

Petrov, A. and Macdonald, C. (2023) RSS: Effective and Efficient Training for

Sequential Recommendation using Recency Sampling. ACM Transactions on

Recommender Systems, (doi: 10.1145/3604436).

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

© The Authors 2023. This is the author's version of the work. It is posted here for

your personal use. Not for redistribution. The definitive Version of Record was

published in ACM Transactions on Recommender Systems, (doi: 10.1145/3604436).

http://eprints.gla.ac.uk/299238/

Deposited on: 06 June 2023

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

https://doi.org/10.1145/3604436
https://doi.org/10.1145/3604436
http://eprints.gla.ac.uk/295246/
http://eprints.gla.ac.uk/295246/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

RSS: Effective and Efficient Training for Sequential
Recommendation using Recency Sampling∗

ALEKSANDR PETROV, University of Glasgow, United Kingdom

CRAIG MACDONALD, University of Glasgow, United Kingdom

Many modern sequential recommender systems use deep neural networks, which can effectively estimate

the relevance of items, but require a lot of time to train. Slow training increases the costs of training, hinders

product development timescales and prevents the model from being regularly updated to adapt to changing

user preferences. The training of such sequential models involves appropriately sampling past user interactions

to create a realistic training objective. The existing training objectives have limitations. For instance, next

item prediction never uses the beginning of the sequence as a learning target, thereby potentially discarding

valuable data. On the other hand, the item masking used by the state-of-the-art BERT4Rec recommender model

is only weakly related to the goal of the sequential recommendation; therefore, it requires much more time to

obtain an effective model. Hence, we propose a novel Recency-based Sampling of Sequences (RSS) training

objective (which is parameterized by a choice of recency importance function) that addresses both limitations.

We apply our method to various recent and state-of-the-art model architectures – such as GRU4Rec, Caser, and

SASRec. We show that the models enhanced with our method can achieve performances exceeding or very

close to the effective BERT4Rec, but with much less training time. For example, on the MovieLens-20M dataset,

RSS applied to the SASRec model can result in a 60% improvement in NDCG over a vanilla SASRec, and a 16%

improvement over a fully-trained BERT4Rec model, despite taking 93% less training time than BERT4Rec. We

also experiment with two families of recency importance functions and show that they perform similarly.

We further empirically demonstrate that RSS-enhanced SASRec successfully learns to distinguish differences

between recent and older interactions – a property that the original SASRec model does not exhibit. Overall,

we show that RSS is a viable (and frequently better) alternative to the existing training objectives, which is

both effective and efficient for training sequential recommender model when the computational resources for

training are limited.

1 INTRODUCTION
Sequential recommender models, which are a class of recommender systems that consider the

order of the user-item interactions, are increasingly popular [45]. In contrast to non-sequential

recommender systems, such as Matrix Factorization based methods, these models account for the

changes of individual user preferences, as well as global changes of item popularity. Ultimately,

this ability to utilize sequential information helps models to make better recommendations when

the order of interactions is known.

Early sequential recommender systems used Markov Chains [49, 64], however most modern

ones use deep neural networks and have adapted ideas from other domains such as language

modeling [16, 17, 20, 50] or image processing [51]. These deep neural models have been shown to

outperform traditional non-neural methods by a significant margin [20, 50, 51, 59].

However, the most advanced sequential models, such as BERT4Rec, suffer from a slow training

problem. Indeed, our experiments show that in order to reproduce the result reported in the original

publication, BERT4Rec requires more than 10 hours training using modern hardware (see also our

recent replicability paper on the issue [37]). This is also illustrated in Figure 1, which portrays the

NDCG@10 of MF-BPR [48], SASRec [20] and BERT4Rec [50] models for different training durations

on the MovieLens-20M dataset [15].

∗
This manuscript extends an earlier RecSys’ 22 publication [36].

©Copyright held by the authors

Authors’ addresses: Aleksandr Petrov, University of Glasgow, United Kingdom, a.petrov.1@research.gla.ac.uk; Craig

Macdonald, University of Glasgow, United Kingdom, craig.macdonald@glasgow.ac.uk.

HTTPS://ORCID.ORG/0000-0002-0911-3605
HTTPS://ORCID.ORG/0000-0003-3143-279X
https://orcid.org/0000-0002-0911-3605
https://orcid.org/0000-0003-3143-279X
https://orcid.org/0000-0003-3143-279X

2 Aleksandr Petrov and Craig Macdonald

Fig. 1. The SASRec [20] model trained with our proposed training method outperforms BERT4Rec [50] on the
MovieLens-20M dataset [15] and requires much less training time. SASRec-vanilla corresponds to the original
version of SASRec; BERT4Rec-1h and BERT4Rec-1h are versions of original BERT4Rec implementations that
have been trained for 1 hour and 16 hours, respectively.

Slow training is a problem in both research and production environments. For research, slow

training limits the number of experiments that can run using available computational resources.

In production, it increases the costs of using recommender systems due to the high running costs

of GPU or TPU accelerators. Furthermore, slow training hinders how quickly the model can be

retrained to adapt to changing user interests. For example, when a new episode of a popular TV

show is released, the recommender system might still be recommending the old episode because it

has not finished retraining yet. Hence, in this paper, we focus on the time-limited training of models.

The main question we address in this paper is can the training of existing sequential recommendation
models be improved so that they attain state-of-the-art performance in limited training time?
The primary components of model training can be characterized as follows: (i) the model

architecture that is being trained, (ii) the training objective that defines what the model is being

trained to reconstruct, and (iii) the loss function used to measure its success. All three components

have a marked impact on training efficiency. For example, Hidasi et al. [17] showed that changing

only the loss function can dramatically change the model performance. Raffel et al. [47] made

similar findings for the model architecture and training objective for related tasks in language

modeling. However, in this work, we focus on the training objective, identifying two key limitations

in existing approaches, as well as an appropriate loss function for the objective.

Among the training objectives in the literature, there are two popular objectives for training

sequential recommenders: sequence continuation and item masking. In this paper, we show that

both of these objectives have limitations.

First, sequence continuation [16, 17, 51] (including its popular form, next item prediction) is

probably the most intuitive and popular. Sequence continuation splits the sequence into a prefix

and a suffix and then a model is trained to recover the suffix given the prefix. This objective closely

matches our goal (predict the next interaction of the user) and arguably should perform the best in

the case when both training data and computational resources are unlimited. However, this objective

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 3

never uses the beginning of the sequence as a training target, hence it discards potentially valuable

knowledge and limits the number of training samples it can generate from a single sequence, which

is specifically problematic when the datasets contains a relatively small number of sequences.

Second, in the item masking approach – which is used by BERT4Rec [50] – the task of the model

is to recover masked items at any position in the sequence, which is a much more general and

complex task than the next item prediction. We argue that this training objective is only weakly

related to the end goal of sequential recommendation. Indeed, we will show that, despite leading

to better effectiveness, this more general training task requires considerable training time.

These limitations of the existing approaches motivate us to design a new Recency-based Sampling
of Sequences (RSS) approach that probabilistically selects positives from the sequence to build

training samples. In our method, more recent interactions have more chances of being sampled as

positives; however, due to the sampling process’ probabilistic nature, even the oldest interactions

have a non-zero probability of being selected as positives. The sampling probability distribution in

RSS is controlled by the recency importance function, which may have different shapes, for example

exhibiting exponential or power distributions.

Our experiments are conducted on four large sequential recommender datasets, and demonstrate

the application of the proposed RSS approach upon three recent sequential recommendation model

architectures (GRU4Rec, Caser and SASRec), when combined with both pointwise and listwise loss

functions. We find that RSS improves the effectiveness of all three model architectures. Moreover,

on all four experimental datasets, versions of RSS-enhanced SASRec trained for one hour can

markedly outperform state-of-the-art baselines. Indeed, RSS applied to the SASRec model can result

in a 60% improvement in NDCG over a vanilla SASRec, and a 16% improvement over a fully-trained

BERT4Rec model, despite taking 93% less training time than BERT4Rec (see also Figure 1). We

also find that both exponential and power importance functions result in similar optimal sampling

probability distribution after fine-tuning their shape to best fit the MovieLens-20M dataset.

Moreover, we run experiments to better understand how RSS changes the resulting learned

recommendation model. RSS is based on the idea that recent interactions are more important

than the earlier ones. To check whether or not RSS helps models learn this difference in practice,

we analyze how it changes the learned models with respect to interaction recency. Fortunately,

some of the state-of-the-art models are based on the Transformer [53] architecture, which encodes

positional information explicitly, in the form of positional embeddings. To understand how RSS

changes the model, we perform a novel analysis by comparing the positional embeddings learned

by the original and RSS-enhanced versions of the SASRec model. We show that compared to the

original SASRec, the RSS-enhanced version successfully learns to distinguish recent and earlier

positions.

An earlier version of this paper that appeared in RecSys’ 22 [36], made the following contributions:

(1) We identify limitations in the existing training objectives used by sequential recommenda-

tion models;

(2) We propose Recency-based Sampling of Sequences (RSS), which emphasizes the importance

of more recent interactions during training;

(3) We perform extensive empirical evaluations on four sequential recommendation datasets,

demonstrating significant improvements over existing state-of-the-art approaches.

In this extended version of the paper we make the following additional contributions:

(4) We propose a novel methodology for analyzing position embeddings and use this methodo-

logy to empirically show that an RSS-enhanced version of SASRec learns to treat recent

and earlier positions differently, whereas original SASRec fails to find any differences;

4 Aleksandr Petrov and Craig Macdonald

Item 1

Item 2

Item 3

Item n

…

Embedding
layer Transformations

Sequence
Embedding

Item
Embeddings

X Item
Scores

Fig. 2. Principal architecture of many sequential recommenders. This applies to GRU4rec [17], GRU4rec+ [16],
Caser [51] and, with minor modifications to SASRec [20].

(5) We experiment with the power family of importance functions and show that despite

differences with the exponential family, the optimal functions from both families are mostly

indistinguishable;

(6) We describe details of our version of LambdaRank [4] loss, including two modifications to

the original version

The structure of this paper is as follows: Section 2 provides a background in sequential recom-

mendation; Section 3 covers existing approaches and identifies their limitations; In Section 4 we

explain Recency-based Sampling of Sequences for efficient training. Section 5 describes research

questions and experimental setup; In Sections 6 & 7 we respectively provide analysis of the experi-

ments and concluding remarks. In Appendix A we provide details of our version of LambdaRank,

including the differences from the original version. Appendix B provides more details on the

training of the models, such as the number of epochs and the number of training samples used for

the training of each model.

2 BACKGROUND
In this section, we cover the important background for our work. In particular, Section 2.1 provides

an overview of neural models used for sequential recommendation. In Section 2.2, we provide a more

detailed description of Transformer architecture used by state-of-the-art sequential recommendation

models.

2.1 Neural Sequential Models
In the following, we provide an overview of neural sequential recommendation models. Indeed,

over the last several years, most of the next item prediction approaches have applied deep neural

network models. Some of the first solutions based on deep neural networks were GRU4Rec [17]

and the improved GRU4Rec
+
[16] (using an improved listwise loss function), which are models

that use the Recurrent Neural Networks (RNN) architecture. On the other hand, Caser [51] uses

ideas from computer vision; it generates a 2D “image" of the sequence using item embeddings and

then applies horizontal and vertical convolution operations to that image. Another model that is

based on convolution operation is NextItNet [59], which applies several layers of 1D convolutions

to generate rich semantic representations of each user sequence. These models all use variations of

a sequence continuation task for training, details of which we provide in Section 3.

2.2 Transformer Architecture and Positional Embeddings.
Figure 2 illustrates the principal architecture of many of the sequential recommendation models

used in this work. These generate an embedding of the user’s sequence and then multiply this

embedding by the matrix of item embeddings to obtain item scores. GRU4Rec, Caser, and – with

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 5

minormodifications (see Section 3) – SASRec use this architecture. Recent state-of-the-art sequential

recommendation models use variations of the Transformer [53] architecture. SASRec [20] uses

Transformer blocks to predict the next item in the sequence based on all previous elements. BERT-

4Rec [50] adapts the well-known BERT language model [10] for the sequential recommendation

task. Following the original BERT model, BERT4Rec is trained to reconstruct masked items that

are hidden from the model during training. In particular, as both SASRec and BERT4Rec use the

Transformer architecture, the only significant difference between these two models is the training

scheme. Using item masking, BERT4Rec outperforms SASRec in terms of quality; however, it

requires much more training time. In this work, we identify limitations in the existing training

objectives, which we discuss further in Section 3. Indeed, the goal of this work is to close the gap

between effectiveness and efficiency and design a new training scheme that allows matching the

performance of state-of-the-art models within a limited training time.

