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Algorithmics of Matching Markets
Jiehua Chena and David Manloveb

13.1 Introduction and Motivation

Chapter 1 described classical results for two-sided matching markets involving the

assignment of workers to firms based on their preferences over one another. The

underlying matching problem is known in the literature as the Stable Marriage

problem, and in its canonical form it corresponds to Setting I from Chapter 1. The

objective is to find a stable matching, a one-to-one assignment of workers to firms

such that no worker and firm prefer one another to their assigned partners.

The Stable Marriage problem has been the focus of a great deal of atten-

tion in the literature, and one reason for this is that the classical problem and its

variants feature in many practical applications. These include entry-level labor mar-

kets, school choice, and higher education admission. For example, a many-to-one

extension of Stable Marriage known as the Hospitals / Residents problem

(captured by Setting III in Chapter 1 models the assignment of graduating medi-

cal students to hospital posts. The National Resident Matching Program (NRMP)

administers this process in the US, which involves applications from over 40,000

aspiring junior doctors per year. At the heart of the NRMP is an algorithm for the

Hospitals / Residents problem.

Centralized matching schemes (also known as clearinghouses) such as the NRMP

typically involve large numbers of participants, and thus it is imperative that they

incorporate efficient algorithms. Chapter 1 described an efficient algorithm for the

Stable Marriage problem and showed how to extend it to the Hospitals /

Residents problem. In practice, however, there are often additional features of a

matching market that have to be taken into consideration, which lead to general-

izations of the Stable Marriage problem that have thus far not been considered

in this book from an algorithmic point of view.

For example, it is very likely that a large hospital participating in the NRMP,

having many applicants, may not have enough information to rank them objectively

in strict order of preference. It may prefer to rank several applicants equally, in tied
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batches, indicating that it is indifferent between them. This is especially likely if

hospitals’ preference lists are derived from scores (e.g., originating from academic

assessments); several applicants may have equal scores, making them essentially

indistinguishable.

Another direction involves computing “fair” stable matchings. Chapter 1described

the lattice structure that holds for the set of stable matchings in an instance of the

Stable Marriage problem (see Definition 1.37. The Gale–Shapley Deferred Ac-

ceptance algorithm (see Page 6 of Chapter 1) computes a stable matching µ that is

either at the top or at the bottom end of this lattice. That is, matching µ is either

worker-optimal or firm-optimal – but in each case, optimality for the workers or

the firms comes at the expense of the other set of agents, since these matchings are

worst possible for the firms and workers, respectively. One may instead wish to find

a stable matching that is fair to both sides of the market – one example of such a

matching is an egalitarian stable matching, where the overall dissatisfaction of the

agents, the so called egalitarian cost, is minimized.

A further extension concerns the case in which the agents involved in the market

form a single set, rather than two disjoint sets as before. In this case we obtain

the non-bipartite version of Stable Marriage called the Stable Roommates

problem. This problem has applications in P2P networking, as well as in dormitory

allocation and in pairing players for chess or tennis tournaments.

In many of these variants, computing certain types of stable matchings becomes

an NP-hard problem. Given the practical significance of these matching problems,

the importance of finding ways to cope with this complexity should be clear. The

purpose of this chapter is to focus on two examples where finding types of “optimal”

stable matchings is NP-hard, and illustrate the algorithmic techniques that typically

have been applied in order to find optimal or approximate solutions.

The first problem that we focus on concerns finding a stable matching that max-

imizes the number of workers that are matched, given an instance of the variant

of Stable Marriage in which preference lists may include ties and need not in-

volve every member of the other side of the market. We firstly give a reduction

to demonstrate the NP-hardness of this problem. Then we give an exposition of

Király’s approximation algorithm that achieves a performance guarantee of 3
2 us-

ing a technique that subsequently has been widely applied in various matching

problem scenarios.

The second problem involves finding an egalitarian stable matching in a given

instance of the Stable Roommates problem. This is an NP-hard problem, and for

this, we show how techniques from parameterized algorithmics give rise to fixed-

parameter algorithms when the parameter is the egalitarian cost of the solution.

Specifically, these methods involve kernelization and the use of bounded search

trees, which are used extensively in designing fixed-parameter algorithms.

The remainder of this chapter is organized as follows. In Section 13.2, we define

preliminary notation and terminology, and give formal definitions of the key prob-
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lems that will be considered in this chapter. Section 13.3 focuses on the variant of

Stable Marriage with ties and incomplete lists where we seek a maximum car-

dinality stable matching. The fixed-parameter algorithms for finding an egalitarian

stable matching in an instance of the Stable Roommates problem are described

in Section 13.4. We list some open problems in Section 13.5 that are related to the

problems tackled in Sections 13.3 and 13.4. Finally Section 13.6 gives some chapter

notes, including references for the key existing results that we rely on.

13.2 Preliminaries

13.2.1 Definitions of Key Notation and Terminology

We begin by defining notation and terminology that will be used throughout this

chapter. Firstly, for each natural number t, we denote the set {1, 2, . . . , t} by [t].

Let V = [n] be a set of n agents. Each agent i ∈ V has a subset Vi ⊆ V

of agents that it finds acceptable as a partner and has a preference list �i on Vi
(i.e., a transitive and complete binary relation on Vi). Here, x �i y means that i

weakly prefers x over y. We use �i to denote the asymmetric part (i.e., x �i y and

¬(y �i x)) and ∼i to denote the symmetric part of �i (i.e., x �i y and y �i x) so

that x �i y means that i strictly prefers x to y while x ∼i y means that i regards x

as tied with y. We may omit the subscript in the �i, �i and ∼i notation if it is

clear from the context. For two agents x and y, we call x most acceptable to y if x

is a maximal element in the preference list of y. Note that an agent can have more

than one most acceptable agent.

A preference profile P for V is a collection (�i)i∈V of preference lists for each

agent i ∈ V . To a preference profile P = (V, (�i)i∈V ), we assign an acceptability

graph G, which has V as its vertex set, and an edge between each pair of agents

who find each other acceptable. Without loss of generality, we assume that G does

not contain isolated vertices, meaning that each agent has at least one agent that

it finds acceptable. A preference profile P may have the following properties: it is

complete if the underlying acceptability graph is complete (i.e., it contains an edge

between each pair of agents); otherwise, it is incomplete. The profile P has ties if

there is an agent i ∈ V for which there are two agents x, y ∈ Vi such that x ∼i y;

we say that x and y are tied by i; otherwise, if P has no ties, it is said to be strict.

When illustrating a preference profile, in a given agent’s preference list and for a

given indexed set S of agents, the notation [S] refers to all agents in S listed in an

arbitrary but fixed strict order, whilst the notation (S) indicates a tie containing

all agents in S, in both cases in the position where the symbol occurs.

The rank of an agent i in the preference list of some agent j, denoted rankPj (i),

is the number of agents x that j strictly prefers over i:

rankPj (i) := |{x ∈ V | x �j i}|.
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We will omit the superscript from rankPj (i) if the instance is clear from the context.

