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Abstract
We present an improved version of the nested sampling algorithm nessai in which the core
algorithm is modified to use importance weights. In the modified algorithm, samples are drawn
from a mixture of normalising flows and the requirement for samples to be independently and
identically distributed (i.i.d.) according to the prior is relaxed. Furthermore, it allows for samples
to be added in any order, independently of a likelihood constraint, and for the evidence to be
updated with batches of samples. We call the modified algorithm i-nessai. We first validate
i-nessai using analytic likelihoods with known Bayesian evidences and show that the evidence
estimates are unbiased in up to 32 dimensions. We compare i-nessai to standard nessai for the
analytic likelihoods and the Rosenbrock likelihood, the results show that i-nessai is consistent
with nessai whilst producing more precise evidence estimates. We then test i-nessai on 64
simulated gravitational-wave signals from binary black hole coalescence and show that it produces
unbiased estimates of the parameters. We compare our results to those obtained using standard
nessai and dynesty and find that i-nessai requires 2.68 and 13.3 times fewer likelihood
evaluations to converge, respectively. We also test i-nessai of an 80 s simulated binary neutron
star signal using a reduced-order-quadrature basis and find that, on average, it converges in 24min,
whilst only requiring 1.01× 106 likelihood evaluations compared to 1.42× 106 for nessai and
4.30× 107 for dynesty. These results demonstrate that i-nessai is consistent with nessai and
dynesty whilst also being more efficient.

1. Introduction

John Skilling proposed nested sampling in [1, 2] and it has since seen widespread use in astronomical data
analysis, including but not limited to the analyses of gravitational waves [3, 4], asteroseismology [5] and
cosmology [6].

Nested sampling is a Monte Carlo algorithm that approximates the Bayesian evidence

Z≡ p(d|H) =
ˆ

p(d|θ,H)dθ, (1)

for some observed data d with an assumed model H over the parameters θ where L(θ)≡ p(d|θ,H) is the
likelihood. This is usually considered in the context of Bayes’ theorem

p(θ|d,H) = p(d|θ,H)p(θ|H)
p(d|H)

, (2)

where π(θ)≡ p(θ|H) is the prior and p(θ|d,H) is the posterior. Samples from the latter are a by-product of
approximating the evidence.

When implementing nested sampling, the main challenge is drawing new points from the
likelihood-constrained prior at a given iteration. There are different approaches to this such as using Markov
Chain Monte Carlo (MCMC), slice sampling or sampling from bounding distributions [7]. There have also
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been efforts to incorporate machine learning into nested sampling for approximating the likelihood [8], in
the proposal process [9, 10] and for sampling from arbitrary priors [11].

In Williams et al [10], we proposed nessai, a nested sampling algorithm that uses normalising flows to
approximate the likelihood-constrained prior at different iterations. We showed that this approach could
speed up convergence and allowed for natural parallelisation of the likelihood. However, we noted that a
significant portion of compute time was being spent performing rejection sampling to ensure points were
distributed according to the prior, and this, alongside the inherently serial nature of nested sampling, set a
lower limit on how fast the algorithm could be.

In this work, we present a modified nested sampling algorithm based on importance sampling that
addresses the aforementioned bottlenecks. In particular, this modified algorithm:

• incorporates normalising flows in a similar fashion to Williams et al [10],
• removes the requirement for samples to be independently and identically distributed (i.i.d.) and distributed
according to the prior,

• allows samples to be added in any order independent of a likelihood constraint,
• allows the evidence to be updated for batches of samples.

Taken together, these changes improve the efficiency of the algorithm, reducing the number of required
likelihood evaluations by up to an order of magnitude over our previous version, and greatly increasing the
scalability of the algorithm.

This is especially relevant in the context of gravitational-wave data analysis, where nested sampling is the
de facto analysis algorithm [3, 4]. As of the last LIGO-Virgo-KAGRA [12–14] observing run, there are 90
confirmed detected compact binaries [15–17] and this number is expected to increase by a factor of∼3.3 in
the fourth observing run [18]. This presents a significant computational challenge since typical analyses take
of order days to weeks. Furthermore, a subset of these analyses are currently only possible at great
computational cost [19, 20]. The algorithm we present brings the possibility of tackling these challenging
analyses and dramatically reduces the wall-time required to complete an analysis.