Finally, recent advances have used graph neural networks (GNNs) for sequential recommenda-

tion [40–42, 44]. These models usually use additional information, such as cross-session connections

or item attributes. In this work, we focus on a more general case of sequential recommendations

without the assumption of availability of cross-session (user) information or cross-item connec-

tions; therefore, graph-based models, as well as those tailored for personalized shopping basket

completion (e.g. [34, 54]), are out of the scope of this work. On the other hand, CL4SRec [57] applies

data augmentation by modifying the input sequences (e.g. cropping, masking, or reordering). These

augmentations are orthogonal to changing the training task and could be used together with an

improved training objective. Nevertheless, we focus on the training objective for sequential models

operating without the use of GNNs or data augmentation. We provide details of these training

objectives in Section 3.

State-of-the-art models for sequential recommendation [20, 50, 63] are based on the Trans-
former[53] architecture, which we cover in this section. We specifically emphasize our attention

on the Positional Embeddings—a component of the Transformer architecture, which encapsulates

the positional information in the Transformer models— as we use it to analyze effects of the RSS

training objective on learned models.

The key component of the Transformer architecture is the Transformer block, which is based on

a Self-Attention mechanism [53], which allows to effectively encode item representations in the

context of the other items in each sequence.

According to Vaswani et al. [53], Self-Attention is defined as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘
)𝑉 (1)

where 𝐾 , 𝑄 and 𝑉 are three independent linear projections of the original item representation

matrix 𝐸:
𝑄𝑖 =𝑊𝑞𝑖𝐸𝑖

𝐾𝑖 =𝑊𝑘𝑖𝐸𝑖

𝑉𝑖 =𝑊𝑣𝑖𝐸𝑖

(2)

Here𝑊𝑞𝑖 ,𝑊𝑘𝑖 and𝑊𝑣𝑖 represent three different learnable projection matrices and index 𝑖 cor-

responds to item representations after 𝑖 Transformer blocks. A Transformer block also includes a

small pointwise feed-forward network, as well as residual connections and layer normalizations –

standard machine learning techniques to improve model training. For more details on Transformer

architecture, we refer to the original paper [53].

As can be observed from Equations (1) and (2), Attention-encoded representations do not depend

on item position in the sequence. On the other hand, information about positions of items in

6 Aleksandr Petrov and Craig Macdonald

a sequence is crucial for sequential recommendation, as this information is the only difference

between sequential and non-sequential recommendations. Therefore, information about item

positions in the sequence has to be encoded in item representations themselves. To achieve this,

following original the language models, recommendation models use positional embeddings:

𝐸0 = 𝐼𝑡𝑒𝑚𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) + 𝑃𝐸 (3)

Here 𝑃𝐸 is a matrix of positional embeddings, which only depend on item positions, but do not

depend on the items themselves. The original Transformer architecture [53] uses an absolute
(constant) 𝑃𝐸 matrix, whose elements 𝑝𝑖 𝑗 are defined as:

𝑝𝑖 𝑗 =

𝑠𝑖𝑛

(
𝑖

10000

𝑗
𝑑

)
; 𝑗 = 2𝑘

𝑐𝑜𝑠

(
𝑖

10000

𝑗−1
𝑑

)
; 𝑗 = 2𝑘 + 1

(4)

where 𝑑 is the size of the embeddings.

Another approach employed by later Transformer-based models [10, 46] is to use a learnable
𝑃𝐸 matrix; in that case we learn the positional embeddings as just one of the model parameters.

According to Tunstall et al. [52, Chapter 3], absolute positional embeddings are preferable when

the dataset size is small, whereas learnable embeddings are a good choice with large datasets. Many

sequential recommender systems based on transformers use learnable position embeddings [20, 50].

In particular, SASRec – one of the architectures which we adapt in this work – also uses learnable

position embeddings. This means that it is possible to analyse these learnable embeddings to

determine the effect of RSS training objective on different positions in the sequence. In Section 4.4we

describe our methodology of using learned positional embeddings to analyze the effects of a training

objective on positions in the sequence; the results of the experiments using this methodology are

covered later in Section 6.6.

With this, we conclude the background review, which is necessary to understand our work. In the

next section, we dive deeper into the training of the sequential recommender systems and identify

the limitations of the existing training objectives, which we then solve with RSS in Section 4.

3 TRAINING SEQUENTIAL RECOMMENDATION MODELS
Consider a set of users 𝑈 and items 𝐼 . Each user 𝑢 ∈ 𝑈 has a sequence of interactions 𝑠𝑢 =

{𝑖𝑢1
, 𝑖𝑢2

, 𝑖𝑢3
...𝑖𝑢𝑛 } where items 𝑖𝑢𝜏 ∈ 𝐼 are ordered by the interaction time. The next item prediction

task is defined as follows: given a sequence 𝑠𝑢 , rank the items from 𝐼 , according to their likelihood

of being the sequence continuation 𝑖𝑢𝑛+1 . This task corresponds to Leave One Out evaluation - hold

out the last element from each user’s interactions sequence and then evaluate how well a model

can predict each held-out element.

As mentioned in Section 2, the best models for the next item prediction task are based on

deep neural networks. Generally speaking, their training procedure consists of iterations of the

following steps: (1) Generate a batch of training samples, each with positive and negative items;

(2) Generate predictions, using the model; (3) Compute the value of the loss function; (4) Update

model parameters using backpropagation.

We aim to improve the training of existing models, so step 2 is not within the scope of our

work. Backpropagation (step 4) – e.g. through stochastic gradient descent – is a very general and

well-studied procedure, and we follow the best practices used by the deep learning models, details

of which we describe in Section 5. This leaves us with two essential parts of model optimization -

generation of the training samples and the loss function. These two parts are not independent: a

loss function designed for one training task does not always fit into another. For example, BPR-max

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 7

loss (used by GRU4Rec
+
[16]) has an assumption of only one positive item per training sample

and therefore is not applicable to a sequence continuation with multiple positives task, as used by

Caser. Hence, a new training task requires the selection of an appropriate loss function. We further

discuss some possible choices of the loss functions for our proposed method later in Section 4.3.

In the following, we describe existing approaches to generate training samples and identify their

limitations, a summary of which we provide in Section 3.2.

3.1 Generation of Training Samples
A training sample for a sequential model consists of three parts - the input sequence, positive items,

and negative samples. Sequential recommender models [16, 17, 20, 51] treat ground truth relevance

as a binary function; by definition, every non-positive item is negative. In practice, to make the

training more tractable, most models only consider samples of negative items, identified using

techniques such as random sampling [20, 48], in-batch negatives [17], or the negatives with highest

scores [58]. This work focuses on constructing positive samples. Negatives sampling approaches are

orthogonal to positive sampling and can be applied independently. We do not use negative sampling

in our work and leave improvement of our method via negative sampling to future research. In the

remainder of this section, we describe positive sampling strategies for sequential recommendations.

Figure 3 illustrates sequence continuation and item masking, the most commonly used strategies,

which we discuss in turn below.

Matrix factorization methods use a straightforward matrix reconstruction training objective: for

each user 𝑢 and item 𝑖 , the goal of the model is to estimate whether the user interacted with the

item. This goal leads to a simple procedure for generating training samples - the training algorithm

samples (user, item) pairs as inputs and assigns labels for the pairs based on interactions. A classic

model that uses matrix reconstruction is Bayesian Personalized Rank (BPR) [48], which we use as

one of our baselines. The main disadvantage of matrix reconstruction is that it does not consider

the order of the interactions, and therefore sequential recommendation models can not use it.

Fig. 3. Training sample generation strategies used in existing models. White boxes represent model inputs,
and filled boxes represent model outputs. In Sequence Continuation, the sequence is split into two parts, with
the aim of predicting whether or not an item belongs to the second part based on the sequence of elements in
the first part. In Sequence Continuation with a sliding window, we first generate shorter sub-sequences from
the original sequence and then apply the sequence continuation method. In item masking, some elements are
removed and replaced with a special "[mask]" value, with the aim of correctly reconstructing these masked
items.

8 Aleksandr Petrov and Craig Macdonald

In the sequence continuation training objective, training samples are generated by splitting the

sequence of interactions into two consequent parts:

𝑠 = {𝑖1, 𝑖2, 𝑖3 ..𝑖𝑛} ↦→
{
𝑠𝑖𝑛𝑝𝑢𝑡 = {𝑖1, 𝑖2, 𝑖3, ...𝑖𝑛−𝑘 };
𝑠𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑖𝑛−𝑘+1, 𝑖𝑛−𝑘+2, ..𝑖𝑛}

where 𝑘 is a hyperparameter. The model uses 𝑠𝑖𝑛𝑝𝑢𝑡 as the input sequence, and assigns label 1 to

the positive items from 𝑖+ ∈ 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 and label 0 to the negative items 𝑖− ∉ 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 . If 𝑘 is equal to 1,

the sequence continuation task turns into the next item prediction task, which matches the the end

goal of sequential recommender systems.

Using sequence continuation in its basic form, we can produce precisely one training sample out

of a single sequence of interactions. Some models (e.g. Caser [51]) use the sliding window approach

to generate more than one sequence - which generates shorter subsequences out of a whole sequence

and then creates training samples out of these shorter subsequences. The sliding window approach

allows the model to generate up to𝑛−1 training samples from a sequence of𝑛 interactions. However,

shorter sequences only allow to model short-term user preferences, and researches have to find

a balance between the number of generated samples and the maximum length of the sequence [51].

GRU4rec, GRU4rec
+
, and Caser models use variations of the sequence continuation task for training.

The sequence shifting training task used by SASRec and NextItNet [59] is essentially a version of

sequence continuation: it trains the model to predict the target sequence, which is shifted by one

element compared to the input. they These models predict the second element of the input sequence

by the first, third by the first two, etc.. When these models predict the 𝑗𝑡ℎ item in the output, they

only have access to the first (𝑗−1) elements of the input so that this shifted sequence prediction task

essentially is 𝑛 independent sequence continuation tasks. Figure 4 graphically illustrates shifted

sequence task and equivalent sequence continuation training samples. Thus, the main limitation of

sequence continuation is that it only generates a small number of training samples out of a single

sequence, and the items in the first part of the user’s sequence never have a chance to be selected as

a target, which means that the recommender system is unlikely to learn how to recommend these

items, even though they may be relevant for some users. We refer to this limitation as Limitation L1.

In contrast to earlier neural sequential models, BERT4Rec [50] uses an item masking training

objective, which it inherited from the original BERT model. In BERT, the idea is to hide some

terms from the sentence and then ask the model to reconstruct these hidden elements. Similarly, in

A B C D

B C D E

E

(a) Shifted Sequence training
sample

A B

A B C

A B C D

A B C D E

(b) Sequence Continuation
training samples equivalent
to using Shifted Sequences

Fig. 4. Equivalence of Shifted Sequence and Sequence Continuation training tasks. In Shifted Sequence, the
model is trained to predict its output shifted by one element to the left. The models that use this training
task only use elements in positions 0..𝑖 to predict 𝑖𝑡ℎ output. This is equivalent to 𝑛 sequence continuation
tasks, where 𝑛 is the length of the sequence.

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 9

BERT4Rec, some items in the sequence are masked, and the model is retrained to recover these

items. The target sequence, in this case, exactly matches the original sequence (without masking):

𝑠 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, ..𝑖𝑛} ↦→
{
𝑠𝑖𝑛𝑝𝑢𝑡 = {𝑖1, [𝑚𝑎𝑠𝑘], 𝑖3, [𝑚𝑎𝑠𝑘], ...𝑖𝑛};
𝑠𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, ..𝑖𝑛}

This approach generates up to 2
𝑛
training samples out of a single training sequence of length 𝑛.

BERT4Rec does not mask more than 𝜏 percent of items in a sequence, where 𝜏 is a hyperparameter;

however, it still generates many more training samples compared to the single training sample

generated from a sequence under sequence continuation. As Sun et al. [50] showed, more training

ensures to avoid overfitting and achieves better performance compared to other models with similar

architecture.

However, we argue that the main disadvantage of the item masking approach is that it is weakly

related to the next item prediction task. To make a prediction, BERT4Rec adds the [mask] element

to the end of the input sequence and tries to reconstruct it; so that training and evaluation samples

have a different distribution. The model must learn how to solve the evaluation task (reconstruct the

last item in the sequence) as part of a much more general and more complicated task (reconstruct

any item in the sequence). BERT4Rec adds a small proportion of training samples with only the

last element masked to address this mismatch, but the consequence is still a substantially more

complicated training task and longer time to converge compared to the models that use sequence

continuation. We refer to this problem of weak correspondence to the original task as Limitation

L2.