Given a preference profile P for a set V of agents, recall that a matching µ ⊆ E(G)

is a set of disjoint pairs {i, j} of agents. For a pair {i, j} of agents, if {i, j} ∈ µ,

then the partner of i, denoted by µ(i), is defined to be j; otherwise we call this pair

unmatched. If agent i has no partner ; i.e., i is not involved in any pair in µ, we say

that i is unmatched by µ. If no agent is unmatched by µ then µ is perfect .

Given a matching µ of P, an unmatched pair {i, j} ∈ E(G) \ µ is blocking µ if

each of i and j is either unmatched or prefers the other to his/her assigned partner,

i.e., it holds that (i) i is unmatched by µ or j �i µ(i), and (ii) j is unmatched by µ

or i �j µ(j). We call a matching µ stable if no unmatched pair is blocking µ.

13.2.2 Central Computational Problems

We now define formally the main computational problems that we will be studying

in the remainder of this chapter. We begin with the Stable Roommates problem,

which is defined as follows:

Stable Roommates (SRTI)

Input: A preference profile P = (V, (�i)i∈V ) for a set V of n agents.

Question: Does P admit a stable matching?

The SRTI acronym denotes the fact that preference lists may contain ties and

the preference profile may be incomplete. We use SRI to refer to the special case of

SRTI in which preference lists are strictly ordered (but the preference profile may

be incomplete).

The bipartite restriction of Stable Roommates, called Stable Marriage,

has as input two disjoint sets W and F of agents (referred to as the workers and

firms respectively in Chapter 1, where |W | + |F | = n, such that each agent from

one set has a preference list that ranks a subset of the agents from the other

set. In other words, the acceptability graph of a Stable Marriage instance is a

bipartite graph on W and F . We call the corresponding preference profile a bipartite

preference profile. The notions that we have introduced for Stable Roommates

can be restricted intuitively to also work for Stable Marriage. For instance, the

preference profile of a Stable Marriage instance is complete if the underlying

acceptability graph is a complete bipartite graph.

Stable Marriage (SMTI)

Input: A bipartite preference profile P = (W,F, (�i)i∈W∪F ) for two disjoint

sets W and F of agents, where |W |+ |F | = n.

Question: Does P admit a stable matching?

Analogously, we use SMI to refer to the restriction of SMTI where each prefer-

ence list is strictly ordered (but the preference profile may be incomplete).

When ties are not present, determining whether an instance of SRI (and thus
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SMI) admits a stable matching, and finding one if it does can be done in O(n2) time.

Moreover, every instance of SMI is a yes instance since it always admits a stable

matching. However, when preferences have ties, the problem of deciding whether a

stable matching exists, given an instance of SRTI, becomes NP-complete even if

the preferences are complete.

The situation for SMTI is more positive: SMTI still admits a stable match-

ing, even if the preferences may be incomplete. But, there may be stable match-

ings with different cardinalities. By breaking the ties arbitrarily, one can find a

stable matching in O(n2) time. However, finding one with maximum cardinality

becomes NP-hard. The corresponding optimization problem, called Max-Card

Stable Marriage, is defined as follows:

Max-Card Stable Marriage (Max-SMTI)

Input: A bipartite preference profile P = (W,F, (�i)i∈W∪F ) for two disjoint

sets W and F of agents, where |W |+ |F | = n.

Output: A stable matching for P with the largest cardinality.

Stable matchings in an instance P of SRTI may not be unique. To find an “opti-

mal” stable matching in P, one can take agents’ satisfaction towards a matching µ

into account. This is formally captured by the egalitarian cost of µ, denoted by γ(µ),

and defined as follows:

γ(µ) :=
∑
i∈V(µ)

rankPi (µ(i)) +
∑

k∈V \V(µ)

|Vk|,

where V(µ) := {i, j ∈ V | {i, j} ∈ µ} denotes the set of matched agents in µ. A

stable matching µ is egalitarian if γ(µ) is minimum, taken over all stable matchings

in P. We now define a decision problem that is associated with finding an egalitarian

stable matching:

Egalitarian Stable Roommates Decision (Egal-SRTI-Dec)

Input: A preference profile P = (V, (�i)i∈V ) for a set V of n agents, and a

non-negative integer γ.

Question: Does P admit a stable matching with γ(µ) ≤ γ?

See Figure 13.1 for an example. We let Egal-SRI-Dec denote the special case of

Egal-SRTI-Dec in which preference lists are strictly ordered (but may be incom-

plete). The bipartite restriction of Egal-SRI-Dec is denoted by Egal-SMI-Dec.

Egal-SMI-Dec is solvable in polynomial time, but the variant in which pref-

erences are complete and may contain ties is NP-complete. On the other hand

Egal-SRI-Dec is NP-complete even for complete lists.

In Section 13.3 we study Max-SMTI and give a reduction to show that this prob-

lem is NP-hard even if the ties occur on one side only. We also present a simple and

elegant approximation algorithm due to Király for this special case of Max-SMTI,

proving that it has a performance guarantee of 3
2 . In Section 13.4 we investigate
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Figure 13.1 Left: An SRI instance with eight agents; it admits two stable matchings in
which agents 7 and 8 are never matched. Right: The corresponding acceptability graph,
with edges labeled with ranks. The stable matching marked in green and solid lines has
egalitarian cost 7 while the one marked in red and curly lines has egalitarian cost 8; recall
that each unmatched agent induces a cost that equals the length of her preference list.

the parameterized complexity of Egal-SRI-Dec. We show that Egal-SRI-Dec

is fixed-parameter tractable with respect to the parameter “egalitarian cost” via

two efficient algorithms.

13.3 Stable Marriage with Ties and Incomplete Lists:
NP-hardness and Approximation

13.3.1 NP-hardness of Max-SMTI

In this section we show that Max-SMTI is NP-hard. In particular, we show that

this result holds even if the ties occur in the preference lists on one side only. The

result is established by proving that the following decision problem is NP-complete

for this restriction on the placement of ties:

Max-Card Stable Marriage Decision (Max-SMTI-Dec)

Input: An SMTI instance P = (W,F, (�i)i∈W∪F ) and an integer s ≥ 0.

Question: Does P admit a stable matching µ with |µ| ≥ s?

Theorem 13.1 Max-SMTI-Dec is NP-complete, even if the ties occur in the

preference lists on one side only.

Proof Clearly Max-SMTI-Dec is in NP, since checking whether a given matching

is stable and has cardinality at least s can be done in polynomial time. To show

NP-hardness, we give a reduction from the NP-complete problem Independent

Set, as follows. An instance of Independent Set comprises a graph G = (V,E)

and an integer h ≥ 0, and the problem is to decide whether G has an independent

set (i.e., a subset of vertices that are pairwise non-adjacent to each other) of size h.

