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Abstract—With the current rapid development of Internet of
Things (IoT) technology and the widespread popularity of smart
home devices, wireless technology has made it possible for IoT
devices to integrate with each other in a complex system. Previous
works have proposed utilizing ontological descriptions, called Holons,
of IoT devices and subsystems to reason about the construction of
systems. The holonic description, defined by an ontology, includes
parameters, services, and properties of the IoT device. However,
these previous works assume that Holon descriptions of IoT
devices are already provided e.g., by vendors. This assumption
requires device vendors and system engineers to manually create
descriptions, which is time-consuming and error-prone given the
increasing number of IoT devices that are offered in the market.
This paper introduces a method for the automatic generation of
Holon descriptions of IoT devices. This method uses the brand
and model of a device and utilizes knowledge extraction in natural
language processing to automatically generate the ontological
description of the IoT device. The experimental results show that
the proposed method can generate descriptions with a precision of
96.72% and a recall of 87.53% in a practically acceptable time.

Index Terms—System composition, System of systems, Automatic
synthesis techniques, Architecture and design

I. INTRODUCTION

With the rapid development of IoT technology and the
mainstreaming of smart life as a means of creating efficient and
comfortable living environments, there has been a continuous
increase in the number of deployed IoT devices that share
physical spaces. As such, there is a growing need to allow smart
home devices to combine opportunistically to form Systems of
Systems (SoSs), which enables IoT devices to understand each
other in terms of services and properties. Such composition is a
form of collaborative work between systems to further improve
smart home environments in terms of functionality and resilience.

However, IoT vendors constantly produce devices using
diverging technology stacks [1]. For this purpose, previous studies
proposed the concept of a Holon [2], [3] as a self-descriptive
semantic representation of a system and its parameters, services,
and properties. As a result, IoT devices can exchange and compile
holonic descriptions based on the CoDAMOS ontology [4] to
understand each other. They can also reason for combining efforts
(i.e., composing with each other) if certain conditions are satisfied.
Other studies (e.g., [5]) have provided specialized architectures
that utilize ontological descriptions of systems to facilitate such
opportunistic compositions. This provides SoSs with self-aware
and self-adaptive capabilities, as they can utilize the descriptions
to reason about the evolution of the constituent systems and hence
the composite SoS. This allows systems to identify and utilize

functionalities offered by other systems, and to reason about
composition options based on their analysis. Consequently, SoSs
can dynamically adapt to changing conditions and effectively
collaborate with other systems to achieve their goals.

However, these studies are all based on the assumption that
the Holon descriptions of IoT devices are already provided. In
other words, such an approach requires developers to manually
generate Holon descriptions in advance, a process that consumes
time and human resources and is prone to errors [6].

This motivates us to develop a novel method to automatically
generate the Holon description of IoT devices with the aim
of improving development efficiency and accuracy. To do this,
we exploit device-related information that is readily available
on the Internet and extract pertinent information using Natural
Language Processing (NLP) techniques. We then use this
knowledge to form a holonic description for the device in
question in an automated and programmatic manner. This
description can then be used to support system discovery and
enable spontaneous inter-system composition.

In brief, we first obtain device-related information from the
Internet according to known IoT device brands and models.
Our method is based on the assumption that it is relatively
easy to accurately identify a device’s make and model by
merely monitoring its DNS network traffic, as reported in recent
research [7]. We then use NLP-based knowledge extraction
methods to acquire the necessary knowledge (such as device
features and capabilities), and use this to automatically generate
a Holon description using the Holon ontology structure.

We evaluate our method using 140 different IoT devices
from the end-user smart home market. Our approach is able
to accurately generate more than 90% of description contents
for 134 of these devices, and perfectly and completely generate
all description contents for 79 of them.

The main contributions of this study are as follows.

1) An extended Holon ontology structure, particularly for
smart home IoT devices, to supplement what has been
proposed in the literature (§III).

2) Automated Internet crawlers to obtain detailed
specification and capability information about a given
IoT device (§IV-A).

3) Methods to extract knowledge about a device from its
collected raw specifications (§IV-B).

4) Logic to adapt the collected knowledge and generate
the semantic description, i.e., Holon (§IV-C).



II. BACKGROUND AND RELATED WORK

The goal of composing disparate IoT devices into more
complex systems involves several research challenges. First,
it requires identifying IoT devices and what they do. Second,
the ability to extract knowledge about IoT system services is
required when a low level of information is available. Third,
assuming that the above information is acquired, there is a
need for means of composing systems at runtime depending on
the context. This section provides an overview of the relevant
studies in each of these research domains.

A. Identifying IoT Devices

Thompson et al. [7] introduced a method to identify IoT
devices by network data. They trained a neural network using
DNS traffic captured from the local network, and were able
to identify devices by fitting the model to the first second-worth
of DNS traffic after connection. In another study, Ren et al. [8]
explored the exposure of IoT device information on the internet
by conducting a multidimensional analysis of multiple devices.
They showed that the name and manufacturer of an IoT device
can be inferred from the owner of the IP address contacted by
the IoT device, as well as the type and activity of the device from
encrypted traffic patterns and cleartext protocol information.

These works allow us to obtain the brand and model of IoT
devices and use them as inputs for our task.