3.2 Summary of Limitations
We described the two main training objectives used by sequential recommendations approaches:

sequence continuation (including its variations, shifted sequence prediction, and sliding window)

and item masking. Indeed, as argued above, both of these training objectives have their limitations,

which we summarize as follows

L1 Sequence continuation can only generate a small number of training samples from a single

training sequence. This allows training to be performed relatively quickly, but performance

of these models is lower compared to a state-of-the-art model such as BERT4Rec.

L2 Reconstruction of masked items is a very general task, which is loosely connected to

the sequential recommendation task. Using this task, models can reach state-of-the-art

performance, but model training can take markedly longer than other training objectives.

In the next section, we introduce Recency-based Sampling of Sequences, a novel training task that

addresses these limitations and discuss possible choices of the loss function for this training task.

4 RSS: RECENCY-BASED SAMPLING OF SEQUENCES
As shown in Section 3, to train a model we need to have a training task and choose a loss function

that matches the task. Hence, the training task and the loss function are both essential parts of our

solution. In this section, we introduce both training objective (Section 4.1), describe two families

of recency importance functions (Section 4.2) and choice of loss function. (Section 4.3). Later, in

Section 4.4, we introduce a concept of position similarity matrix and describe how it can be used to

analyze effect of RSS on trained models. Section 4.5 provides a summary of the salient characteristics

of RSS.

10 Aleksandr Petrov and Craig Macdonald

4.1 The RSS Training Objective
Recency-based Sampling of Sequences (RSS) is a training objective that is closely related to the

sequential recommendations and allows the model to generate many training samples out of a

single user sequence simultaneously. To address the limitations of existing training objectives

described in Section 3.2, we first outline the principles used to design our training task:

P1 Each element in a sequence can be selected as the target; multiple items can be selected as

a target in each training sample. Using this principle, we match the main advantage of the

item masking approach - generating up to 2
𝑛
training samples out of each user sequence.

This principle addresses Limitation L1.

P2 More recent training interactions in a sequence better indicate the user’s interests, and

hence these are more realistic targets. User interests change over time, and one of the

main advantages of sequential recommender systems is taking these changes into account.

Therefore, the methods that rely on this principle will retain a close connection to sequential

recommendations. This principle addresses Limitation L2.

In our proposed training objective, to follow these two principles, we use a recency importance
function, 𝑓 (𝑘), that is defined for each position 0 .. 𝑛 − 1 in the sequence of the length 𝑛 and

indicates chances of each position to be selected as a target: the probability of an item at position 𝑘

of being selected as a positive is proportional to the value of 𝑓 (𝑘). 𝑓 (𝑘) must exhibit the following

properties:

(i) 𝑓 (𝑘) is positive:

𝑓 (𝑘) > 0 (5)

(ii) 𝑓 (𝑘) is monotonically growing:

𝑓 (𝑘) ≤ 𝑓 (𝑘 + 1) (6)

This first property corresponds to Principle P1 and defines that the likelihood of each item to be

selected as a target are positive. The second property corresponds to Principle P2, and ensures that

more recent items have higher or equal chances to be selected as a target.

To generate a training sample, we first calculate 𝑐 - how many target items we want to sample.

Following BERT4Rec, we define a parameter 𝜏 that controls the maximum percentage of items that

can be used as targets and then calculate 𝑐 via multiplying 𝜏 by the length of the sequence. We then

randomly sample, with replacement, 𝑐 targets from the sequence, with the probability of being

sampled, 𝑝 (𝑖), proportional to the value of a recency importance function, 𝑓 (𝑖):

𝑝 (𝑖) = 𝑓 (𝑖)∑𝑛−1
𝑗=0 𝑓 (𝑗)

(7)

We generate the input sequence to the model by removing targets from the original sequence.

The full procedure is described in Algorithm 1. We now describe two families of recency importance

functions that have the required properties.

4.2 Recency Importance Functions
In this Section we describe properties of two families of recency importance functions, which can

be used with RSS (i. e. they satisfy the requirements described by Equations (5) and (6)): exponential
importance and power importance

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 11

Algorithm 1 Recency-based Sampling of Sequences

Input: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 - a sequence of interactions; 𝜏 - maximum percent of target items; 𝑓 - recency

importance function

Output: 𝑖𝑛𝑝𝑢𝑡 is a generated input sequence for the model; 𝑡𝑎𝑟𝑔𝑒𝑡 is a set of sampled positive

items

function RecencySeqenceSampling(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , 𝜏 , 𝑓)

𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑑𝑥 ← 𝑠𝑒𝑡 ()
𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)
𝑐 ←𝑚𝑎𝑥 (1, 𝑖𝑛𝑡 (𝑛 ∗ 𝜏)))
𝑝𝑟𝑜𝑏 ← 𝐴𝑟𝑟𝑎𝑦 [𝑛]
𝑝𝑟𝑜𝑏 [𝑖] ← 𝑓 (𝑖)∑𝑛−1

𝑗=0 𝑓 (𝑗) for i in [0,𝑛 − 1]
𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑑𝑥 ← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑐ℎ𝑜𝑖𝑐𝑒 (𝑟𝑎𝑛𝑔𝑒 (0..𝑛 − 1), 𝑐, 𝑝𝑟𝑜𝑏)
𝑖𝑛𝑝𝑢𝑡 ← 𝑙𝑖𝑠𝑡 ()
𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑠𝑒𝑡 ()
for 𝑖 ← 0, 𝑛 − 1 do

if 𝑖 ∈ 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑑𝑥 then 𝑡𝑎𝑟𝑔𝑒𝑡 .𝑎𝑑𝑑 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 [𝑖]) else 𝑖𝑛𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 [𝑖])
end for
return 𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡

end function

We assume that function 𝑟𝑎𝑛𝑑𝑜𝑚.𝑐ℎ𝑜𝑖𝑐𝑒 (𝑎, 𝑐, 𝑝) is an equivalent of the 𝑛𝑢𝑚𝑝𝑦.𝑟𝑎𝑛𝑑𝑜𝑚.𝑐ℎ𝑜𝑖𝑐𝑒 function from the numpy

package. It iteratively samples 𝑐 samples from collection 𝑎, where the probability of each item 𝑖 of being sampled equals

𝑝 [𝑖] at each stage, with replacement.

4.2.1 Exponential Importance. Our first proposal for a recency importance function that has the

required properties is the exponential function:

𝑓𝑒𝑥𝑝 (𝑘) = 𝛼𝑛−𝑘 (8)

where 0 < 𝛼 ≤ 1 is a parameter that controls importance of the recent items in the sequence and 𝑛

is the sequence length. If 𝛼 = 1, then each item has equal chances of being sampled as a target, and

Recency-based Sampling of Sequences becomes similar to the item masking approach (but without

providing the positions of masked items) or to the matrix reconstruction approach, where items are

sampled uniformly from the sequence. If 𝛼 is close to zero, items from the end of the sequence have

a much higher chance of being sampled, and therefore RSS becomes equivalent to the sequence

continuation task. Figure 5 provides an example of the recency importance (for 𝛼 = 0.8) and the

generated samples.

Koren et al. [23] recently used a similar exponential function for modeling temporal dynamics

in neighborhood-based recommendation methods. Indeed, the authors successfully model a user-

item interaction as a weighted sum of the other interactions of the same user, with the weight

proportional to the exponential function:

𝑒−𝛽𝑢Δ𝑡 (9)

where Δ𝑡 is the time interval between the modeled and a known interaction, and 𝛽𝑢 is a user-specific

learnable parameter. In contrast to Koren et al. [23], we use the recency importance function for the

target items selection instead of the explicit interaction similarity modeling. Nevertheless, inspired

by their work, we use the exponential importance as the main approach throughout the paper.

12 Aleksandr Petrov and Craig Macdonald

Fig. 5. Recency-based Sampling of Sequences. The beginnings of the sequences remain largely unchanged,
whereas elements from the end of the sequence are chosen as positive samples more frequently.

0 10 20 30 40 50
Position k

0.00

0.05

0.10

0.15

0.20

S
am

pl
in

g
P

ro
ba

bi
lit

y
p(

k) =1
=0.9
=0.4
=0.01

(a) Exponential Importance
𝑓𝑒𝑥𝑝 (𝑘) = 𝛼𝑛−𝑘

0 10 20 30 40 50
Position k

0.00

0.05

0.10

0.15

0.20

S
am

pl
in

g
P

ro
ba

bi
lit

y
p(

k) =-2
=0
=2
=6

(b) Power Importance

𝑓𝑝𝑜𝑤 (𝑘) =
(
𝑘+1
𝑛+1

)𝑒𝛽
Fig. 6. Sampling probability distributions produced by exponential and power recency importance functions.
Sequence length 𝑛 is set to 50.

Figure 6a illustrates the sampling probability distributions generated by the exponential im-

portance function for different values of the importance parameter 𝛼 . As the figure shows, with

the exception of the situation when 𝛼 ≊ 1 (which corresponds to uniform sampling), exponential

importance produces probability distributions that are very strongly skewed towards the most

recent items. For example, even with 𝛼 = 0.9, the probability of sampling the item at position 10

in a sequence of 50 interactions is less than 0.002. Overall, the exponential nature of the function

means that the probability of sampling always decays faster than linearly (wrt. to position 𝑘) for

nearly all values of 𝛼 . On the other hand, Ludewig and Jannach [31] successfully deployed a linear

decay of position importance weights in the V-SKNN model. Similarity to the method proposed by

Koren et al. [23] (mentioned above), V-SKNN uses these weights for explicit item-item similarity

modeling rather than for computing target item sampling probabilities; therefore, it differs from RSS.

However, the fact that V-SKNN used a linear decay of position similarity motivates us to investigate

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 13

broader set recency importance functions, which are capable of generating linear and sub-linear

decay of recency importance. Hence, we also experiment with a power importance function, which

we describe in the next section.

4.2.2 Power importance. Another family of importance functions we use for our experiments is

the power importance function:

𝑓𝑝𝑜𝑤 (𝑘) =
(
𝑘 + 1
𝑛 + 1

)𝑒𝛽
(10)

where 𝑛 is the sequence length, 𝑘 is the position and 𝛽 is a hyperparameter. In this function, the

position of the item in the sequence is raised to a constant power (controlled by the hyperparameter

𝛽). For example, when 𝛽 = 0, this results in a linear function, when 𝛽 = −∞ the importance becomes

constant (meaning that there is an equal chance of sampling any item in the sequence).

Figure 6b illustrates sampling probability distributions generated by the power importance

functions with different values of the parameter 𝛽 . Comparing the figure with Figure 6a, we can

see that in contrast with the exponential importance, power importance can generate linear (when

𝛽 = 0) and sub-linear (when 𝛽 < 0) shapes of probability distributions.

Note that, because 𝑛 and 𝛽 are constants, the set of sampling probability distributions produced

by this family is equal to the one produced by a simpler function:

ˆ𝑓𝑝𝑜𝑤 (𝑘) = (𝑘 + 1)𝜏 (11)

where 𝜏 = 𝑒𝛽 . Note that this simpler form omits the normalization coefficient
1

𝑛+1 , because
it is reduced anyway while computing probability distribution in Equation (7). However, this

normalization is important in practice: without the normalization
ˆ𝑓𝑝𝑜𝑤 (𝑘) becomes very large and

numerically unstable even when 𝑘 and 𝜏 have modest values. For example, for 𝑘 = 50 and 𝜏 = 400

(realistic numbers we use in our experiments),
ˆ𝑓𝑝𝑜𝑤 (𝑘) = 51

400 ≈ 10
683

. This number is larger than

the maximum value that can be represented with a standard float32 data type and therefore causes

errors during computations. By keeping the normalization, we bring the value of the function into

the [0..1] interval and therefore help to avoid problems with infinities during computations.

The substitution of the parameter 𝜏 = 𝑒𝛽 in Equation (11) helps to squeeze the area of the

interesting hyperparameter values to a more symmetric and smaller interval. In particular, as we

mention in Section 4.2.1, we are specifically interested in the cases when recency importance decays

sub-linearly because faster-than-linear cases are covered by the exponential importance function.