The general idea behind the reduction is as follows: introduce vertex and edge

agents corresponding to the vertices and edges of the graph, and h pairs of selector

agents which must be matched with the vertex agents in any maximum-size stable
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Workers’ preference lists:

wi : [T ] � ui ∀i ∈ [n′]

sj : u1 � u2 � · · · � un′ ∀j ∈ [h]

eui
j : ej � ui � fj ∀ej ∈ E with ej = {vi, vi′}
e
ui′
j : ej � ui′ � fj ∀ej ∈ E with ej = {vi, vi′}.

Firms’ preference lists:

ui : wi � [{eui
j | vi ∈ ej for some edge ej ∈ E}] � s1 � s2 � · · · � sh ∀i ∈ [n′]

tj : (W ) ∀j ∈ [h]

ej : ({eui
j , e

ui′
j }) ∀ej ∈ E with ej = {vi, vi′}

fj : [{eui
j , e

ui′
j }] ∀ej ∈ E with ej = {vi, vi′}.

Figure 13.2 Preference lists in the instance I ′ of Max-SMTI-Dec constructed in the proof
of Theorem 13.1. Given a set of agents A, recall that [A] denotes all agents in A listed in
an arbitrary but fixed strict order, whilst (A) indicates a tie containing all agents in A.

matching. The preferences of the vertex and edge agents will ensure that the vertex

agents that are matched to the selector agents induce an independent set.

Let I = ((G = (V,E), h) be an instance of Independent Set, where V =

{v1, v2, . . . , vn′} and E = {e1, e2, . . . , em′}. Construct a Max-SMTI-Dec instance

I ′ as follows. Firstly, let W ′ = W ∪ S ∪EU be the set of workers in I ′, where W =

{w1, w2, . . . , wn′}, S = {s1, s2, . . . , sh} and EU = {eui
j , e

ui′
j | ej = {ui, ui′} ∈ E}.

Next, let F ′ = U ∪T ∪E ∪F be the set of firms in I ′, where U = {u1, u2, . . . , un′},
T = {t1, t2, . . . , th}, E = {e1, e2, . . . , em′} and F = {f1, f2, . . . , fm′}.

Intuitively, for vi ∈ V , agents ui and wi correspond to vertex vi in G. For each

edge ej = {ui, ui′} ∈ E, agents ej , fj , e
ui
j , and e

ui′
j correspond to edge ej in G.

Although the notation for the agent ej in I ′ is the same as that for the edge ej in G,

the precise meaning should be clear from the context. Finally, the agents in S ∪ T
are intended to receive partners that correspond to h vertices that are selected in

an independent set in G.

The preference profile P in I ′ is described in Figure 13.2. Also see Figure 13.3 for

an illustration of the reduction. We observe that the preference lists of the firms in

T ∪E contain ties, while the preference lists of the firms in U ∪F and those of the

workers are strictly ordered. To complete the construction of I ′ = (P, s), we let the

target size of stable matching be s = n′ + 2m′ + h.

Clearly I ′ can be constructed from I in linear time, and the number of agents on

each side of I ′ is s. We claim that I has an independent set of size h if and only if

I ′ has a stable matching of size s. Before proving the claim, we give some further

intuition for the reduction as follows. The vertices vi ∈ V of an independent set in

G correspond to firms ui ∈ U that are matched to a worker in S. Since each such

firm ui prefers all workers eui
j ∈ EU where vi is an endpoint of edge ej = {vi, vi′},
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Figure 13.3 Illustration of the NP-hardness reduction for the proof of Theorem 13.1. Left:
an instance of Independent Set. An independent set solution containing V ′ = {v2, v4}
is highlighted with gray circles. Right: the acceptability graph of the constructed instance;
for the sake of readability, the agents from S ∪ T are omitted. The crucial part of the
stable matching which corresponds to the independent set V ′ is marked in gray.

by stability each such worker eui
j must be matched to her first choice ej , meaning

that e
ui′
j must be matched to her third choice fj . In turn, e

ui′
j prefers ui′ to her

partner, and hence by stability, ui′ cannot be matched to a worker in S. We thus

obtain that at most one endpoint of ej corresponds to a firm matched to a worker

in S, which establishes the independence property.

To prove the “only if” direction, assume that V ′ := {vi1 , vi2 , . . . , vih} is an inde-

pendent set in G, where i1 < i2 < . . . < ih. We form a matching µ of size s in I ′ as

follows.

(a) For each z ∈ [h], add to µ the two pairs {wiz , tz} and {sz, uiz}.
(b) For each vi ∈ V \ V ′, add to µ the pair {wi, ui}.
(c) For each edge ej ∈ E with ej = {vi, vi′}, where i < i′, if vi ∈ V ′, then add to µ

the two pairs {eui
j , ej} and {eui′

j , fj}; otherwise add to µ the two pairs {eui′
j , ej}

and {eui
j , fj}.

Please notice that in Step (c), if neither vi nor vi′ belong to V ′, adding {eui
j , ej} and

{eui′
j , fj} instead of {eui′

j , ej} and {eui
j , fj} to matching µ also preserves stability.

Clearly |µ| = 2h + (n′ − h) + 2m′ = s, and µ matches all agents in I ′. We claim

that µ is stable in I ′.

Clearly no firm in T ∪E can be involved in a blocking pair of µ in I ′. Neither can

any firm in F , since no worker prefers a firm in F to her partner. An unmatched pair

{wi′ , ui′}, for some i′ ∈ [n′], cannot block µ either, since wi′ does not prefer ui′ to her

partner in µ. Suppose that an unmatched pair {sj , ui′} blocks µ, for some i′ ∈ [n′]

and j ∈ [h]. Then, ui′ = uiz and {sz, uiz} ∈ µ for some z ∈ [h], by construction of µ.

As ui′ prefers sj to µ(ui′), it follows that j < z. By construction of µ, {sj , uij} ∈ µ,

and as ij < iz, it follows that sj does not prefer ui′ to µ(sj), a contradiction.



Algorithmics of Matching Markets 291

Finally suppose that {eui′
j , ui′} blocks µ, where ej ∈ E and ui′ ∈ ej . Then, µ(ui′) ∈

S, which implies that vi′ ∈ V ′. Thus by construction of µ, it follows that {eui′
j , ej} ∈

µ. This implies that e
ui′
j has her most-preferred partner in µ, and thus {eui′

j , ui′}
does not block µ after all, a contradiction. Hence, µ is stable in I ′.

Conversely suppose that I ′ admits a stable matching µ of size s. Then all agents

in I ′ are matched in µ. Define the set V ′ := {vi ∈ V | µ(ui) ∈ S}. Clearly |V ′| = h.

We claim that V ′ is an independent set in G. For, suppose that ej = {vi, vi′} ∈ E
where ui ∈ V ′ and ui′ ∈ V ′. Then µ(ui) ∈ S and µ(ui′) ∈ S by construction of V ′.

