we selected 1900 image
grid cells for testing. The sample size for the year 2020 was relatively
large to ensure the test datasets covered sufficient wildebeest-
abundant image patches. In total, there were 2700 test grids for all
six years, occupying 1.7% of the entire dataset. Wemanually labeled all
the wildebeest in the test sample grids.

Training the U-Net based ensemble model for wildebeest
detection
Before incorporating the training dataset into the model, we first pre-
processed the images and labeledwildebeest to fit the requirements of

the input data. The wildebeest polygon labels were rasterized into a
small patchwith 3 × 3 pixels to represent thewildebeest segments. The
segments were then used to generate the binary masks, including the
wildebeest pixels and non-wildebeest pixels. Themasks have the same
size as the corresponding satellite sensor gridded images. The gridded
images and thebinarymaskswere cropped intopatcheswith 336 × 336
pixels. Then all data patches were augmented using horizontal flip,
vertical flip, and 90° rotation to increase sample variation. These
data augmentation techniques can help prevent overfitting and
increase the generalization capability of the model on unseen data
with unfamiliar patterns70. All the training image patches and the
masks from the six different years were combined to train the U-Net
deep learning model.

The U-Net architecture is a type of convolutional neural network
designed originally for biomedical image segmentation46, which has
subsequently been applied widely in other applications, including
remote sensing image segmentation. U-Net uses a U-shaped symme-
trical encoder-decoder structure that consists of a contracting path on
the left and an expanding path on the right46 (Fig. 1). The contracting
path encodes high-level contextual features through successive layers,
which generates low-resolution, but high-dimensional feature maps.
The expanding path decodes the information of these feature maps
and up-samples the image to obtain the original resolution step-by-
step. The up-sampled output is concatenated through skip connec-
tions with the corresponding feature map (with the same spatial
resolution) in the contracting path on the left, thus, merging both
sources of information to provide evidence for classification, and to
support precise localization of the obtained semantic information. The
last layer of themodelmaps the featuremaps into the class number for
each pixel in the original image using a sigmoid activation function,
resulting in a probability map with a value ranging from 0 to 1 repre-
senting the wildebeest presence probability as the final output of the
U-Net model.

We employed the ensemble learning approach71–73 to increase the
generalization capability and robustness of the U-Net model. We split
the training dataset into K folds (K = 10 in this research), of which K-1
folds were used for training the U-Net model, and the remaining one
was used for validation. Therefore, a total of K individual U-Netmodels
were trained and validated with different subsets of the data. Then the
Kmodelswere combined to construct thefinal ensemblemodel,where
the probability predictions of the basemodels were first normalized to
the scale of 0 to 1 using the standard min-max approach and then
averaged to produce the final outputs as depicted in Fig. 1.

To address the imbalance between the wildebeest and non-
wildebeest classes, we adopted a weighted loss function, namely, the
Tversky loss function74, to measure the discrepancy between the pre-
dictions and ground references. The parameters of the Tversky loss, α
and β, are the penalty weights for False Negatives (FN) and False
Positives (FP), respectively, and the sumof α and β is 1 (Supplementary
Equation (1)). Considering that wildebeest detection from satellite
images is a highly imbalanced problem, namely, the percentage of
wildebeest pixels is less than 1% in the training imagery, the model
tends to predict all the pixels into non-wildebeest pixels to achieve
high overall accuracy. By increasing β, emphasis is added to minimize
the number of misclassified wildebeest pixels. The parameter β was
finely tuned over a range of values (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.99) to reach the optimal trade-off between FPs and FNs.We
used the dataset of 2009 in a sensitivity analysis to evaluate how dif-
ferent settings of β influence the model performance and the optimal
parameters used were α = 0.1 and β =0.9 (Supplementary Table 5).

The model was trained with the Adam optimizer using an initial
learning rate of 0. 000175. The learning rate was reduced by a factor of
0.33 when the loss on the validation set stopped improving after 20
epochs. The weights in the convolution layers were initialized by the
He_normal kernel initializer36. The dropout rate76 was set to 0 as

Table 1 | The number of wildebeest detected and counted in
six different years of satellite imagery

Date Number of wildebeest (At 95% confidence level, n = 5)

11/Aug/2009 122,750 ± 1905

24/Sep/2010 79,039 ± 782

10/Aug/2013 149,232 ± 6623

17/Jul/2015 15,855 ± 672

02/Aug/2018 44,832 ± 3177

08/Oct/2020 68,655 ± 1103
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preliminary experiments showed that a higher dropout rate did not
increase significantly the model performance. The batch size was 12,
and the model was trained for 120 epochs. The model generating the
smallest loss on the validation dataset amongst all epochswas selected
as the final model. The software was implemented using TensorFlow77

2.1.0, and Python 3.7. Themodel was trained on Azure Virtual Machine
with NVIDIA Tesla V100 GPU supported by Microsoft AI for Earth.