B. Knowledge Extraction in Unstructured Text

Rule-based knowledge extraction is efficient because it only
requires a set of rules to be defined and does not require a model
to be trained. Bhargavi et al. [9] extracted information from
resumes by searching predefined sequences in texts. Miwa et
al. [10] constructed a network based on bidirectional sequential
and tree-structured LSTM-RNNs, enabling the model to perform
both entity- and relation-extraction at the same time.1 However,
these methods have limitations in tasks that have flexible struc-
tures and need to extract more than just entities, such as actions.

To avoid restricted templates, Feng et al. [11] proposed a
deep reinforcement learning method to extract action sequences
from texts by labeling actions and their states as well as their
relationship and exclusivity. Sil et al. [12] proposed a structure
that extracts action and event semantics from texts while
identifying their pre- and post-conditions, thus understanding
the relations between actions and events. These state-of-the-art
methods achieve efficient action-relation extraction, but are only
applicable to declarative texts from the perspective of the object.
Text from other perspectives, such as users, causes confusion
and affects their efficacy.

Question-answering-based knowledge extraction treats knowl-
edge as the answer to a question in a given context. It only needs
to define questions and their answers in the context, and does not
depend on rules according to the format of knowledge. Hence,
it is more flexible in knowledge extraction tasks and can handle
the knowledge of various structures effectively. Based on the
BERT question-answering model, Zhang et al. [13] developed
a framework that performs both parameter candidate extraction
and parameter role classification, thereby reducing nested entities

1Entity-relationship extraction aims to extract triplets (e.g., <Entity1,
Relation, Entity2>) from texts.

being missed or incorrectly predicted in entity extraction.
Furthermore, Wang et al. [14] applied knowledge extraction in
the form of question-answering to the task of insurance clauses.

C. Opportunistic Composition of Systems

The concept of SoSs has been studied for over two decades
(cf. [15]); however, the challenge of composing an SoS from exist-
ing systems at runtime is a much more recent research field [16],
[17]. Holons were proposed to allow developers to focus on the
overall system behavior rather than on the internal details of the
system. Both Blair et al. [2] and Frey et al. [3] defined the concept
of Holon as an abstract distributed system that is a hierarchical
structure composed of various nodes and a representation of
their services. Holons can recursively encapsulate other holons
to form complex systems, or Systems of Systems (SoSs).

This semantic framework has been used to enable reasoning
about opportunistic composition in IoT systems [4]. It also
enables the writing of high-level application workflows to be
used to identify and realize compositions for making such
logic work in dynamic computing clusters [5] and smart home
environments [6], [18].

Self-adaptation is an intrinsic quality of SoSs owing to its
complex and opportunistic nature. Weyns et al. [19] discussed
the challenges of self-adaptation in three SoS structures. Gomes
et al. [20] analyzed existing mechanisms for the composition
of SoS using system mapping, providing a new perspective
for future research. Other studies have focused on improving
the system self-adaptation. Sabatucci et al. [21] proposed a
method that injects dynamic services and user requirements
into a system as targets, enabling a self-organizing approach
at runtime to compose and orchestrate services. Kit et al. [22]
put forward a component framework to deal with the dynamics
of Cyber-Physical Systems (CPS) that can deal with the
environment of the systems and its uncertainty.

III. DESIGN

In a smart home environment, composing IoT systems into a
more complex SoS involves a number of tasks: (1) identify the
brand and model of the device; (2) understand its specification
and capabilities in order to create a Holon description for
the device; (3) generate an abstract workflow to accomplish
high-level logic; (4) use the Holon descriptions to reason about
composing the corresponding IoT systems in order to accomplish
the workflow’s logic. This process is illustrated in Figure 1.

It is quite important to distinguish that the holonic approach
is a bottom-up approach that aims to describe, as opposed to
the numerous top-down architectures that pursue to prescribe,
e.g., ThingML [23], smartCityRA [24], and others.

Currently, step (2) is done manually at a significant cost
in terms of developer effort [6], [25] and error margins [6],
[18]. Our innovation in this study is a mechanism to automate
step (2) such that the Holon descriptions for IoT devices are
generated programmatically based on the brand and model of
the device, as identified by its network traffic profile.

As an overview, we achieve this by carrying out the following
process as described by Algorithm 1. In the remainder of this
section, we detail the design concepts and sub-processes that
constitute our proposal.
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Figure 1: An overview of the steps involved in composing
independent IoT systems into a SoS. Our work takes over the
task of a developer in step (2) and automates the generation
of Holon descriptions that will be used to compose a SoS.

A. Holon Ontology Structure

First, we need to define our Holon ontology structure, as it
forms the semantic basis for all subsequent work. To achieve
a good coverage of IoT device diversity and the potential for
collaborative work of SoSs, we aim to obtain as comprehensive
and generic ontology as possible. For example, the specifications
of the possible working environment and power supply of a
device should be fairly easily deduced, etc. Because this is
not covered by the original Holon ontology, we expanded it to
include additional semantics to cover more aspects of the devices.

The Holon ontology structure is divided into several categories,
and in each category, the parameters are related to this category.
Some categories are suitable for certain types of IoT devices
but not for others. The following is an introduction to the
categories, properties of each, and reasons for their inclusion.
General properties. These are the parameters that all IoT
devices have.