As fj must be matched in µ, either {eui
j , fj} ∈ µ or {eui′

j , fj} ∈ µ. In the former

case {eui
j , ui} blocks µ in I ′, whilst in the latter case {eui′

j , ui′} blocks µ in I ′. Both

of these are a contradiction and hence the claim is established.

13.3.2 Király’s Approximation Algorithm for

Max-SMTI with one-sided ties

In this section we describe Király’s 3
2 -approximation algorithm for the special case of

Max-SMTI in which the ties occur in the preference lists on one side only. We also

show how to prove that the algorithm is correct and has performance guarantee 3
2 .

In what follows, we assume without loss of generality that we are given an instance

P = (W,F, (�i)i∈W∪F ) of Max-SMTI in which the ties occur in the firms’ lists

only, and workers’ lists do not contain ties. Henceforth we refer to this special case

of Max-SMTI as Max-SMTI-TF.

Király’s algorithm for Max-SMTI-TF is similar to the classical Gale–Shapley

algorithm for Stable Marriage in that it involves a series of applications from

workers to firms, and possible rejections of workers by firms. A key distinction is

that Király’s algorithm allows a worker wi who has been rejected by every firm on

her preference list to have a “second chance” and apply to them again in a second

pass through her list. During this second pass, wi is said to be promoted , which

means that, for any firm fj on her list, wi has a higher priority according to fj
than any unpromoted worker that she is tied with on fj ’s list. To formalize this,

we define the notion of favors as follows.

Definition 13.2 A firm fj is said to favor a worker wi over another worker wk
if either (i) or (ii) holds, as follows:

(i) fj strictly prefers wi to wk (i.e., wi �fj wk), or

(ii) wi and wk are tied in fj ’s list, and wi is promoted whilst wk is not.

A worker can only be promoted once: after a second pass through her list, if wi
has again been rejected by every firm on her list then wi will not be able to apply

to any firm again and will be unmatched in the final matching. We say that wi
is exhausted if wi has been rejected from every firm in her preference list (either

during a first pass or a second pass through her list).
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Algorithm 1: Király’s approximation algorithm for Max-SMTI-TF

Input: An Max-SMTI-TF instance P = (W,F, (�i)i∈W∪F )

1 µ := ∅
2 foreach wi ∈W do

3 promoted(wi) := false

4 exhausted(wi) := false

5 while some wi ∈W is unmatched and (!promoted(wi) or !exhausted(wi)) do

6 if exhausted(wi) then

7 promoted(wi) := true

8 exhausted(wi) := false

9 reactivate wi // i.e., set wi to have been rejected by no firms

10 fj := most-preferred firm on wi’s list that has not yet rejected her

// wi applies to fj

11 if fj is unmatched then µ := µ ∪ {{wi, fj}}
12 else

13 if fj favors wi over µ(fj) then // recall Definition 13.2

14 fj rejects µ(fj)

15 µ := (µ ∪ {{wi, fj}}) \ {{µ(fj), fj}}
16 else fj rejects wi
17 if wi is rejected by every firm on her list then exhausted(wi) := true

18 return µ

A pseudocode description of Király’s algorithm is given in Algorithm 1. We now

give an explanation of the algorithm. Initially the matching µ is empty, and booleans

for each worker wi are set to indicate that wi has not been promoted yet and wi
is not exhausted yet. The main loop iterates as long as there is some worker wi
who is unmatched, and additionally wi has not been promoted yet or wi is not yet

exhausted. If wi is exhausted then, as we know wi has not been promoted by line 5,

wi has completed only one pass through her preference list. In preparation for a

second pass through her list, we then set wi as promoted and not exhausted, and

“reactivate” wi, meaning that we now assume that no firms have rejected wi.

Lines 10–16 of the algorithm are similar to the Gale–Shapley algorithm for Sta-

ble Marriage. That is, wi applies to the most-preferred firm fj on her list that

has not yet rejected her. If fj is unmatched then it accepts the application and

becomes assigned to wi. Otherwise fj is already matched to some worker wk in µ.

If fj favors wi over wk (see Definition 13.2) then fj rejects wk and becomes assigned

to wi instead, otherwise fj rejects wi and remains assigned to wk. Notice here that

if wi is promoted, she can displace an unpromoted worker wk assigned to fj even

if wi and wk are tied in fj ’s list. Finally lines 17–17 ensure that a worker is set to

be exhausted if she has been rejected by every firm on her list.
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The following series of lemmas establish the correctness of the algorithm.

Lemma 13.3 Given an instance P of Max-SMTI-TF, all possible executions of

Király’s algorithm as applied to P produce a stable matching µ in P.

Proof Let µ be the matching returned by the algorithm and suppose that {w, f}
blocks µ. Then either w is unmatched in µ and finds f acceptable, or else w is

matched in µ and strictly prefers f to µ(f). In either case w applied to f and it

rejected her because either (i) it was already assigned to a worker w′ and it did not

favor w over w′, or (ii) it subsequently received an application from a worker w′

whom it favored over w. In either case, either w′ and w are tied in f ’s list, or f

strictly prefers w′ to w. Hence f weakly prefers w′ to w. Moreover, any subsequent

change of partner for f cannot cause it to become strictly worse off, so f weakly

prefers µ(f) to w. Hence {w, f} does not block w after all, a contradiction.

Lemma 13.4 Given an instance P of Max-SMTI-TF, any execution of Király’s

algorithm as applied to P produces a stable matching µ in P such that |µ| ≥ 2
3 |µ
′|,

where µ′ is any stable matching in P.

Proof By Lemma 13.3, Király’s algorithm produces a stable matching µ. Let µ′ be

a maximum cardinality stable matching and let G′ = (V,E′) be a subgraph of the

acceptability graph of P where V = W ∪ F and E′ = µ⊕ µ′ (where ⊕ denotes the

symmetric difference of µ and µ′). Then the connected components of G′ are paths

and cycles whose edges alternate between µ and µ′ (we refer to these components

as alternating paths and alternating cycles, respectively). We firstly claim that G′

has no alternating path of length three whose end edges belong to µ′.

For, suppose for a contradiction that {w′, f}, {f, w}, {w, f ′} is an alternating

path of length three, where {w′, f} ∈ µ′, {f, w} ∈ µ and {w, f ′} ∈ µ′. Then each

of w′ and f ′ is unmatched in µ. This means that w′ applied to (and was rejected

by) every firm on her preference list as an unpromoted and promoted worker, and

f ′ did not receive an application from any worker. We deduce that w was never

promoted, and moreover that w strictly prefers f to f ′, otherwise she would have

applied to f ′ (recall that workers do not have ties in their lists).

After w′ was promoted, w′ applied to f . As in the proof of Lemma 13.3, since

µ(f) = w, f rejected w′ because either (i) it was already assigned to a worker w′′

and it did not favor w′ over w′′, or (ii) it subsequently received an application from

a worker w′′ whom it favored over w′. Moreover, any subsequent change of partner

for f cannot cause it to become strictly worse off, so f weakly prefers µ(f) = w

to w′.