Without the substitution, we have following cases for the behaviour of
ˆ𝑓𝑝𝑜𝑤 (𝑘):

𝜏 < 0→ out of the scope (violates the monotonic growth requirement (Equation 6))

𝜏 = 0→ uniform sampling probability

𝜏 ∈ (0, 1) → sub-linear decay of sampling probability
𝜏 = 1→ linear decay of sampling probability

𝜏 > 1→ faster-than-linear decay of sampling probability

(12)

From these cases we can see that uniformly sampling of 𝜏 from the allowed range 𝜏 ∈ [0..+∞] will
almost certainly be sampled from the less interesting area of the faster-than-linear growth (with a

probability of 1). Instead, by making the substitution 𝑒𝛽 = 𝜏 , we obtain a simpler and symmetric

set of cases for the behavior of 𝑓𝑝𝑜𝑤 (𝑘):

14 Aleksandr Petrov and Craig Macdonald

𝛽 < 0→ sub-linear decay of sampling probability
𝛽 = 0→ linear decay of sampling probability

𝛽 > 0→ faster-than-linear decay of sampling probability

(13)

Thus, a randomly sampled 𝛽 has equal chances of producing faster-than-linear and sub-linear

probability decay. In practice we chose 𝛽 from the interval (-2..6): as Figure 6b shows, for sequences

of length 50, 𝛽 = −2 produces a sampling probability distribution close to uniform, whereas for

𝛽 = 6 the probability of sampling the last item becomes close to one and the probability of sampling

earlier items is close to zero; RSS, therefore, becomes similar to sequence continuation.

In summary, we have proposed exponential importance and power importance families of im-

portance functions, which can produce a broad set of shapes, including exponential, linear, and

sub-linear shapes. Sections 6.3 and 6.4 cover our experiments with these two families of importance

functions. In particular, in Section 6.4 we show that optimal shapes generated by both these families

are very similar to each other.

4.3 Loss Functions for RSS
The second important component of the training procedure is the loss function. Loss functions

for recommender systems can be generally divided into three categories - pointwise (optimize the

relevance estimation of each item independently), pairwise (optimize a partial ordering between

pairs of items) and listwise (optimize the recommendations list as a whole) losses [29]. RSS works

with all types of loss functions that support multiple positive samples within each training sample.

GRU4rec
+
[16] showed the advantages of applying a listwise loss function above pointwise and

pairwise methods, however the Top-1-max and BPR-max losses introduced in that paper have

an assumption that there is only one positive item within each training sample. Instead, we use

LambdaRank [4] (denoted _Rank), another listwise optimization loss function. _Rank has been

widely deployed in training learning-to-rank scenarios [6, 39] for web search. Similarly, _Rank

has been shown to be advantageous for recommender tasks [28], for example when applied to

Factorization Machines [58] or Transformer-based sequential models [38].

_Rank [4] uses _-gradients instead of objective function gradients in the gradient descent method.

According to Burges [4], the _-gradient for an item 𝑖 ∈ 𝐼 is defined as follows:

_𝑖 =
∑︁
𝑗∈𝐼
|Δ𝑁𝐷𝐶𝐺𝑖 𝑗 |

−𝜎
1 + 𝑒𝜎 (𝑠𝑖−𝑠 𝑗)

(14)

where 𝑠𝑖 and 𝑠 𝑗 are predicted scores, Δ𝑁𝐷𝐶𝐺𝑖 𝑗 is the change that would be observed in an NDCG

metric items 𝑖 & 𝑗 were swapped, and 𝜎 is a hyperparameter, defining the shape of the sigmoid,

typically set to 1. Burges [4] used _Rank to build one of the most successful learning-to-rank

algorithms LambdaMART, which is based on gradient boosting trees. Versions of LambdaMART

still produce state-of-the-art results for the learning-to-rank task [18, 39].

There are multiple available implementations of LambdaMART. Qin et al. [39] have shown that

a version of LambdaMART implemented in a popular LightGBM library [21] performs better than

other available implementations, and therefore we matched our implementation of _Rank with

LighghtGBM’s implementation. On analysis of the LightGBM source code, we found that it uses a

normalized version of the _-gradients (compared to Equation (14)). To keep our version consistent

with the best available implementation, we include these modifications into our version of _Rank.

We provide more details on these modifications in Appendix A.

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 15

In addition to _Rank, we also experiment with the pointwise Binary Cross-Entropy (BCE),

following [20, 51], to investigate the effect of the listwise loss and the necessity of both training

objective and the loss function in our solution.

4.4 RSS and Positional Embeddings in Transformer-based models.
In this section we describe the methodology of analyzing the effects of RSS on the learned model

using positional embeddings.

The main idea of RSS is that recent interactions are more important to the model compared to

the older ones and therefore the model should treat them differently. To analyze whether or not

this happens in practice, we need a mechanism that allows us to understand the learned differences

between different positions in a sequence. Fortunately, the Transformer architecture (as used by

SASRec [20]) provides this mechanism in the form of positional embeddings, details of which we

describe in Section 2.2.

Our goal is to examine whether or not RSS helps the model distinguish between recent and

earlier positions. To achieve this goal, we need to measure position similarity between different

positions learned by the model. Intuitively, we would like the learned similarities to exhibit the

following properties:

Pr.1 Similarities between high nearby positions, as the nearby interactions are likely to be

related to each other.

Pr.2 Similarities between distant positions are low; as distant interactions are unlikely to be

related to each other.

Pr.3 For recent positions, similarity decays faster with the distance between positions than

for the earlier positions. This means that the relative order of recent interactions is more

important than the relative order of earlier interactions.

Property Pr.3 can be written as

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑖𝑟 , 𝑖𝑟 + Δ𝑖) < 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑖𝑒 , 𝑖𝑒 + Δ𝑖) (15)

where 𝑖𝑟 corresponds to recent positions and 𝑖𝑒 correspond to earlier positions.

SASRec explicitly separates interaction representations into item embeddings and position

embeddings (see Equation (3)), allowing us to focus solely on the position representations – indeed,

as the item embeddings are independent of the positions, we can therefore exclude them from our

analysis of position similarities.

After summation with the item embeddings, SASRec uses the position embeddings as the input

to linear projections. Therefore it makes sense to use cosine similarity of positional embeddings as

a means to measure the learned similarity between two positions in the sequence.

Formally, we define the learned position similarity matrix 𝑆 , which elements 𝑠𝑖, 𝑗 correspond to

the learned similarity between positions 𝑖 and 𝑗 and are defined as:

𝑠𝑖, 𝑗 =
𝑒𝑖 · 𝑒 𝑗
∥𝑒𝑖 ∥∥𝑒 𝑗 ∥

(16)

where 𝑒𝑖 and 𝑒 𝑗 are positional embeddings learned by SASRec for positions 𝑖 and 𝑗 . Based on the

definition, matrix 𝑆 is symmetric with respect to the main diagonal, i.e.:

𝑠𝑖, 𝑗 = 𝑠 𝑗,𝑖 (17)

However, the symmetry with respect to the secondary diagonal is an undesirable property, as it

violates Property Pr.3. Indeed, let’s assume the symmetry with respect to the secondary diagonal:

𝑠𝑖, 𝑗 = 𝑠𝑛− 𝑗,𝑛−𝑖 (18)

16 Aleksandr Petrov and Craig Macdonald

Let’s denote Δ𝑖 = 𝑗 − 𝑖 , so

𝑠𝑖,𝑖+Δ𝑖
= 𝑠𝑛−𝑖−Δ𝑖 ,𝑛−𝑖 (19)

Equation (19) can be also written as

𝑠𝑖,𝑖+Δ𝑖
= 𝑠𝑖′,𝑖′+Δ𝑖 (20)

where 𝑖′ = 𝑛 − 𝑖 −Δ𝑖 . If 𝑖 is a recent position, (𝑖 ≈ 𝑛), then 𝑖′ corresponds to a early position (𝑖′ ≈ 0).

In that case Equation (19) contradicts Equation (15), which requires 𝑠𝑖,𝑖+Δ𝑖
< 𝑠𝑖′,𝑖′+Δ𝑖 . This means

that a symmetric similarity matrix with respect to the secondary diagonal violates our desirable

Property Pr.3. Ideally, we would like to avoid this kind of symmetry.

Overall, the position similarity matrix 𝑆 allows us to analyze how the learned model treats

interactions in different positions. For example, the original SASRec model is trained to predict

original input shifted by one element. In this training task every position in the sequence has equal

importance and therefore we expect that the similarity between positions only depends on the

distance between positions, i.e.:

𝑠𝑖, 𝑗 ≈ 𝑔(|𝑖 − 𝑗 |) (21)

which will lead to symmetry with respect to the secondary diagonal:

𝑠𝑖, 𝑗 ≈ 𝑔(|𝑖 − 𝑗 |) = 𝑔(| (𝑛 − 𝑗) − (𝑛 − 𝑖) |) ≈ 𝑠𝑛− 𝑗,𝑛−𝑖 (22)

hypothesize that RSS training objective helps the model to avoid this undesirable symmetry. Indeed,

by the design of the training objective, recent positions and their relative order are more important

earlier positions in the sequence and their order, and therefore we expect that the similarity 𝑠𝑖, 𝑗
between positions 𝑖 and 𝑗 depends on both absolute values of position and their relative distance

between them:

𝑠𝑖, 𝑗 ≈ 𝑔(𝑖, |𝑖 − 𝑗 |) (23)

In Section 6.6 we analyze position similarity matrices of SASRec-vanilla and SASRec-RSS to show

in practice that similarity matrices of SASRec-RSS indeed exhibit all three desirable properties on 3

out of 4 experimental datasets, whereas the positional similarity matrices of the original SASRec

model do not exhibit Property Pr.3 on all datasets.

4.5 Summary
Overall, RSS is a novel training objective based on a probabilistic sampling of target items, with

more probability assigned to recent items. Our motivation for the probabilistic target sampling

objective encodes two principled intuitions for the sequential recommendation. RSS is model- and

loss-agnostic: it can be used with various model architectures and loss functions. RSS is parametrized

by the recency importance function, which defines the probability decay. Two examples of recency

function families include exponential importance and power importance.

RSS only affects model training and leaves other model characteristics, such as the number

of parameters or model throughput, unchanged. Hence, in the next section, through detailed

experimentation, we investigate the effects of RSS on model training.

5 EXPERIMENT SETUP
In the following, we list our research questions (Section 5.1), our experimental datasets (Section 5.2),

the recommender models on which we build, and our comparative baselines (Section 5.3), and

finally, evaluation details (Section 5.4).

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 17

Table 1. Datasets we use for experiments.

Name Users Items Interactions

Average

length

Median

length

sparsity

Booking.com 140746 34742 917729 6.52 6 0.999812

Gowalla 86168 1271638 6397903 74.24 28 0.999942

Yelp 287116 148523 4392169 15.29 8 0.999897

MovieLens-20M 138493 26744 20000263 144.41 68 0.994600

5.1 ResearchQuestions
Our experiments aim to address the following research questions:

RQ1 Does Recency-based Sampling of Sequences (RSS) help for training sequential recommenda-

tion models compared to sequence continuation?

RQ2 Does a listwise _Rank loss function benefit RSS training?

RQ3 What is the impact of the recency importance parameter 𝛼 in the exponential recency

importance function (Equation (8)) of RSS?

RQ4 What is the effect of the recency important function shape in RSS?

RQ5 How do RSS-enhanced models compare with state-of-the-art baselines?

RQ6 What is the effect of RSS on the positional embeddings learned by the SASRec model?

5.2 Datasets
Our experiments are performed on four large-scale datasets for sequential recommendation:

MovieLens-20M [15] is a movie recommendation dataset, and is popular for benchmarking

sequential recommenders [8, 11, 27, 32, 33, 42, 50, 56, 62]. Note that MovieLens-20M is a rating

dataset where users rate movies with stars, however following common practice [27, 33, 50] we

consider all ratings as positive interactions. However, MovieLens-20M timestamps correspond to

the time when ratings were provided rather than when the items were consumed, so the task is

best described as “next movie to rate” rather than “next movie to watch”. Nevertheless, as versions

of the MovieLens dataset are used in both well-cited [19, 20, 50] and recent [43, 60, 61] sequential

recommendation papers, we conclude that it is well suited for the the problem and it is important

to include it as one of our benchmarks.

Yelp1 is a business reviews dataset. It is another popular dataset for sequential recommenda-

tions [2, 3, 35, 43, 55, 63]. As for MovieLens-20M, we consider all user reviews as positives.

Gowalla [7] contains user check-ins to a location-based social network. This dataset contains a

large number of items (more than 10
6
) and is very sparse: it has only 0.0058% out of all possible

user-item interactions.

Booking.com [13] is a travel destination dataset. Each interaction sequence in this dataset rep-

resents a single multi-city trip of a user. In contrast to other types of recommendations, such as

movies or books, multi-city trips have a strong sequential nature. Indeed, for example, if a user is

making a road trip by car, there could be only one or two neighboring cities where the user can

stop, and hence all other more distant items are non-relevant. This strong sequential nature could

be problematic for RSS, as it contradicts Principle P1, which says that any item in the sequence can

be selected as a relevant target for the preceding items.

Following common practice [20, 50, 63], we discard cold-start users with fewer than 5 interactions

from each dataset. Table 1 reports the salient statistics of the four datasets. As the table shows,

1
https://www.yelp.com/dataset

https://www.yelp.com/dataset

18 Aleksandr Petrov and Craig Macdonald

the experimental datasets are quite distinct in terms of sequence length: median sequence length

varies from 6 in the Booking.com dataset to 68 in the MovieLens-20M dataset. Indeed, our choice

of datasets allows testing of RSS performance in settings with different sequence lengths.