• id: Contains two parameters holon_id and holon_hash.
holon_id is a unique identifier for each Holon description
of an IoT device; holon_hash is synthesized from
combining the device’s brand and model, so devices of the
same brand and model will have the same holon_hash.

• number: The number describes the serial numbers, brand
name, manufacturer info, etc. of the IoT device as a product.

Algorithm 1 Automatic generation of the Holon description
for a device of known brand and model.
Input: <brand+model>in String format s
Output: Holon description in JSON d

1: Initialize d in the predefined format
2: Initialize the Holon class object c
3: Crawl from the Internet to get (para,func desc) by s
4: Adapt para to d, by which the units are unified and the

corresponding values are passed into c by Holon Parser
5: Use knowledge extraction in NLP to get service in the

form of the list of Service object from func desc
6: Pass service to c by Holon Parser
7: Generate Holon description d from c by Holon Creator

• specification: Describes the physical information of the
device, such as weight and dimensions. This is useful for
inferring device usage scenarios and contexts.

• environment: Describes the ideal environmental conditions
for device usage.

• power: Describes the power consumption, such as voltage,
wattage and frequency.

• supply: Describes the power supply requirements.
• control: Describes the control method of the device, which

is related to the input of the device, such as sound and touch.
• operation: Describes the operation mode, from which we

can know how much manpower the device requires. The
magnitude and method of human involvement are related
to the comfort level of using the device.

• connection: Describes the connection method such as
Wi-Fi, Bluetooth, LoRaWAN, etc.

• system: Describes the system parameters such as firmware
version and hardware instruments.

• compatibility: Describes the compatibility of this device
with other system software and hardware. Interfaces or
other devices that do not meet compatibility conditions
can be ignored directly.

• feature: Describes some functions and uses of the device.

Medium of input. This describes how the IoT device interacts
with its environment, from which we can deduce information
types and formats.

• camera: Includes the relevant parameters such as resolution,
field of view, etc.

• tv: Parameters such as port, network service, etc.
• sensor: Different types of sensors, such as temperature,

humidity, etc.
• speaker: Pertinent parameters such as type, woofers,

tweeters, etc.

Output form. These outline the form in which data is stored or
produced by the device. This relates to the following peripherals:
video, photo, screen, audio, light, and bulb.2

Services. These are the provided services.

• input: The information that can be obtained by or be
formed inside the device. This would obviously vary
according to the service.

• function: The function of the service, this is typically
expressed as an action.

• save: The location where the input is stored on the device.
• condition: The conditions for implementing the service.

The Holon ontology described above has a tree-like
hierarchical structure. Listing 1 shows the format we expect
for a Holon description.

Although a vast amount of information can be obtained from
the Internet, only a minute fraction can be used as accurate
parameters of the Holon ontology structure. In the current smart
home market, “high efficiency” and “high comfort” are two of
the most important consumer needs [26]; therefore, we include
all data around these two aspects in our scope.

2If the light bulb base becomes smart, it can also be considered an IoT
device system in its own right and can, thus, be combined with other devices.
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{
"id": {
"holon_id": "the string of holon_id",
"holon_hash": "the string of holon_hash"

},
"number": {
"brand": "TP-link",
"model_name": "P100",
"#": "..."

},
"specification": {
"width": 12,
"#": "..."

},
"#": "...",
"service": [
{
"input": "the input of the device",
"#": "..."

}
]

}

Listing 1: The expected format of a Holon description for an
IoT device, expressed in JSON.

B. Collection of Raw Data

Once a device is identified in terms of brand and model, as
implemented in recent research works [7], [8], we can obtain
related information by crawling the Internet.

1) Crawling: A crawler is a program that simulates web
browser activity by sending network requests for web resources
(e.g., pages) and receiving responses. Crawler technology
can replace the manual search for information on the web,
drastically reducing the required effort and time.

We used certain tools and methods to extract the content
we needed from HTML documents. The format of the HTML
structure is generally the same for websites on the same path
with the same domain name.

2) Webpage Selection: To design the crawling method,
we had two approaches: obtaining data from the device
manufacturer or from retailers that sell the devices. Each
approach has its advantages and disadvantages.
Obtaining data from official webpages. The first is to scrape
the official website of the device manufacturer. For example, for
a Xiaomi speaker, we used the product page dedicated to this
device under the mi.com domain name. The advantage of this
approach is that the information is more reliable. Therefore, this
approach is our initial design choice. However, the large variance
between the webpage structures of different manufacturers (and
even device types from a single manufacturer) meant incredibly
time- and energy-consuming efforts to implement crawlers for
a handful of device manufacturers. Even so, the coverage is
limited by the number of such tailored crawlers implemented.
Obtaining data from e-commerce websites. An alternative is
to obtain data from online retailers. The key advantage of this
method is that it only requires the design of a single crawler
corresponding to the chosen website, which is extremely time-
efficient and allows us to focus on perfecting this single crawler.
However, this approach has some disadvantages. For example,
the data may not be as comprehensive as official websites.
Moreover, information could be unavailable if the online retailer

does not offer the product for sale (i.e., no longer available due
to being superseded by a newer model, being out of stock, etc.).

Nevertheless, we decided to use this approach to obtain
data from online shopping retailers because of its superior
time efficiency. We are cognizant of the potential drawbacks
highlighted above and consider them during our evaluation (see
§Vfor details).