Suppose that w and w′ are tied in f ’s list. Then the same is true for w′ and w′′

(possibly w′′ = w). Moreover w′′ must be promoted, for otherwise f would have

favored w′ over w′′ (recall that w′ has been promoted). But f ultimately exchanges

its partner for an unpromoted worker in µ, namely w, which is impossible. Hence
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f strictly prefers w to w′. It follows that {w, f} blocks µ′, a contradiction. Hence

the claim is established.

Now let C be any connected component of G′. If C is an alternating path whose

end edges belong to µ′, it follows from our preceding argument that |C| 6= 3, and it

follows from the stability of µ that |C| 6= 1. Hence |C| ≥ 5, and |µ∩C| ≥ 2
3 |µ
′ ∩C|.

If C is an alternating cycle, an alternating path of even length, or an alternating

path of odd length whose end edges belong to µ, clearly |µ ∩ C| ≥ |µ′ ∩ C|. The

lemma thus follows.

Lemma 13.5 Given an instance P of Max-SMTI-TF, Király’s algorithm as

applied to P runs in O(L) time, where L is the total length of the workers’ preference

lists.

Proof Each worker applies at most twice to the same firm (once as an unpromoted

worker and once as a promoted worker) so the number of iterations of the main

while loop is O(L). Each worker is reactivated at most once, and hence the total

time taken for reactivation is O(L). Using an array to store the ranks of workers in

the firms’ preference lists (allowing a firm to decide whether it favors one worker

to another in O(1) time), and using a stack to keep track of unmatched workers,

Király’s algorithm can be implemented to run in O(L) time.

Together, Lemmas 13.3 to 13.5 lead to the following conclusion.

Theorem 13.6 Király’s algorithm is a 3
2 -approximation algorithm for Max-

SMTI-TF.

We now give an example to illustrate the execution of Király’s algorithm; the

example also shows that the bound of 3
2 is tight.

Example 13.7 Consider the following instance P of Max-SMTI-TF:

w1 : f2 � f1 f1 : w1

w2 : f2 � f3 f2 : w1 ∼ w2

w3 : f3 f3 : w2 � w3.

The following execution trace results in a matching µ1 of cardinality 2:

• w1 applies to f2, {w1, f2} added to µ1;

• w2 applies to f2, f2 rejects w2;

• w2 applies to f3, {w2, f3} added to µ1;

• w3 applies to f3, f3 rejects w3, w3 is exhausted;

• w3 promoted and reactivated;

• w3 applies to f3, f3 rejects w3, w3 is exhausted.

On the other hand, P admits a stable matching µ2 of cardinality 3, comprising pairs

{w1, f1}, {w2, f2}, {w3, f3}. Note that if w2 applies first in the above execution trace

then matching µ2 will ultimately be returned.
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13.4 Stable Roommates without Ties:
Two Parameterized Algorithms

13.4.1 Introduction

In this section, we focus on Egal-SRI-Dec. Since this problem is NP-hard, exact

algorithms presumably need super-polynomial time when measured only in the

input length. A way out, without resorting to randomness or approximation, is

given by the framework of Parameterized Algorithmics in which we aim to exploit

structural properties of the input, measured by so-called integer-valued parameters.

In this way, we can design more refined exact algorithms by viewing their running

time as a function of both the input size and the parameter. One central goal of

Parameterized Algorithmics is to design fixed-parameter algorithms, which solve any

instance I of a given a problem Q with respect to a parameter k in f(k)·|I|O(1) time,

where f is some computable function (usually exponential) of the parameter k and

|I| denotes the size of (an arbitrary encoding of) I.

In the Egal-SRI-Dec problem the parameter could be the upper bound γ on

the egalitarian cost of a matching that we aim for. In this section, we provide

two fixed-parameter algorithms for Egal-SRI-Dec with respect to the parame-

ter “egalitarian cost γ”, which run in O(n2 +(γ+1)γ ·γ2) time and O(2γ ·n2) time,

respectively.

When the preferences do not have ties, there are various structures that can be

utilized for designing efficient algorithms. For instance, whenever there are two

agents x and y who are each other’s most acceptable agents (i.e., rankx(y) =

ranky(x) = 0), every stable matching must contain the pair {x, y}, which has zero

cost. Hence, we can safely add such pairs to an egalitarian solution matching with-

out disturbing the egalitarian cost. After we have matched all pairs of agents with

zero cost, all remaining unmatched agents induce cost at least one when they are

matched. Thus, to obtain a matching with egalitarian cost at most γ, there can

remain at most 2γ agents and moreover no agent can be matched to an agent with

rank higher than γ.

Indeed, we can go one step further and consider an even smaller parameter than

the overall egalitarian cost, namely the one where we subtract both the cost in-

duced by the unmatched agents and by pairs that appear in every stable matching

(called fixed pairs) from the cost that we are aiming for. Note that fixed pairs and

unmatched agents are unique and can be found in polynomial time by the following

structural results.

Theorem 13.8 For each instance P = (V, (�i)i∈V ) of SRI with n agents one

can in O(n2) time (i) compute the set of all pairs agents which appear in every

stable matching, and (ii) partition the agent set V into two disjoint subsets Vm and

Vu such that every stable matching matches every agent from Vm and none of the

agents from Vu.
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To apply Theorem 13.8, we introduce six additional notions.

Definition 13.9 For an instance (P, γ) of Egal-SRI-Dec, let F(P) denote the

set consisting of all fixed pairs of P. Further, let V(F(P)) := {x, y ∈ V | {x, y} ∈
F(P)} and γ(F(P)) denote the set of agents in F(P) and the egalitarian cost induced

by the fixed pairs in F(P), respectively. Let Vu(P) denote the set consisting of all

agents that are unmatched in all stable matchings. Let Vr(P) denote the set of

remaining agents not from V(F(P))∪Vu(P). Define γ̂ := γ−γ(F(P))−
∑
z∈Vu(P) |Vz|.

By Theorem 13.8 and by Definition 13.9, the sets VF(P), Vu(P), and Vr(P) par-

tition the whole agent set V . Note that, since each agent in Vr(P) must be matched

by each stable matching so that the cost, together with her partner, is at least one,

each stable matching has an egalitarian cost bounded as follows.

Observation 13.10 Every stable matching µ of an SRI instance P satisfies

γ(µ) ≥ |V
r(P)|
2 + γ(F(P)) +

∑
z∈Vu(P)

|Vz|.

In the remainder of this section, we apply two well-established parameterized

techniques: kernelization and bounded search tree algorithms and obtain two fixed-

parameter algorithms for Egal-SRI-Dec with respect to the “reduced” parame-

ter γ̂ (see Definition 13.9).