We post-processed the outputs of the ensemble model to obtain
precise wildebeest point predictions. The outputs of the base U-Net
models were probabilitymaps of wildebeest presence. The probability
mapof eachbasemodelwasfirst rescaled into the range of 0 to 1 (if the
maximum value is greater than 0.05) and then averaged to obtain the
final probability map as the output of the ensemble model. Each pixel
on the final probability map was then classified as either wildebeest or
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Fig. 8 | Hotspot map and spatial density of wildebeest over time (from July to
October, 2009 to 2020). In this figure, a subset of each timeframe was taken for
display purposes and the hotspotmapwas produced for each timeframewith a cell
size of 100m and a radius of 500m using Point Density tool in ArcGIS. The density

of wildebeest varies from0 tomore than 10,000wildebeest per km2, and it shows a
clear spatial variation of wildebeest aggregation patterns in different months.
Satellite image © 2009–2020 Maxar Technologies.

Fig. 7 | Spatial distribution of detected wildebeest from July to October in
2009-2020. The area outlined in red represents the study area, covering theMasai
Mara National Reserve and the northernmost section of the Serengeti National
Park.The area outlined in white indicates the corresponding area presented in
Fig. 8. The histogram shows the calculated wildebeest frequency distribution for
each scene. a Spatial distribution hotspot map of wildebeest detected in July 2015.
The image is located in the northernmost section of Serengeti National Park with
theMaraRiverflowing through. Themaximumwildebeest density is about 1500per
km2.b Spatial distribution hotspotmapof wildebeest detected in August 2018. The
image is located in the Mara Triangle inside the Masai Mara National Reserve,
covering the border of Kenya and Tanzania. Thewildebeest are near the border and
the density peak is more than 4000 individuals per km2. c Spatial distribution
hotspot map of wildebeest detected in August 2013. The image covers the Mara
Triangle in the Masai Mara National Reserve and the northern section of the

Serengeti National Park. The wildebeest are mostly distributed in the Serengeti
National Park near the border and the density peak is about 4000 individuals per
km2.d Spatial distributionhotspotmapofwildebeest detected in August 2009. The
image is located in the northwest corner of the Masai Mara National Reserve. The
wildebeest density peak is about 6000 individuals per km2. e Spatial distribution
hotspotmapofwildebeest detected in September 2010. The image is located in the
north Serengeti National Park with the Mara River flowing through. The wildebeest
are mostly on the north side of the Mara River and the density peak is about 3000
per km2. f Spatial distribution hotspotmapofwildebeest detected inOctober 2020.
The images cover the east side of the Mara National Reserve and northeast Ser-
engeti National Park. The wildebeest span sparsely across the Mara National
Reserve and Serengeti National Park and the density peak is about 2000 per km2.
The maximum wildebeest density displays a large difference in terms of months in
the dry season. Satellite image © 2009–2020 Maxar Technologies.
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non-wildebeest using a threshold of 0.5 (Supplementary Fig. 10). We
converted the raster results of wildebeest segments into points that
represent individual wildebeest using K-means clustering. As such, the
centroids of the segments were extracted and individual wildebeest
were separated (Supplementary Fig. 1). The number of clusters in each
segment was determined automatically by the ceiling division result of
the number of pixels within the segment by the general wildebeest
object size (namely, 9 pixels).

Model evaluation
We evaluated the accuracy of the U-Net-based wildebeest detection
model based on the alignment between the predicted wildebeest
points and the ground reference points. A small local searching region
was considered while matching the points to compensate for a slight
shift, considering that the wildebeest segments were not always per-
fect 3 × 3 squares and the extracted centroids of the ground reference
andpredicted segmentmaynotbeperfectly aligned, but still represent
the same animal. In this way, the extracted wildebeest centroids can
still represent the correct detection of wildebeest even if they deviate
by one pixel away from the ground reference points. The radius of the
searching region was set to be 0.71m, which is equivalent to the actual
length of the diagonal line of one 0.5 m-resolution pixel. Predicted
points that could bematchedwith one of the closest ground reference
points within the searching region were counted as True Positive
predictions. Predicted points that could not be matched with any
ground reference points within the searching region were treated as
False Positives, and all the remaining ground reference points that
were not matched with any predicted points were treated as False
Negatives.