After careful inspection of different shopping websites (namely
Amazon, eBay, Shopee, and Taobao), we found that Amazon
covers a much wider range of IoT devices, especially in European
and US markets. We also found product information pages to be
more comprehensive and provide detailed product specifications.
Hence, we designed our crawler for Amazon product webpages.

C. Knowledge Extraction

The device information that is retrieved from Amazon is
divided into two parts:

• Parameter: These are key-value pairs presented in tabular for-
mat. They include various parameters and device properties.

• Function description: This contains several paragraphs of
unstructured text. Often, each paragraph is a description
of a function of the device.

For the parameters, we need to match the key-value pairs to
the designed Holon ontology structure. If the parameters are
described using units, we must specify such units. For the func-
tion description, we must extract the corresponding service from
each paragraph as unstructured text. NLP methods have been
used for this purpose. This process is now described in detail.
Knowledge to extract from unstructured text. Each paragraph
is in the form of declarative sentences that describe how
functions act and how they can be used from the perspective
of the device and/or user. We need to extract the following four
elements to populate the Holon description:

• input: The information that the IoT device can obtain from
the outside world, or form and possess within the device.
For example, motion is the input form of a motion-sensing
smart camera. This is generally a noun in the phrases
representing the action of obtaining or detecting. For
example in “detects weather” and “motion detection”,
“weather” and “motion” are the inputs, respectively.

• function: The function the device can implement is
generally a combination of a verb, a noun, and the
conditions (if any) required to implement the function, or a
phrase that expresses an action. For example, “control your
appliances from anywhere at any time” or “set schedules
for each of your appliances”.

• save: The place where the input is stored, such as an
SD card, the cloud, etc. This is usually a noun after a
verb that denotes storing or holding data. For example,
in the sentence “store video clips and photos in the cloud”,
‘cloud’ is the save parameter.

• condition: The condition that the device needs to meet
in order to implement a specific function. For instance,
in the sentence “the user needs to purchase the X service
to enjoy unlimited cloud storage”, the ‘X service’ is the
content we need to extract as the condition.

Key challenges. Since the intended audience of the text describ-
ing the device functions is the retail user, the narrative tends
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Function 
Description context question answer

splitting

Pre-trained model

Fine-tuned model

Evaluation set <context, question>

Fine-tuned model Set of start positions
and end positions

Training set Evaluation set

Training set <context, question, answer>

Evaluation set <context>

Set of
predicted
answers

Manual
labeling

Forming
datasets

Training

Predicting

Evaluation Evaluation set <answer> Comparison

Set of predicted answers

Figure 2: An overview of the process used to extract knowledge
from a device’s function description.

to be more natural, and the sentence structure is more flexible.
Consequently, it is unsuitable to use a set of static rules to extract
this information. Moreover, the knowledge structure that needs
to be extracted is flexible. For example, we must extract entities
to populate the input and save information elements. However,
for the function, we must extract phrases that represent actions.
Question-answering Using BERT. The Bidirectional Encoder
Representations from Transformers (BERT) model [27], de-
veloped by Google, is a transformer-based deep bidirectional
encoder representation that is pretrained using plain text corpora.
Word embedding is a real-value vector that encodes the meaning
of a word. Words closer to this vector space should have
similar meanings. Each word in the vocabulary is mapped into a
word embedding through the language model. For BERT, word
embeddings are related to both sequence and context. For context-
free models, such as word2vec, each word in the vocabulary
will have the same embedding. However, two identical words in
English can have different meanings, depending on the context.
For example, the word “bark” in “a loud bark” has a very different
meaning from that in “the tree’s bark”. Thus, BERT can extract
more features, express semantic understanding more accurately,
and achieve state-of-the-art performance on many natural
language understanding tasks, such as question-answering tasks.

In the field of NLP, the method of using pretrained models
and learning by fine-tuning models based on custom datasets
is widely used. BERT models have fine-tuning flexibility that
can be fine-tuned for different question-answering tasks to adapt
to different datasets and requirements, and they perform well
for tasks that require answers in the given context. Therefore,
we selected a question-answering model based on BERT and
used a custom dataset as a downstream task to fine-tune it to
meet the requirements of our knowledge-extraction task.
Basic Method. First, the text is manually labeled in the form
of <context, question, answer> to form a question and

answer dataset. Among them, the answer is a segment of the
corresponding context according to the question, so it is also
necessary to indicate its offset in the context. Then the dataset
is manually labeled to fine-tune the BERT pre-trained model.

Manual labeling is one of the most important tasks in our work,
because we need to find a large amount of data (i.e., information
about IoT device products) that fits our application scenarios
and manually label within the four knowledge points mentioned
above (i.e., input, function, save, and condition). However, the
knowledge points in paragraphs are not always necessarily
obvious, and thus cannot be immediately identified and marked
by us. Therefore, we also set up a set of labeling rules, typically
judging whether a word or phrase is the knowledge point we
need through the sentence structure. For example, the input
is generally a noun in the phrases representing obtaining or
receiving, like “obtain X”, “create X”, “detect X” and even “get
X” and “see X”, or some phrases like “X detection”, “X sensor”,
where ‘X’ is the input we need. And for the save parameter, it is
usually a noun after a verb which denotes storing or holding data.
Also, a function is often a structure of <verb, noun, conditions
(if any)>that implements a function, or just a phrase with verbs
as nouns that represents an action like “motion detection”.