This paper is structured as follows: in section 2 we present background theory on nested sampling and
various alternative formulations that this work builds upon. We then describe a simplified version of our
modified algorithm and validate it in section 3. This is followed by a description of the complete method and
algorithm in section 4. Finally, we present results in section 6 and discuss them in section 7.

2. Background

2.1. Nested sampling
Nested sampling [1, 2] is a stochastic sampling algorithm where the Bayesian evidence (p(d|H) or Z) is
rewritten as a one-dimensional integral in terms of the prior volume X

Z=

ˆ 1

0
L(X)dX, (3)

where L(X) is the likelihood at a given prior volume X. If the likelihood L(X) is a well-behaved function,
then this formulation allows for the evidence to be approximated using an ordered sequence of decreasing
prior volumes Xi such that

Z≈ Ẑ=
N∑

i=1

Liwi, (4)

where Li = L(Xi) is the likelihood at Xi and the weights wi are, for example, given by wi = (1/2)(Xi −Xi+1).
The prior volume at a given iteration Xi is computed in terms of the previous prior volume Xi−1, the number
of points within the likelihood-constrained prior N live and the shrinkage factor ti which is a random variable
in (0,1) with probability density function P(t) = NlivetNlive−1. The mean and standard deviation of log t are
therefore

µ[log t] =− 1

Nlive
, σ[log t] =

1

Nlive
. (5)

Since each draw of log ti is independent, the prior volume at a given iteration i is approximately
Xi ≈ exp(−i/Nlive). We can express this as a recursive relationship in terms of ti where

Xi = tiXi−1. (6)

2
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The overall nested sampling algorithm can then be summarised as follows:

1. Draw N live points {θi}Nlive
i=1 ∼ π(θ) and compute the likelihood Li = L(θi) of each point,

2. Choose the point θ∗ with the lowest likelihood L∗ ≡ L(θ∗),
3. Draw new points θ̂ until L(θ̂)> L∗,
4. Replace θ∗ with the new point θ̂ and add θ∗ to the nested samples,
5. Update the evidence estimate via equation (4),
6. Repeat steps 2–5 until a stopping criterion is met.

The algorithm returns a set of nested samples, with corresponding prior volumes and likelihoods, and an
evidence estimate with a corresponding error. The stopping criterion is typically related to the fractional
change in the evidence between iterations [7].

Given a completed nested sampling run, posterior samples can be drawn by computing the posterior
weights for each nested sample

pi =
Liwi

Ẑ
, (7)

and then, for example, rejection sampling can be used to obtain samples from the posterior distribution.
This formulation has been extended and modified in various works, such as to allow for a varying

number of live points [21], to use different proposal methods [6, 10, 22], or even using different definitions
of the weights wi in equation (4) [23–25], which is the focus of this work.

As mentioned previously, the main challenge when implementing a nested sampling algorithm is drawing
live points that are i.i.d according to the prior and satisfy the likelihood constraint at the current iteration.
There are various different approaches to this. In the original paper [2], Skilling proposes using MCMC over
the prior and accepting only those points for which L(θ)> L∗ until the correlation with the starting point
(one of the existing samples) has been lost. This method requires a random walk that can adapt to the
continuously shrinking likelihood-constrained prior and a method for determining the number of steps to
take [7]. Further modifications are often needed to handle multi-modality and complex correlations between
parameters, for example, as implemented in Veitch et al [3]. Similarly, slice sampling [26], where samples are
drawn from a randomly oriented line within the likelihood-constrained prior, has also been used [6]. The
challenge in this case is choosing the direction of the line and how to sample from it. Another approach
is to sample from a bounding (or proposal) distribution that directly approximates or contains the
likelihood-constrained prior, such as ellipsoids [22, 25] or mixtures of these to handle, for example,
multi-modality. Finally, there are algorithms that use a mix of the aforementioned methods [27, 28].

One limitation of nested sampling is its inherently sequential nature. This is addressed in part by
dynamic nested sampling [21] where an initial exploratory run is then retroactively improved upon by
adding samples in regions of interest. However, the core algorithm is still sequential. Diffusive nested
sampling [23] tackles this by using a multi-level exploration method which allows returning to lower
likelihoods. We draw from this variant of nested sampling when developing our modified algorithm.

