Combined metallic nano-rings and solid-immersion lenses for bright emission from single InAs/GaAs quantum dots

Trojak, O. J., Woodhead, C., Park, S.-I., Song, J. D., Young, R. J. and Sapienza, L. (2018) Combined metallic nano-rings and solid-immersion lenses for bright emission from single InAs/GaAs quantum dots. Applied Physics Letters, 112(22), 221102. (doi: 10.1063/1.5023207)

Full text not currently available from Enlighten.

Abstract

Solid-state single-photon emitters are key components for integrated quantum photonic devices. However, they can suffer from poor extraction efficiencies, caused by the large refractive index contrast between the bulk material they are embedded in and air: this results in a small fraction (that can be as low as ∼0.1%) of the emitted photons reaching free-space collection optics. To overcome this issue, we present a device that combines a metallic nano-ring, positioned on the sample surface and centered around the emitter, and an epoxy-based super-solid immersion lens, deposited above the ring devices. We show that the combined broadband lensing effect of the nano-ring and the super-solid immersion lens significantly increases the extraction of light emitted by single InAs/GaAs quantum dots into free space: we observe cumulative enhancements that allow us to estimate photon fluxes on the first collecting lens approaching 1 × 106 counts per second, from a single quantum dot in bulk. The combined broad-band enhancement in the extraction of light can be implemented with any kind of classical and quantum solid-state emitter and opens the path to the realisation of scalable bright devices. The same approach can also be implemented to improve the absorption of light, for instance, for small-area broadband photo-detectors.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Sapienza, Dr Luca
Authors: Trojak, O. J., Woodhead, C., Park, S.-I., Song, J. D., Young, R. J., and Sapienza, L.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:Applied Physics Letters
Publisher:American Institute of Physics
ISSN:0003-6951
ISSN (Online):1077-3118

University Staff: Request a correction | Enlighten Editors: Update this record