Through these specifications, our manual annotation achieves
higher efficiency. The labeling process is roughly shown in
the following example: “Supports local video storage for up to
10 Outdoor, Indoor, Video Doorbell and Mini devices. Record
and store motion clips when you insert a USB flash drive (up
to 256 GB – sold separately) into the Blink Sync Module 2.”
where the pink, blue, yellow and green parts represent the input,
function, save and condition knowledge elements, respectively.

After the manual labeling, the resulting model can be used to
extract the information we need in our application scenario. For
model testing and application, we only need to input <context,
question> pairs to the model, while the predicted answers (in
the form of the start and end positions in the context) is the knowl-
edge we need to extract. This process is depicted in Figure 2.

D. Authoring Data
Finally, the extracted knowledge is parsed into the Holon class

and Holon description, which can be communicated to and used
by other Holons. The Holon description can be in JSON, XML,
or other formats that describe a Holon ontology. We chose the
JSON format because the hierarchical Holon ontology structure
can be clearly and intuitively displayed for results and evaluation
purposes. In addition, it is relatively convenient to convert the
Holon description from JSON to other formats if necessary.

IV. IMPLEMENTATION

So far, we have designed a process for the automatic
generation of a Holon description of IoT devices. This section
details our implementation of this design.

A. Crawling
We assume that the information is the brand and model of the

IoT device. Our task was to crawl the Amazon website to obtain
information about the device. For this purpose, we implemented
two layers of crawlers: an outer crawler and an inner crawler.
The outer crawler uses the brand and model to query the Amazon
homepage and retrieve all the related products. The inner crawler
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accesses the contents retrieved by its outer counterpart to collect
product specifications. This is analogous to a typical user access
pattern when a user uses a browser to obtain the required informa-
tion, although our process is more methodical and comprehensive.
The outer crawler. We set the outer crawler to issue HTTP
queries, specifying the product brand and model as query parame-
ters and used the POST method to access the URL. The returned
result is an Amazon retrieval page consisting of a list of search
results of links to pages describing related devices. Each link con-
tains an ASIN code, or the Amazon Standard Identification Num-
ber, which is a unique code given to each product on the Amazon
website. Essentially, the outer crawler returns a list of ASINs.
The inner crawler. The inner crawler parses the results
retrieved by the outer crawler and accesses the product page
that best matches the search query. Matching is performed
based on the device brand and model information as well as
page access on ASIN and basic URL splicing. The crawler then
examines the webpage content to obtain the raw product data.

B. Knowledge Extraction

From the raw data, we used question-answering-based
methods to extract the information needed for the Holon
ontology structure.
The selection of a pre-trained model. The answers to the
questions are used as the results to generate the service of
Holon description. We chose to fine-tune the pre-trained model
to generate a model suitable for the knowledge extraction
scenario in the function description section.

For the initial pre-trained question-answering model, we chose
RoBERTa-base-Squad23 by deepset. This is a pretrained model
using the Robustly optimized BERT approach (RoBERTa) [28]
which is also fine-tuned using the Stanford Question Answering
Dataset (SQuAD.0) [29]. RoBERTa uses dynamic masking and
other techniques to improve the downstream task performance
of BERT. SQuAD2 is an English reading comprehension dataset
consisting of a set of Wikipedia articles and questions about
these articles. Squad2 intentionally mixes answerable questions
with similar-looking unanswerable questions to test the ability
of NLP models to answer reading comprehension questions
and identify those that cannot be answered. Since the articles
in the SQuAD dataset involve a wide range of topics and
questions, and the RoBERTa-base-Squad2 model has achieved
good performance on this dataset, it can be inferred that the
model has a strong ability to recognize sentence structure and
grammar features in English, and can be used to fit in our
dataset and adapt to our application scenario.
Dataset for fine-tuning. We then set up a custom dataset
for fine-tuning and testing the model. The data format should
be <context, question, answer>, and we need to label
each element in the training dataset manually. The data is split
80%-20% between training and testing.

Since the function description consists of several paragraphs,
each of which usually describing one of the functions of the
IoT device, we divide the function description into paragraphs
and use each paragraph as a separate context.

Next is the setting for the questions. For any context, we need
to extract the required knowledge (if it exists in the paragraph)

3https://huggingface.co/deepset/roberta-base-squad2

to generate services. Given that the service includes input,
function, save and condition, it is necessary to generate questions
according to these four knowledge points respectively and find
the answers corresponding to the questions in the context.

We carried out a series of comparative analyses by listing
multiple questions corresponding to obtain each of the four
knowledge points. We used these questions in the dataset to
conduct a whole-set process of training and evaluating the
model, and wanted to know which set of questions eventually
performed better. We measured the performance in terms
of average accuracy, precision, recall, and F1 score (these
metrics will be introduced in detail in §V-B) for each question
corresponding to different knowledge points on the evaluation
set after model training. The results are summarized in Table I.
The performance of the different questions is, on the whole,
relatively similar. However, some stand out above others. These
are highlighted in bold font for each knowledge point.