5.3 Models

5.3.1 Experimental Architectures. RSS is a training objective that can be used with a large variety

of model architectures. We identify three large groups of model architectures that can be used with

RSS: Recurrent Neural Network-based models, Convolutional Neural Network-based models, and

Attention-based models. In each group, we select a well-cited representative architecture. Overall,

we experiment using RSS with three recent model architectures for sequence recommendation:

(1) Recurrent Neural Networks: GRU4Rec [17] is a sequential recommender architecture

based on recurrent networks;

(2) Convolutional Neural Network: Caser [51] applies a convolutional neural network

structure for sequential recommendation. For our experiments, we use the basic architecture

described in [59];

(3) Attention network: SASRec [20] is a sequential recommendation architecture based on

Transformer [53]. The original implementation of SASRec is trained as a sequence-to-

sequencemodel, however only the final element from the target sequence is used at inference

time. In order to match our common training framework and train the model with the RSS

training objective, we ignore all outputs of the architecture except the final one. This is a

notable change in the training process, because the original SASRec computes its loss over

all outputs. To make sure that this change does not lead to significant quality degradation

we include the original version of SASRec as a baseline (see Section 5.3.2).

We implement these architectures using the TensorFlow version 2 [1].
2
Note that for our exper-

iments we reuse only the architectures of these models and not the training methods or hyper-

parameters. Indeed, because our goal is to research the impact of the training task, the appropriate

training parameters may differ from the original implementation.

We implement RSS and sequence continuation training objectives on each of the three experi-

mental architectures. We do not apply an item masking training objective with these architectures:

item masking assumes that a model produces a scores distribution per masked item, which is not

compatible with those architectures; however, as discussed below, we include BERT4Rec as an item

masking baseline.

For our experiments, we set common training parameters for all model architectures, following

the settings in [20]. In particular, we set the size of the item embeddings to be 64, we use the Adam

optimizer, applying the default learning rate of 0.001 and following SASRec [20] we set the 𝛽2
parameter, which controls the second moment decay rate in Adam, to 0.98

3
.

We also fix the length of the user sequences to 50 items for all four following [20]. If a user has

less than 50 interactions, we add special "[pad]" interactions at the beginning of the sequence. If

the user has more than 50 interactions, we take the last 50 interactions from the sequence. Figure 7

illustrates this padding/truncation scheme visually. The scheme ensures that the user’s most recent

interaction is always located in the rightmost position (position with index 49 in our case), and

padding is added to the beginning of the sequence. We select target items for both RSS and Sequence

Continuation before applying padding/truncation.

2
The code for this paper is publicly available in a joint repository with our BERT4Rec replicability paper [38] and can be

found at https://github.com/asash/bert4rec_repro
3
Note that the datasets used in the SASrec paper [20] are different

from the ones we use in our experiments. However, the datasets used in [20] represent a wide range of data types, including

e-commerce, games, and movie recommendations, and therefore we use these hyperparameters without changing them.

https://github.com/asash/bert4rec_repro

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 19

I1 I2 … In-1 In

I1 I2 … In-1 In[PAD] [PAD] …

In-49 In-48 …
In-1 In

Pad (n < 50):

Truncate (n ≥ 50):

Fig. 7. Padding/Truncation scheme. We use left padding in experiments, ensuring that the rightmost input to
the model is always the most recent interaction. Note that we sample target items (using RSS or Sequence
Continuation) before applying padding or truncation.

Following BERT4Rec [50], we set the maximum percentage of a sequence to sample, 𝜏 , to 0.2.

Except where otherwise noted, we deploy the exponential recency function, and set the recency

parameter 𝛼 to 0.8. Finally, in order to estimate the performance of the models under limited

training time, we fix the training time of all models to 1 hour (we provide details on the amount of

training data used for training of each model within the 1-hour limit in Appendix B). Experiments

are conducted using 16-cores of an AMD Ryzen 3975WX CPU, 128GB of memory, and an NVIDIA

A6000 GPU.

5.3.2 Baselines. In order to validate that using Recency-based Sampling of Sequences is possible

to achieve performance comparable to state-of-the-art recommender models, we compare with a

selection of popular and state-of-the-art recommenders. We use the following models non-neural

models as baselines: (i) Popularity - the most popular items in the dataset; (ii) MF-BPR - Matrix

factorization with BPR Loss [48]. We use the implementation of this recommendation model from

the popular LightFM library [25].

We also use two Transformer-based models as state-of-the-art baselines: (i) SASRec-vanilla -

the original version of SASRec recommender [20], a Transformer-based model that uses a shifted

sequence task, described in Section 3.1. To make the comparison fair with the RSS-enhanced variant,

we limit the training time of this model to 1 hour; (ii) BERT4Rec is another Transformer-based

model [50] based on the BERT [10] architecture. BERT4Rec has been shown to outperform other

traditional and neural architectures and has been used as a strong baseline in a number of recent

works (e.g. [22, 26, 30, 39]). In our recent replicability study [37], we have also shown that despite

the existence of many later models, BERT4Rec still exhibits state-of-the-art performance.

We use two versions of this model: BERT4Rec-1h denotes where the training time of BERT4Rec

is limited to 1 hour, to allow a fair comparison in a limited-time setting; BERT4Rec-16h, where
training time is limited to 16 hours in order to compare the performance of our approach with

the state-of-the-art model. The original BERT4Rec publication [50] does not report the required

amount of training, but we find empirically that reproducing the reported results takes around

16 hours on our hardware [37]. We set the other parameters of BERT4Rec following the original

paper [50]. In particular, we use two transformer layers and masked 20% of each training input

sequence.

In contrast with other baselines, BERT4Rec calculates a score distribution across all items in the

catalog for each element in the sequence, whereas other baselines calculate a single distribution of

scores per sequence. This means that BERT4Rec requires 𝑂 (𝑁) more memory per training sample

for storing output scores and ground truth labels compared to other baseline models. This makes

training the original implementation of BERT4Rec infeasible when a dataset has too many items.

Indeed, the original BERT4Rec publication [50] only reports results on relatively small datasets

with no more than 55000 items and our own attempts to train BERT4Rec on a large Gowalla dataset

with more than 1 Million items failed because of memory and storage issues (see also Section 6.5).

20 Aleksandr Petrov and Craig Macdonald

Table 2. Comparing sequence continuation with Recency-based Sampling of Sequences training objectives
under limited training for various model architectures. Bold denotes a more effective training objective for an
(Architecture, Loss, Dataset) triplet. We use * to denote statistically significant differences compared to the
other training objective (left vs. right), and † to denote significant differences on the change of loss function
(upper vs. lower). All tests apply a paired t-test with Bonferroni multiple testing correction (𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05).
Training time of all models is limited to 1 hour.

(a) Recall@10

MovieLens-20M Yelp Gowalla Booking.com

Architecture Loss Cont RSS Cont RSS Cont RSS Cont RSS

GRU4Rec

BCE 0.0221† 0.0354* 0.0075† 0.0100*† 0.0026* 0.0005 0.4621 0.4962*
_Rank 0.0082 0.1544*† 0.0009 0.0045* 0.0068† 0.0119*† 0.4780† 0.5084*†

Caser

BCE 0.1424† 0.1866* 0.0046† 0.0099*† 0.0076 0.0081 0.5600*† 0.5454†

_Rank 0.0330 0.1496*† 0.0009 0.0017* 0.0087† 0.0157*† 0.4968 0.5273*

SASRec

BCE 0.1537† 0.1888* 0.0146† 0.0269*† 0.0089 0.0089 0.5845*† 0.5178

_Rank 0.1050 0.1968*† 0.0045 0.0052* 0.0715 0.1020*† 0.5662* 0.52464†

(b) NDCG@10

MovieLens-20M Yelp Gowalla Booking.com

Architecture Loss Cont RSS Cont RSS Cont RSS Cont RSS

GRU4Rec

BCE 0.0115† 0.0183* 0.0035† 0.0049*† 0.0017* 0.0002 0.2829 0.2899*
_Rank 0.0040 0.0839*† 0.0004 0.0014* 0.0033† 0.0067*† 0.3132*† 0.3093†

Caser

BCE 0.0784† 0.0995* 0.0021† 0.0049*† 0.0039 0.0040 0.3665*† 0.3311†

_Rank 0.0177 0.0814*† 0.0003 0.0007* 0.0055† 0.0100*† 0.3181 0.3226*

SASRec

BCE 0.0850† 0.1002* 0.0076† 0.0136*† 0.0044 0.0044 0.3633*† 0.2966

_Rank 0.0579 0.1073*† 0.0021 0.0025* 0.0478† 0.0749*† 0.3623* 0.3122†

Table 3. Comparing RSS-enhanced SASRec with baseline models under limited training. Bold denotes the
best model for a dataset by the metric in the main group, underlined the second best. Symbols * and † denote
a statistically significant difference compared with SASRec-RSS-BCE and SASRec-RSS-_Rank respectively,
according to a paired t-test with Bonferroni multiple testing correction (𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05).
1 We do not report results for BERT4Rec models for the Gowalla dataset because due to the large number of
items in this dataset, we were not able to train the model. 2 We report results for BERT4rec-16h separately
due to its larger training time.

MovieLens-20M Yelp Gowalla Booking.com

Model

Train

time

Recall

@10

NDCG

@10

Recall

@10

NDCG

@10

Recall

@10

NDCG

@10

Recall

@10

NDCG

@10

Popularity 1h 0.049†* 0.025†* 0.006† 0.003†* 0.008* 0.004* 0.097†* 0.043†*

MF-BPR 1h 0.079†* 0.040†* 0.019†* 0.009†* 0.029†* 0.018†* 0.449†* 0.279†*

SASRec-vanilla 1h 0.136†* 0.067†* 0.022†* 0.011†* 0.010* 0.005†* 0.463†* 0.270†*

BERT4rec-1h 1h 0.107†* 0.053†* 0.014†* 0.007†* N/A
1

N/A
1

0.479†* 0.288†*

SASRec-RSS-BCE 1h 0.189* 0.100* 0.027* 0.014* 0.009* 0.004* 0.518* 0.297*

SASRec-RSS-_Rank 1h 0.197† 0.107† 0.005† 0.003† 0.102† 0.075† 0.525† 0.312†
BERT4Rec-16h

2
16h 0.173†* 0.092†* 0.028* 0.014* N/A

1
N/A

1
0.565†* 0.354†*

Hence, we do not report BERT4Rec results for Gowalla and leave scaling BERT4Rec to datasets

with a large number of items for future research.

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 21

5.4 Data Splitting and Evaluation Measures
Following many existing publications [20, 50, 51] we evaluate our method using a Leave-One-Out

strategy. Specifically, for each user from we hold out the final interaction as the test set, which we

use to report metrics. We also construct a validation set using the same Leave-One-Out strategy,

using the second last interaction for a group of 1024 users as validation. We set the number of

training epochs to maximize NDCG@10 on the validation sets. For training, we use all interactions

except those included in the test and validation sets.

We report two ranking evaluationmeasures: Recall
4
and Normalized Discounted Cumulative Gain

(NDCG). For both metrics, we apply a rank cutoff of 10. To measure the significance of performance

differences, we apply the paired t-test, and apply Bonferroni multiple testing correction, following

recommended practices in IR [12]. Following the recent guidance for the evaluation of recommender

systems [14], our evaluation unit is a user (i.e. we measure statistical significance with respect to

per-user results), and we use a significance level (or 𝑝𝑣𝑎𝑙𝑢𝑒) of 0.05.

Until recently, for efficiency reasons, most of the sequential recommendations papers reported

sampled metrics - i.e. they sampled a small proportion of negative items and used only these items

and the positive item when calculating evaluation measures. However, recent work by Krichene &

Rendle [24] as well as Cañamares & Castells [5] both showed that using sampled metrics frequently

leads to incorrect performance estimates and the relative order of evaluated models can change.

Hence in our experiments, we use full unsampled metrics: we rank all possible items in the catalog

and calculate metrics on this full ranking
5
.

6 RESULTS
We now analyse our experimental results for each of the four research questions stated in Section 5.1.

6.1 RQ1. The benefit of Recency Sampling
To address our first research question, we compare our experimental architectures (GRU4Rec,

Caser, SASRec) trained with either sequence continuation or RSS objectives. Table 2 reports the

effectiveness results, in terms of Recall@10 and NDCG@10, of the three architectures, trained with

both sequence continuation (denoted Cont) or RSS, and applying two different loss functions (Binary

Cross-Entropy – BCE – and _Rank) on four datasets (MovieLens-20M, Yelp, Gowalla, Booking.com).