13.4.2 Kernelization for Egal-SRI-Dec

A kernelization is a polynomial-time preprocessing algorithm that transforms an

instance I of a problem Q with parameter value k into an equivalent instance I ′

of Q with parameter value k′ with |I ′|+k′ ≤ g(k), where g is a computable function.

The resulting instance I ′ together with k′ is called a kernel and g is referred to as

the size of the kernel. Typically, kernelization is based on several polynomial-time

executable data-reduction rules which translate an instance to an equivalent one

while ultimately shrinking the instance size.

We show that Egal-SRI-Dec admits a kernel of quadratic size for the parameter γ̂.

Theorem 13.11 Egal-SRI-Dec admits a size-O(γ̂2) kernel with at most 4γ̂+2

agents and with each preference list of size at most γ̂+1. The kernel can be computed

in O(n2) time. Hence, Egal-SRI-Dec can be solved in O(n2 + (γ̂ + 1)γ̂ · γ̂2) time.

Proof We show that given an instance I = (P, γ) of Egal-SRI-Dec with P =

(V, (�i)i∈V ), Algorithm 2 produces a kernel with at most 4γ̂ + 2 agents with pref-

erence list length at most γ̂ + 1 each; we note that each of the following blocks

of lines in the algorithm can be considered as a reduction rule: line 2, lines 3-5,

and lines 6–10. Briefly put, our kernelization algorithm will delete all agents in

V(F(P)) ∪ Vu(P), i.e., keep all agents in Vr(P), and replace the deleted agents by

a small number of dummy agents to maintain the egalitarian-cost structure. In the
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Algorithm 2: Kernelization for Egal-SRI-Dec

Input: An instance I = (P = (V = [n], (�i)i∈V ), γ) of Egal-SRI-Dec

1 γ̂ := γ − γ(F(P))−
∑
x∈Vu(P) |Vx|

2 if |Vr(P)| > 2γ̂ then return a trivial no-instance

3 D := {di | 1 ≤ i ≤ 2(γ̂ + 1)} // Create dummy agents

4 foreach i ∈ [γ̂ + 1] do

5 Construct the preference lists �d2i−1
and �d2i of d2i−1 and d2i such that

rankd2i−1(d2i) = rankd2i(d2i−1) = 0

// Update the preference lists of the agents in Vr(P)

6 foreach agent x ∈ Vr(P) do

7 foreach agent y ∈ Vx with rankPx (y) ≤ γ̂ do

8 if rankPx (y) + rankPy (x) > γ̂ or y ∈ V(F(P)) ∪ Vu(P) then

9 In list �x, replace y with a dummy d ∈ D, using a different dummy d

for each such y to ensure that d’s list length is at most γ̂ + 1, and

append x to �d
10 Remove all agents y′ from �x with rankPx (y′) > γ̂

11 return (Vr(P) ∪D, (�i)i∈Vr(P) + (�d)d∈D, γ̂)

following when saying that some lines in the algorithm are correct we mean that

the instances before and after conducting those lines are equivalent.

First, the correctness of line 2 is given by Observation 13.10 and the definition

of γ̂. Second, the introduction of 2γ̂ + 2 dummy agents in lines 3–5 does not con-

tribute any egalitarian cost to any stable matching; hence, these lines are correct.

Third, in lines 6–10, we update the preference lists of all original agents that will

stay in the kernel. These are those agents that belong to Vr(P) (see line 6). To see

why the inner loop in lines 7–9 is correct, let us consider an arbitrary agent x with

x ∈ Vr(P) and one of her acceptable agents from Vx, say y. In order to obtain a

stable matching with egalitarian cost at most γ, agent x cannot be assigned to y if

the sum of their respective ranks exceeds γ̂ (see the first condition in line 8) due to

Observation 13.10. Moreover, by Theorem 13.8, no stable matching will match x

with y if y ∈ V(F(P)) ∪ Vu(P). Hence, we can safely replace y with some dummy

agent in line 9 if y satisfies one of the two conditions given in line 8.

Finally, by the same reasoning as above, it is also correct in line 10 to remove in

the preference list of x ∈ Vr(P) all agents y′ that have rankPx (y′) higher than γ̂. It

remains to show that the updated preference lists are symmetric, meaning that an

agent x remains in the preference list of another agent y if and only if y remains

in the preference list of x. Towards a contradiction, suppose that x and y are two

agents with x, y ∈ Vr(P) such that y remains in the preference list of x, while x

does not remain in the preference list of y. Then, by lines 8 and 10 it follows that
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rankPx (y)+ rankPy (x) ≤ γ̂. This further implies that rankPy (x) ≤ γ̂, and hence x must

also remain in the preference list of y, a contradiction.

Altogether, for each agent x ∈ Vr(P), her updated preference list has at most

γ̂ + 1 agents, each of which is from D ∪ Vr(P).

It remains to bound the size of the kernel. The kernel has |Vr(P)| original agents

and 2γ̂ + 2 dummy agents. By line 2 we know that |Vr(P)| ≤ 2γ̂. Thus, the kernel

has at most 4γ̂ + 2 agents. As for the lengths of the preference lists, by line 10,

each remaining original agent has at most γ̂ + 1 agents in her list. This means

that the total length of the preference lists of the remaining original agents is at

most 2γ̂ · (γ̂ + 1). Since we have introduced 2γ̂ + 2 dummy agents, each ranking

some unique dummy agent in the first place, there remain 2γ̂ · (γ+ 1) entries in the

preference lists of all dummy agents to be filled up with original agents. By line 9,

we ensure that each dummy agent has at most γ̂ + 1 agents in her preference list.

As for the running time of Algorithm 2, note that |V | = n. By Theorem 13.8,

computing F(P), Vu(P), and Vr(P) takes O(n2) time. Line 2 can be conducted

in O(n) time. Constructing the dummy agents in lines 3–5 takes O(γ̂) time. The

number of iterations in the two loops in lines 6–7 and in line 10 is O(n · γ̂). Using

an array to store the ranks of the agents in the preference list of each agent and

an array to mark whether an agent is in V(F(P)), Vu(P), or Vr(P), we can test the

condition in line 8 in O(1) time. Using an array to store the preference list of �x
and a counter to mark a dummy agent di whose preference list has length less than

γ̂ + 1, we can perform the replacement in line 9 in O(1) time.

Thus, in total, Algorithm 2 takes O(n2) time. The claimed running time in the

third statement can be shown for instance via an exhaustive brute-force search

of all (γ̂ + 1)γ̂ possible matchings on the remaining agents from Vr(P) to check

whether one of them is stable in O(γ̂2) time. Note that the depth of the search tree

is bounded by γ̂ since we are building at most γ̂ pairs.