Finally, we selected the set of questions that had the relatively
best performance on the evaluation set. These questions are
as follows:

• ‘What can be got?’
• ‘What is the action?’
• ‘Where is the input saved?’
• ‘What else is necessary?’

As long as the list of questions is defined, the answers to
them can be labeled in the context. For a paragraph as a context,
the corresponding answer and the offset are marked in the
context according to each question.

In terms of data collection, we choose to collect data
according to the type of smart home devices including cameras,
smart speakers, sensors (e.g., temperature, humidity, motion
sensors), smart TVs, smart bulbs, smart cookers, etc. As the
services of smart home devices vary according to their type,
collecting data by type helps to extract the features of the
answers of different types of devices, and also allows the
trained model to be used in a wider range of IoT devices.

C. Data Parsing and Holon Creation

Once all the required IoT device information is obtained,
it can be used in the creation of the Holon descriptions. We
defined the data structure of the Holon class and created two
units of logic: the Holon Parser and Holon Creator. The Holon
Parser generates Holon class objects from the information
that we obtained, whereas the Holon Creator uses Holon class
objects to construct Holon descriptions in JSON format. The
process is illustrated by an example in Figure 3.

1) Holon Parser: The Holon Parser implements three
functions, Collate, Adapt and Pass.
Collate information. This function collates the acquired informa-
tion and stores them in JSON format. The function first initializes
a blank Holon description in JSON format and then adapts it with
the data obtained by the crawler. The key name settings of the
product parameters on the Amazon website are relatively uniform,
but there are cases where the content of multiple keys is repeated.
For this, we set up a dictionary that ignores duplicate keys.
Adapt the Holon description. This function adapts the Holon
description in JSON format to the Holon class object, and
unifies the units of parameters. Since the data type of the
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Table I: The performance of questions in relation to each knowledge point.

Average Metrics
Knowledge Point Question Accuracy Precision Recall F1

input
“What can be obtained?” 40.56% 20.01% 22.58% 19.64%

“What is the input?” 40.86% 20.34% 23.72% 20.09%
“What can be got?” 43.45% 24.30% 28.28% 23.74%

function
“What is the function?” 49.14% 64.35% 69.38% 63.17%

“What is the action of the function?” 49.48% 64.08% 69.60% 63.35%
“What is the action?” 49.90% 65.25% 71.27% 64.39%

save
“Where is the input stored?” 37.38% 29.58% 37.03% 29.96%

“Where is the input preserved?” 43.96% 37.51% 37.78% 35.61%
“Where is the input saved?” 43.96% 37.39% 47.87% 38.99%

condition
“What is the condition?” 59.89% 66.48% 68.52% 65.28%
“What else is needed?” 62.01% 66.39% 69.12% 65.31%

“What else is necessary?” 64.08% 67.79% 68.99% 66.17%

Figure 3: An example showing the process of parsing the information of an IoT device (in this case, a motion-activated security
camera) into intermediate JSON and eventually a Python object.

parameter in the object of the Holon class is set according to
the value of the parameter, the Holon class has a suitable data
type (e.g., double) for the parameters that represent numerical
values (such as physical dimensions), so we need to extract
the numerical value and unit, respectively, then unify the unit.

Consider, for example:

"width": "12 inches"

We need to extract the value 12 and the unit “inches”,
respectively, through regular expressions. If we have unified all
the units of length into “inches”, the value “12” can be directly
passed into the Holon class. Otherwise, i.e., if the expressed
unit is inconsistent with the unified one, we need to convert
the numerical value to a value in the unified one and then pass
the converted value into the Holon class.

In order to achieve unit consistency, we have determined
unified units of various measurements, as listed in Table II. We
then defined a set of methods that are used to convert the units
of measurement.

In addition, considering the convenience of transferring values
between IoT devices, we also set some special unit conversions,
such as resolution conversions. For instance, “1080p” is a
video display format that represents a resolution of 1920×1080.
However, if only the value of “1080p” is stored in the Holon
structure, it is unable to make sure that other devices can use

Table II: Unified units for all measurement units involved in
our application scenario.

Measurement Unit
Weight Ounce

Temperature Degree Celsius
Wattage Watt
Voltage Volt

Frequency Hertz
Memory unit GB
Dimensions Inch

Luminous flux Lumen
Time Hour

the value “1080p” directly. Therefore, we use the method of
resolution conversion to convert such video display format into
a resolution of [Integer, Integer] format, which is convenient
for sharing parameters and cooperating between IoT devices.
Pass the list of services. This function passes the list of
services as a parameter to the Holon class. For the service part,
the function organizes the variable keys and the answers from
the question-answering model into services in JSON format
in turn. The function then generates a Service class object for
each service. Since an IoT device can have multiple services,
we define the services in the Holon class as a list, which stores
all Service class objects. Finally, the list of services will be
passed to the Holon class object as a parameter.
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Table III: The number of devices used in our experiments,
categorized by type.

# Device Category Number of Devices
1 Smart camera 28
2 Speaker 17
3 Smart plug 16
4 Smart bulb 15
5 TV 15
6 Sensor 11
7 Smart coffee maker 8
8 Smart cooker 8
9 Smart washer 7

10 Smart refrigerator 5
11 Smart vacuum cleaner 5
12 Smart toilet 5

2) Holon Creator: As above, we matched the device
information from the Internet to the Holon class object
according to the defined methods. We defined the Holon Creator
to convert the Holon class object into a Holon description in
JSON format, which is the final output.