Statistically significant differences – according to a paired t-test with Bonferroni multiple testing

correction (𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05) – among the training objectives for a given architecture, model, and

loss function are shown. On first inspection of Table 2, we note that the general magnitudes of

the reported effectiveness results are smaller than those reported in [50] - indeed, as stated in

Section 5.4, in contrast to [50], we follow recent advice [5, 24] to avoid sampled metrics, instead

preferring the more accurate unsampled metrics. The magnitudes of effectiveness reported for

MovieLens-20M are in line with those reported by [9] (e.g. a Recall@10 of 0.137 for SASRec-vanilla

is reported in [9] when also using a Leave-One-Out evaluation scheme and unsampled metrics).

We now turn to the comparison of training objectives. In particular, we note from the table that,

on the MovieLens-20M, Yelp, and Gowalla datasets, RSS results in improved NDCG@10 in 17 out

of 18 cases – 15 of which are by a statistically significant margin – and also improved Recall@10

in 16 out of 18 cases (15 statistically significant). For instance, on MovieLens-20M, SASRec is the

strongest performing architecture (in line with previous findings [20, 50]); however, applying

RSS significantly improves its Recall@10, both when using BCE (0.153→0.188) and when using

4
In the context of sequential recommender systems, Recall corresponds to chances of correctly retrieving a single relevant

item, and therefore many publications [20, 50, 59], call it Hit Ratio (HR). We prefer the more conventional Recall name for

this metric.
5
Indeed, we also found that conclusions could change using sampled metrics.

22 Aleksandr Petrov and Craig Macdonald

_Rank (0.105→0.196). Similarly and interestingly, SASRec with the RSS objective and _Rank loss

outperformed other models by a very large margin on the Gowalla dataset (e.g. Recall@10 0.102

vs. 0.071 when using sequence continuation). We postulate that the large number of items in the

dataset makes the training task very hard, and only the combination of RSS with _Rank allows

training the model with reasonable quality in the given time limit. The only instance when RSS is

worse than Continuation on these three datasets is for the GRU4Rec architecture on Gowalla with

BCE loss. This is also likely to be explained by the hardness of the task on this dataset due to a

large number of items. This is also reinforced by the hardness of training GRU4Rec architecture in

general (see also Section 6.3 and Figure 8).

We also note the three datasets where RSS performs well (MovieLens-20M, Yelp, and Gowalla)

are very different in terms of sequence length (see Table 1), varying from median length eight on

Gowalla to median length 68 on MovieLens-20M. This means that RSS can be effective with both

short and long sequences. On the other hand, for the Booking.com dataset, we observe that in 3 out

of 6 cases, RSS is less effective. This is not an unexpected result: as we argued in Section 5.2, this

dataset violates the underlying assumption encoded in Principle P1. Indeed, due to the geographical

distance between items in this multi-city trip dataset, items cannot be considered out-of-order, and

hence RSS does not improve the stronger models on this dataset.

Overall, in response to RQ1, we conclude that Recency-based Sampling of Sequences improves

the training of models if the items earlier in the user sequence can be treated as positives (properties

exhibited by the MovieLens-20M and Gowalla datasets).

6.2 RQ2. Comparison of Different Loss Functions
Next, we address the choice of the loss function, as per RQ1. We again turn to Table 2, but make

comparisons of the upper vs. lower performances in each group. For instance, for RSS, we observe

that applying the listwise _Rank loss function on the GRU4Rec architecture on MovieLens-20M

dataset results in a significant increase (0.035→0.154), as denoted by the † symbol. Indeed, across

all of Table 2, we observe that when used with RSS training task, _Rank improves NDCG@10 in

8 cases out of 12 (all 8 significantly) as well as Recall@10 in 8 cases out of 12 (8 significantly). In

contrast, _Rank only improves over BCE in 7 out of 24 cases for the sequence continuation training

objective (all by a significant margin). Overall, and in answer to RQ2, we find that _Rank usually

improves (except Yelp) the effectiveness of our proposed RSS training objective, while it does not

offer the same level of improvement for sequence continuation. We explain this finding as follows:

in sequence continuation, there is only one relevant item per sequence, and hence the benefit of a

listwise loss function is limited. In contrast, RSS selects multiple relevant items for each sequence,

and in this case, a listwise loss function can benefit in training the model to rank these items nearer

the top of the ranking. However, as _Rank did not improve RSS results on Yelp, we can not say that

the improvements are consistent, and the question of the loss function selection requires further

research.

6.3 RQ3. Impact of Position Recency Importance in the Exponential Importance
Function

This research question is concerned with the importance of sampling recent items in training se-

quences. To address this question, we train every experimental architecturewith the best-performing

loss from Table 2 on the MovieLens-20M dataset. We vary the recency importance parameter 𝛼 in

the exponential recency importance function (Equation (8)), to investigate its effect on effectiveness.

In particular, as 𝛼 → 0, the training task turns to sequence continuation, while with a large 𝛼 the

training task loses its sequential nature and becomes similar to matrix factorization.

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 23

α

(a) Effect on Recall

α

(b) Effect on NDCG

Fig. 8. SASRec, GRU4rec and Caser performance on the MovieLens-20M dataset, when trained with Recency-
based Sampling of Sequences with the exponential importance function 𝑓𝑒𝑥𝑝 (𝑘) = 𝛼 (𝑛−𝑘) , where 𝑛 is the
sequence length. Position recency importance parameter 𝛼 is plotted on the 𝑥-axis. When 𝛼 = 0, the training
objective turns into sequence continuation, and when 𝛼 = 1, the task becomes similar to item masking or
matrix reconstruction. The training time of all models is fixed at 1 hour.

2 0 2 4 6

0.10

0.15

0.20

0.25

0.30

R
ec

al
l@

10

SASRec-RSS-Power
MF-BPR Level
Best exponential importance

(a) Effect on Recall

2 0 2 4 6

0.04

0.06

0.08

0.10

0.12

0.14

0.16

N
D

C
G

@
10

SASRec-RSS-Power
MF-BPR Level
Best exponential importance

(b) Effect on NDCG

Fig. 9. SASRec-RSS performance when trained on MovieLens-20M dataset with power recency importance

function: 𝑓𝑝𝑜𝑤 (𝑘) =
(
𝑘+1
𝑛+1

)𝑒𝛽
and variable parameter 𝛽 .

Figure 8 summarizes the impact of 𝛼 on the model effectiveness. We also present the performance

of the MF-BPR [48] baseline. From the figures, we observe that when we set 𝛼 close to zero, the

results match those we report in Table 2 for the sequence continuation task, illustrating that under

small 𝛼 , RSS only samples the last element in each sequence. Similarly, for 𝛼 = 1we observe that the

effectiveness of all models drops almost to that of the matrix factorization baseline, as target items

are simply sampled from sequences without any ordering preference. Note, that in this case, we

sample target items uniformly, which is similar to BERT4Rec’s item masking. However, BERT4Rec

also has access to the positions of masked items (through the position embeddings), whereas in

the case of 𝛼 = 1 the positional information is completely lost and the model can not learn to

predict the next item and predicts some item instead. Overall, the general trends visible in Figure 8

suggest that RSS allows to train effective models across a wide range of the 𝛼 parameter values:

24 Aleksandr Petrov and Craig Macdonald

0 10 20 30 40 50
Position k

0.00

0.05

0.10

0.15

0.20

S
am

pl
in

g
P

ro
ba

bi
lit

y
p(

k) Exponential Importance (=0.8)
Power Importance (=2.25)

Fig. 10. Optimal sampling probability distributions for SASRec-RSS model generated by exponential

(𝑓𝑒𝑥𝑝 (𝑘) = 0.8𝑛−𝑘) and power (𝑓𝑝𝑜𝑤 (𝑘) =
(
𝑘+1
𝑛+1

)𝑒2.25
) recency importance functions. The plotted curves

are mostly superimposed.

for Caser and SASRec, large improvements over sequence continuation training are achieved for

0.2 ≤ 𝛼 ≤ 0.9; for GRU4Rec, strong performance is obtained 0.6 ≤ 𝛼 ≤ 0.9. Indeed, for small 𝛼 , the

number of positive items is limited, and hence the lambda gradients in _Rank are also small. This

provides little evidence to the GRUs in GRU4Rec, which therefore struggles with the vanishing

gradient problem (a problem faced by many such recurrent architectures).

Overall, in response to RQ3, we find that the higher values of the recency importance parameter

𝛼 ≤ 0.9 results in effective performance for all three model architectures.

6.4 RQ4. Recency Importance Function Shape
Wenow analyse the effects of replacing the exponential importance function (defined in Equation (8))

with the power importance (defined in Equation (10)).

To understand whether or not this different family of distributions may improve overall recom-

mendations quality compared to exponential recency importance, we train a SASRec-RSS model on

MovieLens-20M dataset with Binary Cross-Entropy loss and power importance while varying the

power hyperparameter 𝛽 in the range from −2 to 6. Figure 9 shows the effect of this variation on

the model performance in terms of NDCG and Recall metrics.

From the figure we note that the model achieves the best performance when 𝛽 = 2.25. Interest-

ingly, the best achieved Recall@1 of 0.2008 and NDCG@10 of 0.1110 are similar to the best results

achieved by the model with exponential importance: it obtains Recall@10 of 0.2070 and NDCG@10

of 0.1171.

These similarities are not surprising when we look to Figure 10, which plots the sampling

probability distributions corresponding to the optimal power recency function (with 𝛽 = 2.25) and

optimal exponential recency function (with 𝛼 = 0.8). As we can see from the figure, the shapes of

the distributions are almost identical, which leads to similar model performance.

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 25

Overall, this analysis suggests that both power and exponential functions are viable alternatives,

and if they are tuned properly they are likely to produce similar sampling probability distributions.

However, we find that the exponential importance function is easier to tune, as it exhibits high per-

formance in a wide range of hyperparameter values. Overall, we recommend using the exponential

function as a default importance function in RSS.

6.5 RQ5. Comparison with Baselines
To address our fifth research question concerning the comparison with baseline models, we compare

the best-performing RSS-enhancedmodel, SASRec-RSS, using both _Rank and Binary Cross-Entropy

losses, with the 5 baseline models described in Section 5.3. Table 3 summarizes the results of this

comparison, reporting effectivenessmetrics as well as training time duration. In particular, recall that

all models are trained for less than 1 hour, except for BERT4Rec-16h (a full training of BERT4Rec).

Moreover, we did not train BERT4Rec on the Gowalla dataset, because the preprocessing code for

BERT4Rec does not scale to its large number of items (indeed, Gowalla has more items than users,

see Table 1). Indeed, the preprocessing code to generate masked training sequences requires 14GB

of storage for MovieLens-20M, but 548GB for Gowalla.

On analyzing Table 3, we observe that SASRec-RSS (_Rank or BCE) achieves the most effective

performance on all four datasets among the time-limited recommendation models. For instance, on

the MovieLens-20M dataset, compared to the original formulation of SASRec (denoted SASRec-

vanilla), the RSS adaptation significantly improves NDCG@10 (by the margin of 60%) for the same

training duration. Moreover, compared to the 16 hour training of BERT4Rec, SASRec-RSS exhibits

16% higher NDCG@10 (a significant improvement), despite needing only 6% of the training time

(16h→ 1h). For Booking.com, where RSS was less effective, SASRec-RSS with _Rank objective

obtains the NDCG@10 12% less than that obtained by the expensive BERT4Rec-16h model, and

the Recall that is 7% less. Interestingly, on the Yelp dataset, the _Rank version of SASRec is not

effective (same performance as popularity baseline), but the BCE version of the model significantly

outperforms all other models in the main group and achieves performance on par with BERT4Rec-

16h. Furthermore, we see that in all cases where we able to train BERT4Rec, under limited training

time, BERT4Rec underperforms compared to the SASRec-RSS (_Rank or BCE version).

Overall, in answer to RQ5, we find that SASRec-RSS can achieve significantly higher effectiveness

than the state-of-the-art SASRec and BERT4Rec approaches when trained for a comparable time.

Furthermore, we can achieve performances exceeding or very close to a fully-trained BERT4Rec, but

with much less training time. This highlights the importance of an appropriate training objective

in general and the benefits of our proposed RSS training objective in particular.

6.6 RQ6. Effect on Positional Embeddings
To better understand the impact of RSS on the resulting learned models, we analyse the similarities

between the positional embeddings learned by SASRec when trained with both the shifted sequence

training objective (SASRec-vanilla) and RSS. We compute the cosine similarity matrix 𝑆 as defined

by Equation (16) between the embeddings of each pair of positions and then use these matrices to

validate desirable properties of positional embeddings, as described in Section 4.4.