To assess the overall performance of themodel quantitatively, we
utilized the following accuracy metrics: precision, recall and F1-score.
Precision measures the accuracy of predicting wildebeest amongst all
positive detections. It is calculated as the ratio between the number of
True Positives and all detected positives. Recall measures howwell the
model performs atfinding the actual true positives fromall the ground
reference points. It is the ratio between the number of detected True
Positives and all existing ground reference positives. F1-score is the
harmonic mean of precision and recall, which reflects the overall
accuracy. The accuracy of each year was evaluated separately on the
test dataset of each year, and the total accuracyobtained on all the test
datasets was assessed as well. We repeated the model training and
evaluation five times to obtain the uncertainty of the model accuracy.

In addition to the above, we adopted the precision-recall curve
and area under the curve (AUC) to compare the performance of the
sub-models with the U-Net-based ensemble model. By applying dif-
ferent thresholds to the probability map, we calculated multiple pairs
of precision and recall. For the threshold of 0 or 1, we set the paired
precision and recall rates as (0, 1) and (1, 0), respectively. These
precision-recall pairs were then added to the plot, and AUC was cal-
culated using the composite trapezoidal rule. The value of AUC is
between 0 and 1. A larger AUC indicates better model performance.

To test the spatial and temporal transferability of the model, we
ran two tests: (1) transferring the model to a temporally different
dataset: we set aside the dataset in 2015 as an independent test dataset
and trained the wildebeest detection model using only the data of the
other five years (2009, 2010, 2013, 2018, 2020). The 2015 dataset is
therefore an entirely new dataset obtained by a unique sensor with a
different spatial resolution from others (38 cm of WV03 versus
42–50 cm of GE01 andWV02); (2) transferring the model to a spatially
different dataset: we set aside the dataset in 2020 as an independent
test dataset and trained the wildebeest detectionmodel using only the
data of the other five years (2009, 2010, 2013, 2015, 2018). The cov-
erage of 2020 data is on the east side of the Masai Mara National
Reserve and Serengeti National Park, which is outside the coverage of

the remaining datasets, and its spatial resolution is the coarsest (50 cm
of WV02) among all the years. In each of the scenarios, the model was
trained with datasets of five years and transferred to another new year
with unseen features, such as new spectral characteristics of a different
year, new image resolution and new landscapes. The model transfer-
ability in these two testswas evaluateddirectly using the test dataset of
the independent year (2015 or 2020).

Detecting and counting the wildebeest
After the U-Net-based ensemble model demonstrated a high accu-
racy using the test dataset, we applied the model to all the satellite
imagery to detect all the wildebeest across the study area inside the
Serengeti-Mara ecosystem. The images were cropped into patches to
match the input size of the model, and the ensemble model outputs
were converted using K-means clustering to obtain wildebeest point
predictions. The detected wildebeest were then mapped across the
study area. We counted the number of wildebeest points on each
satellite image to obtain the population estimates. We repeated
model training five times and calculated the count five times to
obtain the associated modeling uncertainties (at a 95% confidence
level) for each date.

To explore the spatial distribution patterns of the migrating
wildebeest on different dates, we generated a point densitymapwith a
cell size of 100mand a radius of 500m (Fig. 8) for eachdate. The point
density map visualizes the density of wildebeest points within the
neighborhood of each pixel, showing the spatial and temporal varia-
tion in wildebeest distribution. We also calculated the wildebeest
count per km2 and summarized the frequency of the density as a his-
togram in Fig. 7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The minimum set of segmentation mask samples that can be used to
demonstrate the U-Net-based wildebeest detection framework gener-
ated in this study was deposited in the Github repository (https://doi.
org/10.5281/zenodo.7810487). Samples of satellite images for model
training and testing are available on a restricted basis due to data
protection laws and access may be obtained by contacting the corre-
sponding author upon reasonable request. The very-fine-resolution
commercial satellite imagedata forwildebeestdetection areprotected
under a NextView Imagery End User License Agreement and are not
available as a result of data protection laws. The copyright remains
withMaxar Technologies (formally DigitalGlobe), and redistribution is
not possible. The detected wildebeest point data are available at:
https://doi.org/10.5281/zenodo.7810487. Other data generated in this
study to support the findings are provided in the Supplementary
Information and Source Data File. Source data are provided with
this paper.

Code availability
The wildebeest detection framework based on U-Net is publicly avail-
able at Github repository78 (https://github.com/zijing-w/Wildebeest-
UNet); support and more information are available from Z.W.
(zijingwu97@outlook.com).
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