Execution of the Holon Creator generates an ontological
description of the device.

V. EVALUATION

In this section, we describe an evaluation of the proposed
method. Specifically, we assess the performance of the crawlers,
fine-tuned question-answering model, and overall method to
gain insight into the performance of our automatic Holon
description generation method. All experiments were carried
out on a MacBook Pro with a 3.1 GHz Dual-Core Intel Core
i5 processor, 8GB of memory, and running macOS 10.15.7.

A. Evaluation of Crawler
We evaluated the percentage of correct webpages that the

crawler obtains for the input IoT device brand and model. We
find 241 of the popular smart home devices in Europe and the
US from the Internet, and define a list of string combinations
of <brand+model>, such as “TP-link P100”. We use these
241 strings as input to determine if the crawler can successfully
retrieve the relevant webpages of the corresponding devices.

Among these 241 brands and models, the crawler correctly
returned 226 pages, giving a correctness percentage of 93.36%.

The failure to retrieve the other 15 pages was due to the un-
availability of the corresponding devices on Amazon. In addition,
all other product pages were successfully and accurately returned.

B. Evaluation of Knowledge Extraction
1) Experiment Settings: We used a dataset containing 1272

entries of <context, question, answer> triples for 140
devices. The devices span 12 different smart home categories,
and are shown in Table III.

The selected Roberta-base-squad2 pretrained model was
fine-tuned and tested. In terms of parameter settings, the initial
learning rate was 5e-5, batch size was 32, and epoch was 20.

2) Results: We evaluated the performance of the fine-tuned
model in terms of the accuracy, precision, recall, and F1 score.
We abstract the predicted answer and real answer into two token
sequences. Accuracy represents the proportion of exact matches
between two sequences. Precision represents the percentage

Figure 4: The performance of the model in returning answers
to questions on the evaluation set.

of the number of shared tokens in the two sequences relative to
the number of tokens in the predicted answer sequence. Recall
represents the percentage of shared tokens in the two sequences
in the number of tokens in the real answer sequence. The F1
score is the harmonic mean of the precision and recall.

We measured the above metrics for each batch and report
them in Figure 4. We observed that the average value of the
metrics for each batch fluctuated, but most of the data points
were concentrated in the position of the average value in all
batches (as shown by the red line). In the process of multiple
training and evaluation, it was also found that the average recall
was higher than the average precision. This is because the
answers did not quite meet our expectations (i.e., did not fully
match our manual labeling strategy). For example, we omitted
insignificant adjectives or supplementary phrases during manual
labeling, but the model sometimes returns these adjectives or
phrases together with the required answer during evaluation,
which leads to a higher recall and lower precision.

Table IV summarizes the performance of the fine-tuned and
original pretrained models on the evaluation set. We observe
that the fine-tuned model has a significant improvement in
all metrics in the knowledge extraction task of the function
description over the original pre-trained model.

C. Overall Outcome Assessment

This section evaluates the performance of the overall method
of automatic generation of Holon descriptions. We compared the
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Table IV: Summary performance metrics of the original
pre-trained model against the fine-tuned one.

Metrics
Model Accuracy Precision Recall F1

Pre-trained 0.51% 0.17% 1.02% 0.29%
Fine-tuned 60.74% 61.87% 62.81% 59.92%

generated ontological descriptions with the expected descriptions
to gain insight into the accuracy of the method in obtaining
correct and relevant information.

We evaluated the performance of the method in generating
the Holon description in the parameter part and the function de-
scription part separately, and then combined them for the overall
performance. In this part of the evaluation, we used the metrics
of precision, recall, and f1. However, these metrics have different
meanings from those in §V-B; here, they evaluate the ability of
the method to retrieve the information. The following paragraphs
explain the meanings of the evaluation metrics in each part.
Parameter. For parameter extraction, precision represents the
percentage of the correct key-value pairs in all of the obtained
pairs, while recall represents the percentage of the key-value
pairs obtained in all the pairs that are supposed to be obtained
by a well-performing method.

The results of these metrics are summarized in Table V,
where we observe that the overall performance of our method
is relatively high and acceptable. There was a slight drop in
the precision and recall metrics. As for precision, it is because
some values do not conform to the regular expression format
and, as a result, cannot be obtained. Because the main audience
of the data on Amazon product pages are human shoppers,
it is generally acceptable for shoppers even if there is some
inconsistency between the format of the data and the regulations
for some specific keys. However, these data are not recognized
by strict, regular expression rules. Take the following key-value
pair from the table in one webpage as an example:

'product_dimensions': '1"L x 1"W'

Shoppers would understand that the value represents both length
and width as 1 inch. But the Holon Parser cannot ‘understand’
this value if the regular expression for product_dimension is
to get three doubles (i.e., <length, width, height>, which
is the format for all other devices) in the string of the value.

There were two reasons for the slight drop in the recall metric.
The first is the webpage structure. Some product pages have
different HTML structures from other products, so the data in
these webpages are not equally successfully accessed by the
crawlers. For example, the specifications of devices produced by
Amazon use a table structure that is different from that of devices
of other manufacturers; therefore, Amazon-produced devices will
have a lower recall value if the expression of crawlers does not
correctly match the table structure and fails to obtain data in it.