The heatmaps shown in Figure 11 (left) graphically visualize these similarity matrices for all four

experimental datasets. Darker color on the figure corresponds to the higher similarity between

positions, whereas lighter color corresponds to lower similarity. Figure 11 (right) also shows the

distributions of sequence lengths for these datasets, as these distributions help to explain some of

the properties of the matrices: For example, in Figure 11e we see that for the Gowalla dataset, there

are artifact lines appearing at position 26. As we can see from the corresponding sequence length

distribution (Figure 11f), this corresponds to a sudden drop in the sequence length distribution in

26 Aleksandr Petrov and Craig Macdonald

0 4 8 12 16 20 24 28 32 36 40 44 48

0
4

8
12

16
20

24
28

32
36

40
44

48

SASRec-vanilla

0 4 8 12 16 20 24 28 32 36 40 44 48

SASRec-RSS

0.0

0.2

0.4

0.6

0.8

1.0

(a) MovieLens-20M position similarities (b) MovieLens-20M sequence lengths

0 4 8 12 16 20 24 28 32 36 40 44 48

0
4

8
12

16
20

24
28

32
36

40
44

48

SASRec-vanilla

0 4 8 12 16 20 24 28 32 36 40 44 48

SASRec-RSS

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) Yelp (d) Yelp sequence lengths

0 4 8 12 16 20 24 28 32 36 40 44 48

0
4

8
12

16
20

24
28

32
36

40
44

48

SASRec-vanilla

0 4 8 12 16 20 24 28 32 36 40 44 48

SASRec-RSS

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Gowalla (f) Gowalla sequence lengths

0 4 8 12 16 20 24 28 32 36 40 44 48

0
4

8
12

16
20

24
28

32
36

40
44

48

SASRec-vanilla

0 4 8 12 16 20 24 28 32 36 40 44 48

SASRec-RSS

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(g) Booking.com (h) Booking.com sequence lengths

Fig. 11. Similarity matrices of positional embeddings

the dataset. Indeed, for the Gowalla dataset, only 52% of sequences are 26 items or longer, a drop

from 64% for the sequences of length ≥ 25 - this important change in distribution is reflected in the

learned embeddings. Similarly, for the Booking.com dataset, both SASRec-vanilla and SASRec-RSS

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 27

mostly contain noise for early positions, with little correspondence between nearby positions. This

can be explained in that the Booking.com dataset has only a very small number of sequences longer

than 15 items, as can be seen from the corresponding sequence distribution plot.

The overall general trends that can be observed in Figure 11 are as expected, in that all matrices

are symmetric with respect to the main diagonal (because of the symmetry of cosine similarity).

We also can see from the figures that, in all cases, the similarity is high close to the main diagonal

and lower further away from the diagonal. This means, that both SASRec-Vanilla and SASRec-RSS

successfully learned our desirable Properties Pr.1 and Pr.2 (close positions have similar positional

embeddings; embeddings of distant positions are less similar) – as defined in Section 4.4.

We now look to the symmetry with respect to the secondary diagonal, which as we argue

in Section 4.4 is an undesirable property, as it violates Property Pr.3 (earlier positions are more

similar to each other than the recent ones). As we expect, for each dataset except Booking.com, in

SASRec-vanilla the similarity between a pair of positional embeddings is mostly defined by the

distance between their respective positions (see also Equation (23)). As we showed in Section 4.4,

this makes the matrix symmetric with respect to the secondary diagonal; therefore, SASRec-vanilla

violates Property Pr.3.

In contrast, the similarity matrices for SASRec trained with the RSS training objective are not

symmetric with respect to the secondary diagonal. Instead, for each dataset except Booking.com,

we observe two groups of positions: a large group of earlier positions and a small group of recent

positions. For example, on the MovieLens-20M dataset, we can say that positions 0..40 comprise

the earlier group whereas positions 41..49 comprise the recent group. Positions within each group

tend to be similar to each other and different compared to the positions from the other group. In

practice this means that in contrast to SASRec-vanilla, the similarity matrices of SASRec-RSS do

not violate Property Pr.3. This confirms that RSS helps models to make better distinction between

recent and earlier positions, as we hypothesized in Section 4.4.

Furthermore, from Figure 11g we can also see that position similarity matrices for the Book-

ing.com dataset do not look like other similarity matrices. For example, similarity matrices for

SASRec-vanilla trained on this dataset are not symmetric with respect to secondary diagonal. This

can be explained by the shorter sequence lengths in the Booking.com dataset. As we can see from

the figure, there are virtually no sequences with more than 20 interactions in this dataset, which

differs from the other datasets in our experiments (even for the Yelp dataset, where the average

sequence length is relatively short, approximately 4% of all sequences have at least 50 interactions).

According to our applied padding scheme (see Section 5.3.1 and Figure 7), this means that positions

on the left side of the sequence will be padded and ignored by the model. As a result, the positional

embeddings for earlier positions remain mostly unchanged after random initialization in the model,

which explains the differences in similarity matrices with the other datasets.

In summary, we conclude that while both SASRec-vanilla and SASRec-RSS models success-

fully learn Properties Pr.1 and Pr.2, however, only an RSS-enhanced model successfully learned

Property Pr.3 on three out of four datasets.

7 CONCLUSIONS
In this work, we identified two limitations in existing training objectives for sequential recommender

models. To address these two limitations, we proposed a refined training objective, called Recency-

based Sampling of Sequences (RSS). Through experimentation on four datasets, we found that

this relatively simple change in the training objective can bring significant improvements in the

overall effectiveness of state-of-the-art sequential recommendation models, such as SASRec and

Caser. Furthermore, we showed that the _Rank loss function brought further effectiveness benefits

to training under RSS not otherwise observed under a more traditional sequence continuation

28 Aleksandr Petrov and Craig Macdonald

task. Indeed, on the large MovieLens-20M dataset, we observed that RSS applied to the SASRec

model can result in an 60% improvement in NDCG over the vanilla SASRec model (Table 3), and

a 16% improvement over a fully-trained BERT4Rec model, despite taking 93% less training time

than BERT4Rec (see also Figure 1). Moreover, on the Yelp and Gowalla datasets, which both have

geographic and strong sequential characteristics, RSS applied to SASRec brought significant benefits

in both NDCG and Recall metrics (Table 3). We further experimented with two families of recency

importance functions (power importance and exponential importance) and found that when their

parameters are tuned properly, these functions are likely to produce similar sampling probability

distributions and consequently achieve similar performance (this is shown in Figures 9 and 10). We

also analyzed the effect of RSS on the learned positional embeddings of the SASRec model and have

shown that in contrast to the original version of SASRec, the RSS-enhanced version successfully

learns to distinguish recent and earlier positions (see also Figure 11). Finally, while we did not apply

RSS to BERT4Rec due to its usage of the item masking training objective, which is harder to adapt

to RSS however, we believe that BERT4Rec could be adapted in future work to benefit from RSS.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A system for large-scale machine learning. In Proc. USENIX.
265–283.

[2] Mehrnaz Amjadi, Seyed Danial Mohseni Taheri, and Theja Tulabandhula. 2021. KATRec: Knowledge aware attentive

sequential recommendations. In Proc. ICDS. 305–320.
[3] Shuqing Bian, Wayne Xin Zhao, Kun Zhou, Jing Cai, Yancheng He, Cunxiang Yin, and Ji-Rong Wen. 2021. Contrastive

Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation. In Proc. CIKM. 3737–3746.

[4] Christopher JC Burges. 2010. From RankNet to LambdaRank to LambdaMART: An overview. Learning 11, 23-581

(2010), 81.

[5] Rocío Cañamares and Pablo Castells. 2020. On target item sampling in offline recommender system evaluation. In

Proc. RecSys. 259–268.
[6] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview. Proceedings of Machine Learning

Research (2011), 1–24.

[7] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility: user movement in location-based

social networks. In Proc. KDD. 1082–1090.
[8] Sung Min Cho, Eunhyeok Park, and Sungjoo Yoo. 2020. MEANTIME: Mixture of attention mechanisms with multi-

temporal embeddings for sequential recommendation. In Proc. RecSys. 515–520.
[9] Alexander Dallmann, Daniel Zoller, and Andreas Hotho. 2021. A Case Study on Sampling Strategies for Evaluating

Neural Sequential Item Recommendation Models. In Proc. RecSys. 505–514.
[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proc. NAACL-HLT. 4171–4186.
[11] Elisabeth Fischer, Daniel Zoller, Alexander Dallmann, and Andreas Hotho. 2020. Integrating keywords into BERT4Rec

for sequential recommendation. In German Conference on Artificial Intelligence (Künstliche Intelligenz). 275–282.
[12] Norbert Fuhr. 2021. Proof by experimentation? Towards better IR research. In ACM SIGIR Forum, Vol. 54. 1–4.

[13] Dmitri Goldenberg and Pavel Levin. 2021. Booking.com Multi-Destination Trips Dataset. In Proc. SIGIR. 2457–2462.
[14] Asela Gunawardana, Guy Shani, and Sivan Yogev. 2022. Evaluating Recommender Systems. In Recommender Systems

Handbook, Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). Springer US, New York, NY, 547–601.

[15] F Maxwell Harper and Joseph A Konstan. 2015. The MovieLens datasets: History and context. ACM Transactions on
Interactive Intelligent Systems (TIIS) 5, 4 (2015), 1–19.

[16] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based

recommendations. In Proc. CIKM. 843–852.

[17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-based Recommendations

with Recurrent Neural Networks. In Proc. ICLR.
[18] Ziniu Hu, Yang Wang, Qu Peng, and Hang Li. 2019. Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank

Algorithm. In Proc. WWWW. 2830–2836.

[19] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang. 2018. Improving sequential recom-

mendation with knowledge-enhanced memory networks. In Proc. SIGIR. 505–514.
[20] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In Proc. ICDM. 197–206.

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 29

[21] Guolin Ke, Qi Meng, Thomas Finley, TaifengWang,Wei Chen,WeidongMa, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM:

A highly efficient gradient boosting decision tree. In Proc. NeurIPS. 3146–3154.
[22] Tobias Koopmann, Konstantin Kobs, Konstantin Herud, and Andreas Hotho. 2021. CoBERT: Scientific Collaboration

Prediction via Sequential Recommendation. In Proc. ICDMW. 45–54.

[23] Yehuda Koren, Steffen Rendle, and Robert Bell. 2022. Advances in Collaborative Filtering. In Recommender Systems
Handbook, Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). New York, NY, 91–142.

[24] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recommendation. In Proc. KDD. 1748–1757.
[25] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recommendations. In Proc. Workshop on New

Trends on Content-Based Recommender @ RecSys (CEUR Workshop Proc., Vol. 1448). 14–21.
[26] Hojoon Lee, DongyoonHwang, SunghwanHong, ChangyeonKim, SeungryongKim, and Jaegul Choo. 2021. MOI-Mixer:

Improving MLP-Mixer with Multi Order Interactions in Sequential Recommendation. arXiv preprint arXiv:2108.07505
(2021).

[27] Haoyang Li, Xin Wang, Ziwei Zhang, Jianxin Ma, Peng Cui, and Wenwu Zhu. 2021. Intention-aware sequential

recommendation with structured intent transition. IEEE Transactions on Knowledge and Data Engineering (TKDE)
(2021).

[28] Roger Zhe Li, Julián Urbano, and Alan Hanjalic. 2021. New Insights into Metric Optimization for Ranking-based

Recommendation. In Proc. SIGIR. 932–941.
[29] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and Trends in Information Retrieval 3, 3

(2009), 225–331.

[30] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S. Yu. 2021. Augmenting Sequential Recommendation with Pseudo-Prior

Items via Reversely Pre-training Transformer. In Proc. SIGIR. 1608–1612.
[31] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-Based Recommendation Algorithms. User Modeling

and User-Adapted Interaction 28, 4-5 (Dec. 2018), 331–390.

[32] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for sequential recommendation. In Proc. KDD.
825–833.