Example 13.12 To illustrate Algorithm 2, consider the instance I given in Fig-

ure 13.1. One can verify that it has exactly two stable matchings µ1 = {{1, 3}, {2, 6},
{4, 5}} and µ2 = {{1, 2}, {3, 6}, {4, 5}}. Observe that F(P) = {{4, 5}}. Accord-

ing to Theorem 13.8, the agent set can be partitioned into V(F(P)) = {4, 5},
Vu(P) = {7, 8}, Vr(P) = {1, 2, 3, 6}. The egalitarian costs of µ1 and µ2 are γ(µ1) = 7

and γ(µ2) = 8, respectively.

Let γ = 7. Then, by Definition 13.9, we obtain that γ̂ = 3. The preference lists

returned by the algorithm could look as follows, where D = {d1, d2, . . . , d8}.

1 : 3 � 6 � 2, 2 : d1 � 1 � 6 � d2, 3: 6 � 1 � d1 � d2, 6: 2 � 3 � 1,

d1 : d2 � 2 � 3, d2 : d1 � 2 � 3, ∀i ∈ {2, 3, 4} : d2i−1 : d2i, d2i : d2i−1.
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13.4.3 Bounded Search Tree Algorithms for Egal-SRI-Dec

Besides kernelization, another simple but useful parameterized technique is the use

of bounded search tree algorithms. They are a restricted variant of exhaustive search

algorithms, which use the parameter to cut the branches in the search tree. Roughly

speaking, they recursively apply the following branching steps until an equivalent

and “easy-to-solve” instance is found. In each branching step on an input instance I,

(i) we identify a small set of elements so that at least one element in the set

belongs to a solution,

(ii) and then branch into considering all possible “smaller” instances, each of

which is obtained by fixing one element of the subset as part of the solution.

If in each branching step the size of the identified subset is bounded by f(k), and

the depth of the branching is bounded by g(k), where f and g are two computable

functions depending only the parameter k, then the execution of such an algorithm

results in a search tree with f(k)g(k) nodes. If the identification of each subset in

the branching runs in polynomial time, i.e., |I|O(1) time, then we obtain a fixed-

parameter algorithm.

Now, we show that Egal-SRI-Dec can be solved by a simple bounded search

tree algorithm to obtain the following result.

Theorem 13.13 Egal-SRI-Dec can be solved in O(2γ̂ · n2) time.

Proof Let I = (P = (V, (�i)i∈V ), γ) be an instance of Egal-SRI-Dec. Let F(P),

Vu(P), Vr(P), and γ̂ be as defined in Definition 13.9. By Observation 13.10, we

assume that γ̂ ≥ 0, otherwise we halt, reporting that I is a no instance.

First, we set µ := F(P) because all stable matchings must contain all fixed pairs

from F(P). Our branching algorithm will extend the matching µ to find a stable

one with egalitarian cost at most γ (or report that no such matching exists) and

works as follows.

– As long as γ̂ > 0 and there remains a not-yet-matched agent u from Vr(P) with

|V ∗u | ≥ 1, where V ∗u := {v ∈ Vu ∩ Vr(P) | ranku(v) + rankv(u) ≤ γ̂}, pick an

arbitrary such agent. Further, let best(u) denote the unique agent v ∈ V ∗u with

rankv(u) = 0 (if she exists) such that ranku(v) is the smallest, i.e.,

best(u) :=

{
arg minv∈V ∗u {ranku(v) | rankv(u) = 0}, if some v has rankv(u) = 0,

⊥, otherwise.

– Branch into all possible ways of matching u as follows, distinguishing between

two cases.

• If best(u) 6= ⊥, then for each v ∈ V ∗u with ranku(v) ≤ ranku(best(u)), branch

into adding {u, v} to µ; note that, by definition, u cannot be matched with an

agent with rank higher than ranku(best(u)) as otherwise {u, best(u)} forms a

blocking pair.

• Otherwise, for each v ∈ V ∗u , branch into adding {u, v} to µ.



300 J. Chen and D. Manlove

For each of the branches, update Vr(P) := Vr(P) \ {u, v} and decrease the re-

maining budget γ̂ := γ̂ − ranku(v)− rankv(u), and continue as follows:

(i) If γ̂ < 0 or there exists an agent u′ ∈ Vr(P) with |V ∗u′ | = 0, then stop and

reject the current µ.

(ii) If γ̂ > 0 and Vr(P) 6= ∅, then recurse with an arbitrary agent u′ ∈ Vr(P).

(iii) If γ̂ = 0, then check whether the matching µ is stable for P. Accept if µ is

stable, otherwise reject the current µ.

Correctness. It is straightforward to see that P has a stable matching of egalitarian

cost at most γ if and only if one of the leaves (Case (iii)) in the produced search

tree accepts.

Running time. The running time of the algorithm is bounded by the number of

nodes in the search tree multiplied by the time used for each node.

The time used for each node is bounded by the time required for computing

F(P), Vu(P), Vr(P), best(u), and V ∗u for all u ∈ Vr(P), which is O(n2) (see also

Theorem 13.8).

In order to bound the number of nodes in the search tree, we first bound the

number of leaves in the tree. To this end, let N(k) and L(k) denote the upper

bounds on the number of nodes and leaves, respectively, in a search tree in relation

to its height k. Clearly, if a search tree algorithm solves a problem instance with

parameter value k and calls itself recursively on problem instances with parameter

values at most k − d1, k − d2, . . ., k − dq with 1 ≤ d1 ≤ d2 ≤ · · · ≤ dq ≤ k, then

an upper bound on the number of leaves in the built search tree is given by the

following linear recurrence L(k) ≤ L(k−d1) + L(k−d2) + · · ·+ L(k−dq). Assuming

that L(k) = λk (where λ is a positive constant), the recurrence is satisfied if the

following holds:

λdq − λdq−d1 − λdq−d2 − · · · − λdq−dq = 0. (13.1)

Using standard analysis, we know that the left hand side of (13.1), called the

characteristic polynomial of the recurrence, has a unique positive root λ0 such that

L(k) = λk0 .

To find the unique positive root λ0, we analyze the decrease of the budget (the

parameter) in each call of our algorithm, distinguishing between two cases:

• If best(u) 6= ⊥, then ranku(best(u)) ≤ γ̂ and the recursive procedure makes at

most ranku(best(u)) + 1 recursive calls. Accordingly, the budget in these calls is

decreased by at least 1, 2, . . . , ranku(best(u)), ranku(best(u)), respectively; note

that best(u) ∈ V ∗u . To see why the budgets in the first ranku(best(u)) calls are

updated in this way, we observe that for each agent u ∈ Vr(P) and each acceptable

agent v′ ∈ V ∗u with ranku(v′) < ranku(best(u)), the definition of best(u) implies

that rankv′(u) ≥ 1.

• If best(u) = ⊥, then |V ∗u | ≤ γ̂ and the recursive procedure makes |V ∗u | recursive

calls. The budget in these calls is decreased by at least 1, 2, . . . , |V ∗u |, respectively.
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To see why the budgets are updated in this way, we observe that best(u) does

not exist, so each acceptable agent v′ ∈ V ∗u has rankv′(u) ≥ 1.