Second, owing to the variety of IoT devices, there will be
some key names that we did not expect for some devices, and
thus, we failed to properly match these key-value pairs onto our
Holon ontology structure. Continuing with the above example
of Amazon-produced devices, even if we define separate

Table V: The performance in obtaining data representing
parameter values.

Metrics (Average)
Precision Recall Macro F1

Parameter extraction 98.17% 94.81% 96.11%

Table VI: The performance in obtaining function description data.

Metrics (Average)
Precision Recall Macro F1

Function description extraction 94.64% 78.00% 84.19%

Table VII: The performance of obtaining data on the overall
Holon description.

Metrics (Average)
Precision Recall Macro F1

Overall Holon description] 96.72% 87.53% 91.90%

expressions for tables of these devices, the key names in these
tables are relatively flexible and changeable, whereas the key
names are generally uniform for other manufacturer devices.
Occasionally, there are some ‘unexpected keys’.
Function description. We measured the cosine similarity of
sentences4 to determine whether the answer to a question was suc-
cessfully retrieved. If the cosine similarity between the returned
answer and the real answer reaches a certain threshold (set to 0.5),
the model is considered to have correctly retrieved the answer.
The reason the cosine similarity is applied is to understand the
method’s ability to obtain information by evaluating the semantic
similarity between the returned answer and the real one.

The precision represents the percentage of returned answers
that are semantically similar to the actual answer to all the
returned answers, indicating how accurately the model returns
an answer to the question. The recall represents the percentage
of all the returned answers in the answers that should be
returned, indicating the effectiveness of the model in returning
an answer for the question.

The performance summary is presented in Table VI. A high
precision of 94.64% means that the answer is fairly accurate and
semantically similar to the real answer if one is returned by the
model. The slight drop in precision is because sometimes some
insignificant adjectives and phrases are returned together with the
expected answer (as discussed in §V-B), causing semantic similar-
ity to be lower than the threshold. The recall values indicate that
the model can only return answers for an average of 78.00% of
the questions that have answers. The reason no answer is returned
for a question is that the highest-scoring answer returned by the
model in the context is still far below the threshold. Combined
with the content in §V-B, the ability of our question-answering
model to recognize features still needs to be improved.
Overall Holon description. Finally, we combined the parameter
and function description parts and evaluated the performance
of the method to generate the overall Holon description.

4https://huggingface.co/tasks/sentence-similarity
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Figure 5: The precision-recall graph.

In this case, precision represents the proportion of the
obtained data (on the leaf node of the Holon structure) being
correct and relevant among all the data in the final Holon
description, and recall represents the proportion of the obtained
data among all the data that should be obtained. The results
are presented in Table VII.

The precision-recall curve based on the performance results of
the 140 devices is plotted in Figure 5. Since the method obtains
each piece of data described by Holon as order-independent,
the precision rate is initially kept at 1.0, but inaccurate data
(if any) emerge as data are gradually recalled to generate full
Holon descriptions. So the precision gradually decreases under
these circumstances.

Finally, the accuracy of the method in generating Holon
descriptions is evaluated to obtain an intuitive understanding
of the performance of the method. Of all the devices evaluated,
every device generated more than 80% of its Holon description
data. Across all 140 devices, 79 accurately generated all
Holon description data, accounting for 56.43% of all devices;
134 devices accurately generated more than 90% of Holon
description data, accounting for 95.71% of all devices.

D. Summary and Improvement

Evaluation of the above three aspects shows that our method
of automatically generating Holon descriptions can efficiently
and accurately return the relevant descriptions of the parameters,
services, and properties of IoT devices.

VI. CONCLUDING REMARKS

A. Summary

In IoT environments where smart homes are widely popular,
the collaborative work of smart home IoT devices is just around
the corner. As such, composition between IoT systems should
be carried out in an effective and automated manner based
on accurate and comprehensive descriptions. One means of
achieving this is through using Holons to provide an ontological
description of systems. However, manually generating Holons is
a cumbersome process. Our proposal is to automatically generate
Holon (i.e., system) descriptions based on NLP methods and
scraping product information from the Amazon website. Our
technique achieves accurate and reliable system descriptions,
which greatly reduces developer overhead and room for error
in building a self-adaptive system of systems.

B. Limitations

Since the main audience of the function descriptions on
the Amazon website is human shoppers, some descriptions
are colloquial and flexible in structure. Nevertheless, these
are not common in our application scenario and only a single
digit number of instances of colloquial and flexible-structured
paragraphs appear in our whole dataset. In such rare cases, our
knowledge extraction model slightly struggles to extract the
knowledge points of the various structures, affecting its accuracy.

C. Future Work

We plan to enhance our approach in various ways. First, we
will expand the number and types of devices in our experiments
to improve the coverage of the method, as well as improve and
refine its implementation.

Second, we plan to expand the Holon ontology structure
so that it can be applied to the vast majority of smart home
IoT devices and eventually has a potential impact as a mature
product targeted at the smart home market.

Third, we aim to expand beyond the smart home context to
other IoT environments – such as hospitals, airports and transport
stations, farmlands, and forests – where there is a higher
demand for equipment interconnection and system composition.
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