[33] Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu. 2020. Disentangled self-supervision

in sequential recommenders. In Proc. KDD. 483–491.
[34] Zaiqiao Meng, Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2021. Variational Bayesian representation

learning for grocery recommendation. Information Retrieval Journal 24 (10 2021), 1–23.
[35] Umaporn Padungkiatwattana, Thitiya Sae-Diae, Saranya Maneeroj, and Atsuhiro Takasu. 2022. ARERec: Attentive

Local Interaction Model for Sequential Recommendation. IEEE Access.
[36] Aleksandr Petrov and Craig Macdonald. 2022. Effective and Efficient Training for Sequential Recommendation Using

Recency Sampling. In 16th ACM Conference on Recommender Systems (RecSys 2022). arXiv:2207.02643 [cs]
[37] Aleksandr Petrov and Craig Macdonald. 2022. A Systematic Review and Replicability Study of BERT4Rec for Sequential

Recommendation. In Proc. RecSys.
[38] Aleksandr Petrov and Yuriy Makarov. 2021. Attention-based neural re-ranking approach for next city in trip recom-

mendations. In Proc. WSDM WebTour. 41–45.
[39] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, and Marc

Najork. 2021. Are Neural Rankers still Outperformed by Gradient Boosted Decision Trees?. In Proc. ICLR.
[40] Ruihong Qiu, Zi Huang, Tong Chen, and Hongzhi Yin. 2021. Exploiting Positional Information for Session-based

Recommendation. ACM Transactions on Information Systems (TOIS) 40, 2 (2021), 1–24.
[41] Ruihong Qiu, Zi Huang, Jingjing Li, and Hongzhi Yin. 2020. Exploiting cross-session information for session-based

recommendation with graph neural networks. ACM Transactions on Information Systems (TOIS) 38, 3 (2020), 1–23.
[42] Ruihong Qiu, Zi Huang, and Hongzhi Yin. 2021. Memory Augmented Multi-Instance Contrastive Predictive Coding

for Sequential Recommendation. CoRR abs/2109.00368 (2021).

[43] Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. 2022. Contrastive learning for representation degeneration

problem in sequential recommendation. In Proc. WSDM. 813–823.

[44] Ruihong Qiu, Hongzhi Yin, Zi Huang, and Tong Chen. 2020. GAG: Global attributed graph neural network for

streaming session-based recommendation. In Proc. SIGIR. 669–678.
[45] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-aware recommender systems. ACM

Computing Surveys (CSUR) 51, 4 (2018), 1–36.
[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models Are

Unsupervised Multitask Learners.

[47] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21, 140 (2020), 1–67.

https://arxiv.org/abs/2207.02643

30 Aleksandr Petrov and Craig Macdonald

[48] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In Proc. CUAI. 452–461.
[49] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized markov chains for

next-basket recommendation. In Proc. WWW. 811–820.

[50] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. 2019. BERT4Rec: Sequential

recommendation with bidirectional encoder representations from transformer. In Proc. CIKM. 1441–1450.

[51] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding.

In Proc. WSDM. 565–573.

[52] Lewis Tunstall, Leandro von Werra, and Thomas Wolf. 2022. Natural Language Processing with Transformers, Revised
Edition. "O’Reilly Media, Inc.".

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In Proc. NeurIPS. 5998–6008.
[54] Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Representing and recommending shopping

baskets with complementarity, compatibility and loyalty. In Proc. CIKM. 1133–1142.

[55] Chenyang Wang, Weizhi Ma, and Chong Chen. 2022. Sequential Recommendation with Multiple Contrast Signals.

ACM Transactions on Information Systems (TOIS) (2022).
[56] QitianWu, Chenxiao Yang, Shuodian Yu, Xiaofeng Gao, and Guihai Chen. 2021. Seq2Bubbles: Region-Based Embedding

Learning for User Behaviors in Sequential Recommenders. In Proc. CIKM. 2160–2169.

[57] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Bolin Ding, and Bin Cui. 2020. Contrastive Learning for

Sequential Recommendation. arXiv preprint arXiv:2010.14395 (2020).
[58] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan Zhang. 2016. LambdaFM: learning

optimal ranking with factorization machines using lambda surrogates. In Proc. CIKM. 227–236.

[59] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan He. 2019. A simple convolutional

generative network for next item recommendation. In Proc. WSDM. 582–590.

[60] Zhuo-Xin Zhan, Ming-Kai He, Wei-Ke Pan, and Zhong Ming. 2022. Transrec++: Translation-based sequential recom-

mendation with heterogeneous feedback. Frontiers of Computer Science 16, 2 (2022), 1–3.
[61] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. 2022. Dynamic graph neural networks for sequential

recommendation. IEEE Transactions on Knowledge and Data Engineering (TKDE) (2022).
[62] Pengyu Zhao, Tianxiao Shui, Yuanxing Zhang, Kecheng Xiao, and Kaigui Bian. 2021. Adversarial oracular seq2seq

learning for sequential recommendation. In Proc. ICJAI.
[63] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and Ji-Rong Wen.

2020. S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization. In Proc.
CIKM. 1893–1902.

[64] Andrew Zimdars, David Maxwell Chickering, and Christopher Meek. 2001. Using temporal data for making recom-

mendations. In Proc. UAI. 580–588.

A DETAILS OF _RANK IMPLEMENTATION
There are several available implementations of _Rank. Qin et al. [39] showed that the _Rank version

from the LightGBM [21] library significantly outperforms other available implementations in a

learning to rank task. We could not use LightGBM directly, as it implements a CPU version of the

gradient boosting trees method, and therefore is not compatible with neural tasks that are typically

trained on GPUs. Therefore, in our work, we use LightGBM as the reference implementation of

_Rank, and match its implementation, including modifications, not described in the original _Rank

paper [4].

On analysis of the LightGBM [21] source code, we find that compared to the original definition of

the loss function (Equation (14)), it includes two additional transformations that are not described

in the original _Rank paper [4]. These modifications are shown in Equations (24) and (25), below:

(1) LightGBM uses normalized Δ𝑁𝐷𝐶𝐺 based on the difference on item scores, as follows:

_̂𝑖 =
∑︁
𝑗∈𝐼

����Δ𝑁𝐷𝐶𝐺𝑖 𝑗

𝑠𝑖 − 𝑠 𝑗

���� −𝜎
1 + 𝑒𝜎 (𝑠𝑖−𝑠 𝑗)

(24)

RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling 31

(2) LightGBM normalizes the _-gradients of the predicted item scores across all items 𝐼 :

_𝑖 = _̂𝑖 ∗
log

2
(1 +∑𝑖∈𝐼 _̂𝑖)∑

𝑖∈𝐼 _̂𝑖
(25)

The justifications
6
for these changes provided by the LightGBM contributors describes them

as specific to tree-based models. The idea is that tree-based models are sensitive to the ranges

of labels, as they average values in the leaves, so that in skewed distributions, the output of the

tree-based models drifts towards larger values. These normalizations help to solve the skewed

distribution problem. We keep these normalizations in our implementation of _Rank, because we

want to match the best available reference implementation. We leave the question of whether or

not these normalizations are helpful for optimization of deep neural networks for future research,

however our initial experiments suggest that it may improve neural networks training as well.

As _Rank relies on _-gradients, instead of usual loss function gradients, we are not able to rely on

automatic gradients computation provided by TensorFlow. Instead, we implement it as a function

that returns a dummy value with custom gradients. We test that our implementation of _Rank

returns exactly same _-gradients as the C++ implementation from LightGBM
7
. However, compared

to the LightGBM version, our version uses vectorized computations, and therefore can effectively

make use of GPUs. Our implementation is available in our repository.
8
This implementation is not

specific to recommender systems and can be used with other applications, which require ranking

metrics optimization (e.g. for search results ranking.).

As can be seen from Equation (25), to compute each _𝑖 , _Rank requires access to the scores of

all items in the catalog. Indeed, calculating _𝑖 for a catalog of𝑚 items, where each application of

Equation (25) requires𝑚 operations, giving an overall time complexity of _Rank is, at least, 𝑂 (𝑚2).
Moreover, it also requires access to pre-computed NDCG scores (in order to compute Δ𝑁𝐷𝐶𝐺).
Calculating NDCG scores requires sorting the items, a procedure which costs𝑚 log(𝑚) operations.
Hence, the overall time complexity of _Rank for a single training sample is 𝑂 (𝑚2 +𝑚 log(𝑚)).
However, after a few training iterations, it is reasonable to expect that the model will be able

to rank all relevant items close to the top of the ranking. Assuming that 𝑘 is the rank of the

lowest-scored positive element, the contribution of the items ranked below 𝑘 into the _-gradients

is 0. Hence, following the LightGBM implementation, we use a truncated version of _Rank, where

we only use 𝑘 highest-scored items for computing _-gradients. This is an equivalent of applying

ranking cutoff at position 𝑘 when computing NDCG. In doing so, the computational complexity of

_Rank for a single training sample becomes 𝑂 (𝑘2 +𝑚 log(𝑘)).
Our initial experiments showed that setting truncation level 𝑘 at 4000 allowed us to train models

with _Rank in a reasonable time without effectiveness degradation for the datasets with a catalog

size of fewer than 2,000,000 items. Therefore, we use truncation level 4000 in all our experiments. We

leave more detailed research on the effect of the truncation level on model effectiveness/efficiency

trade-off to future research.

6
https://github.com/microsoft/LightGBM/pull/2331#issuecomment-523259298

7
https://github.com/microsoft/LightGBM/blob/master/src/objective/rank_objective.hpp

8
https://github.com/asash/bert4rec_repro/blob/main/losses/lambda_gamma_rank.py

https://github.com/microsoft/LightGBM/pull/2331#issuecomment-523259298
https://github.com/microsoft/LightGBM/blob/master/src/objective/rank_objective.hpp
https://github.com/asash/bert4rec_repro/blob/main/losses/lambda_gamma_rank.py

32 Aleksandr Petrov and Craig Macdonald

B ADDITIONAL INFORMATION ONMODEL TRAINING
Table 4 presents the number of training sequences and the number of full epochs for which we

trained each model. These numbers are defined by the 1-hour training time limit. We check the

time limit after every epoch and employ an early stopping mechanism - we always save the best

model according to validation data and stop training if the model does not improve for 100 epochs.

As can be seen from the table, model throughput is mostly defined by the model architecture. For

example, compared to SASRec, GRU4Rec has a much lower training throughput on all datasets

except Gowalla. On Gowalla, all models have relatively low training throughput, which is explained

by a large number of items in this dataset. RSS usually has negative (18/24 cases) or no effect (6/24

cases) on the total number of trained epochs. The negative effect is explained by a more complex

training sample construction procedure. _Rank has no effect in 10/24 cases, negative effect in 10/24

cases and small positive effect in 4/10 cases.

Table 4. The number of training sequences and full data passes (epochs) used for training. Training time is
limited by 1 hour. We check the time limit condition after a full epoch (this explains repeating numbers in
Table 4a)

(a) Number of training sequences

MovieLens-20M Yelp Gowalla Booking.com

Architecture Loss Cont RSS Cont RSS Cont RSS Cont RSS

GRU4Rec

BCE 1,149,992 1,043,016 6,603,668 6,029,436 1,292,520 1,464,856 1,125,968 1,125,968

_Rank 1,096,504 1,043,016 6,029,436 6,029,436 1,464,856 1,464,856 1,125,968 1,125,968

Caser

BCE 6,070,888 3,984,856 12,345,988 11,197,524 1,292,520 1,464,856 6,755,808 5,911,332

_Rank 4,947,640 3,449,976 12,345,988 11,197,524 1,464,856 1,464,856 5,911,332 5,348,348

SASRec

BCE 6,873,208 5,161,592 12,345,988 11,197,524 1,292,520 1,464,856 14,356,092 11,118,934

_Rank 6,926,696 4,305,784 12,345,988 11,197,524 1,464,856 1,464,856 10,978,188 9,007,744

(b) Number of epochs

MovieLens-20M Yelp Gowalla Booking.com

Architecture Loss Cont RSS Cont RSS Cont RSS Cont RSS

GRU4Rec

BCE 43 39 23 21 15 17 8 8

_Rank 41 39 21 21 17 17 8 8

Caser

BCE 227 149 43 39 15 17 48 42

_Rank 185 129 43 39 17 17 42 38

SASRec

BCE 257 193 43 39 15 17 102 79

_Rank 259 161 43 39 17 17 78 64

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Sequential Models
	2.2 Transformer Architecture and Positional Embeddings.

	3 Training Sequential Recommendation Models
	3.1 Generation of Training Samples
	3.2 Summary of Limitations

	4 RSS: Recency-based Sampling of Sequences
	4.1 The RSS Training Objective
	4.2 Recency Importance Functions
	4.3 Loss Functions for RSS
	4.4 RSS and Positional Embeddings in Transformer-based models.
	4.5 Summary

	5 Experiment Setup
	5.1 Research Questions
	5.2 Datasets
	5.3 Models
	5.4 Data Splitting and Evaluation Measures

	6 Results
	6.1 RQ1. The benefit of Recency Sampling
	6.2 RQ2. Comparison of Different Loss Functions
	6.3 RQ3. Impact of Position Recency Importance in the Exponential Importance Function
	6.4 RQ4. Recency Importance Function Shape
	6.5 RQ5. Comparison with Baselines
	6.6 RQ6. Effect on Positional Embeddings

	7 Conclusions
	References
	A details of Rank implementation
	B Additional information on model training