The characteristic polynomials of the recurrence (13.1) in the two cases thus are:

λγ̂ − λγ̂−1 − λγ̂−2 − · · · − λγ̂−γ̂ − λγ̂−γ̂ and λγ̂ − λγ̂−1 − · · · − λγ̂−γ̂ , respectively.

Since the unique positive root of the first polynomial is 2, while the unique positive

root of the second polynomial is less than 2, our search tree has L(γ̂) ≤ 2γ̂ leaves

since its height is bounded by γ̂.

Now, to bound the number of nodes in the tree, observe that N(1) = 1 and

N(γ̂) = N(γ̂ − 1) + L(γ̂). This implies that N(γ̂) ≤ 2 · 2γ̂ − 1 since L(γ̂) ≤ 2γ̂ . All

together, our algorithm runs in O(2γ̂ · n2) time.

13.5 Selected Open Questions

In Section 13.3 we presented a simple and elegant 3
2 -approximation algorithm for

Max-SMTI-TF. In fact, a stronger, but more complex, approximation algorithm

for this problem is known, with performance guarantee (1+ 1
e ) ≈ 1.3679, and this is

the best current upper bound at the time of writing. The best current lower bound

for this problem is 5
4 − ε, for any ε > 0, assuming the Unique Games Conjecture

(UGC) holds. For the general Max-SMTI problem (where ties can be on both

sides), the best current approximation algorithm has performance guarantee 3
2 ,

whilst the best current lower bound is 4
3−ε, for any ε > 0, assuming UGC. It remains

open to close these gaps for both Max-SMTI and Max-SMTI-TF by providing

improved approximation algorithms or stronger inapproximability results, leading

to tighter upper and lower bounds.

In Section 13.4, we have seen that Egal-SRI-Dec admits a polynomial kernel,

and hence is fixed-parameter tractable with respect to the egalitarian cost γ. When

the preferences may have ties, Egal-SRTI-Dec still admits a fixed-parameter al-

gorithm with running time 2O(γ log γ) · (n log n)3. It would be interesting to know

whether Egal-SRTI-Dec also admits a polynomial kernel when ties are present.

The running time given in Theorem 13.13 is tight in the sense that there ex-

ists no 2o(γ) · nO(1)-time algorithm for Egal-SRI-Dec for the case without ties,

unless the Exponential Time Hypothesis fails. Another question is whether the

2O(γ log γ) · (n log n)3-time algorithm for the case with ties is tight.

13.6 Bibliographic Notes

We note that our definition of a blocking pair is consistent with that of Gusfield and

Irving (1989), but the definition given in Chapter 1 for Setting II (see Definition

1.19) is slightly different. Nevertheless, both versions lead to the same notion of a
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stable matching. In the presence of ties, our stability definition is also referred to as

weak stability in the literature; we note here that two stronger stability definitions

(so-called strong stability and super-stability) have been considered also, but the set

of matchings satisfying either of these criteria may be empty (see Manlove (2013,

Chapter 3)).

Gale and Shapley (1962) gave an O(n2) algorithm to find a stable matching in an

instance of SMI, whilst Irving’s algorithm (Irving, 1985) finds a stable matching

or reports that none exists, given an instance I of SRI. We note that all stable

matchings in I have the same size, and match the same set of agents (Gusfield and

Irving, 1989, Section 4.5.2). Ronn (1990) proved that deciding whether a stable

matching exists, given an instance of SRTI, is NP-complete even for complete

preference lists.

Irving (1994) showed that a stable matching in an instance I of SMTI can be

found in O(n2) time, whilst Manlove et al. (2002) observed that stable matchings in

I can have different cardinalities. The NP-hardness of Max-SMTI for the special

case in which the ties occur on one side only was first established by Manlove et al.

(2002). However, the proof of Theorem 13.1 incorporates a new reduction from

Independent Set that has not appeared previously in the literature.

Approximation algorithms for Max-SMTI were surveyed by Cechlárová et al.

(2019). The approximation algorithm for Max-SMTI-TF, described in Section

13.3.2, is due to Király (2011). The correctness and efficiency of the algorithm (i.e.,

it always returns a stable matching, it has a performance guarantee of 3
2 and it can

be implemented to run in linear time), and the example showing that the perfor-

mance guarantee is tight, were all given by Király (2011). Further details regarding

the data structures required for efficient implementation of Király’s algorithm can

be found in Gusfield and Irving (1989, Section 1.2.3).

Theorem 13.8(i) was observed by Gusfield (1988, Lemma 7.1). Theorem 13.8(ii)

was established by Gusfield and Irving (1989, Theorem 4.5.2). The running time in

Theorem 13.8 is obtained by using Irving’s algorithm (Irving, 1985) to solve SRI.

The NP-hardness of Egal-SRI-Dec for complete preference lists was estab-

lished by Feder (1992), who also gave a 2-approximation algorithm for minimizing

the egalitarian cost. Cseh et al. (2019) provided a dichotomy result regarding the

maximum length ` of the preference lists, and showed that it is polynomial-time

solvable if ` = 2, and is NP-hard for ` ≥ 3. The polynomial-time algorithm for

Egal-SMI-Dec is due to Irving et al. (1987), whilst the NP-completeness result

for the extension of Egal-SMI-Dec to the case where preference lists are complete

but can include ties is due to Manlove et al. (2002).

Notice from the definition of egalitarian cost that an unmatched agent contributes

the length of her preference list to this measure. In the absence of ties, the value of

this contribution is irrelevant since the set of unmatched agents is the same across

all stable matchings in P. For the case with ties, the situation changes, and we could

for example have defined the contribution of an unmatched agent to the egalitarian
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cost to be n. However, since finding an egalitarian stable matching is NP-hard even

for instances of SRI with complete preference lists, any contribution to the egali-

tarian cost for an unmatched agent results in the same hardness result. The choice

of value only has significance when reasoning about parameterized complexity in

SRTI: giving unmatched agents an egalitarian cost n only makes devising an FPT

algorithm easier. Chen et al. (2018) also investigated the parameterized complexity

for the cases when the egalitarian cost of an unmatched agent is a constant value

or zero.

The polynomial kernel and the fixed-parameter tractability result for Egal-SRI-

Dec parameterized by the egalitarian cost γ are due to Chen et al. (2018). Chen

et al. (2018) also showed that Egal-SRTI-Dec is fixed-parameter tractable with

respect to the parameter γ. Discussion on the Exponential Time Hypothesis can be

found in Impagliazzo et al. (2001). For more information about the UGC, mentioned

in Section 13.5, see Khot (2002).

Further algorithmic results for matching markets can be found in the monograph

of Manlove (2013). More specifically, parameterized algorithms and complexity re-

sults for other matching problems under preferences can be found in Gupta et al.

(2018) and Chen (2019). More techniques from Parameterized Algorithmics can be

found in the following textbooks: Niedermeier (2006); Cygan et al. (2015).
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