Machine learning has also been incorporated into nested sampling algorithms to address some of the
limitations and accelerate inference. In Graff et al [8], the likelihood is approximated using a neural network
which, for computationally expensive likelihoods, can reduce the overall computational cost. In Alsing and
Handley [11], normalising flows are used to allow for arbitrary priors which could otherwise not be used, for
example, when using a posterior distribution as the prior for subsequent inference. Normalising flows have
also been applied specifically to the proposal process. The algorithm proposed in Moss [9] improves MCMC
efficiency by transforming the sampling parameter space to a simpler space using a normalising flow and in
Williams et al [10], we proposed nessai which uses normalising flows to directly approximate the
likelihood-constrained prior and to avoid the need for MCMC, greatly improving sampling efficiency. We
discuss nessai in detail in section 2.2.

2.2. nessai: Nested sampling with normalising flows
In Williams et al [10], to address the aforementioned challenged of proposing new live points from the
likelihood-constrained prior, we introduced nessai, a nested sampling algorithm that incorporates
normalising flows in the proposal process. We now review the core aspects of nessai.

Normalising flows are a family of parameterised invertible transforms that can be trained via an
optimisation process to map from a simple distribution pZ(z) in the latent space (Z) to a complex
distribution pX (x) in the data space (X ). They were first proposed in [29, 30] and have since been applied to
a range of problems including image synthesis, noise modelling, physics and simulation-based inference
[31–33].

3
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One property that distinguishes normalising flows from other generative models, such has variational
autoencoders [34] and generative adversarial networks [35], is their construction allows for an explicit
expression for the learnt distribution pX (x)

pX (x) = pZ( f(x))

∣∣∣∣det(∂f(x)

∂x

)∣∣∣∣ , (8)

where f is the normalising flow and |det(∂f(x)/∂x)| is the Jacobian determinant. The normalising flow f
must be constructed such that the mapping is invertible and has a tractable Jacobian determinant.
Depending on how the mapping is constructed, they fall into two main categories: autoregressive flows and
coupling flows. The former have more expressive power at the cost of being more computational expensive to
train and evaluate, whereas the opposite is true for the later [32]. In Williams et al [10] and in this work, we
use coupling flows based on RealNVP [36]. For a complete review of normalising flows, see Kobyzev
et al [31] and Papamakarios et al [32].

In nessai, at a given iteration, a normalising flow is trained using the current live points. The trained
flow maps the live points from the sampling space X to samples in the latent space Z . New samples are then
drawn by sampling from a truncated latent distribution and applying the inverse mapping f−1. Finally,
rejection sampling is used to ensure that the samples are distributed according to the prior. The benefit of
this approach is that all the samples are i.i.d. removing the need for MCMC sampling. Furthermore, since the
points are drawn in parallel, the likelihood evaluation can also be parallelised, further reducing the time
taken for the algorithm to converge.

However, we found that the rejection sampling step can be inefficient and lead to many samples being
discarded. In particular, for the results we presented in Williams et al [10], this rejection sampling accounted
for approximately 40% of the total sampling time and, unlike the likelihood evaluation, this time cannot be
significantly reduced via parallelisation. Additionally, we found it was necessary to reparameterise certain
parameters that would otherwise be difficult to sample or make the rejection sampling inefficient. For
example, parameters with posterior distributions that rail against the prior bounds could be under-sampled
when the latent space is truncated. Whilst reparameterising these problematic parameters does address these
issues, it requires prior knowledge of the parameter space.

2.3. Alternative formulations of nested sampling
In this section, we highlight alternative formulations of nested sampling that will be built upon in this work.

2.3.1. Diffusive nested sampling
Diffusive nested sampling [23] uses a multi-level exploration method where a mixture of constrained
distributions is sampled from at each iteration using MCMC. The constrained distributions are added
sequentially and each contains approximately e−1 of the prior volume of the previous. In contrast to standard
nested sampling approaches, all the samples from the MCMC chain are kept and those that do not meet the
current likelihood criteria are added to the previous level. The values for the prior volume X are estimated
using the fraction of samples above the likelihood threshold compared to the total number of samples.

This variation of nested sampling avoids the strict likelihood constraint and utilises all the samples drawn
at a given iteration but still requires that new points be sampled from the prior.

2.3.2. Importance nested sampling
Importance nested sampling was proposed in Cameron and Pettitt [24] and expanded upon in Feroz
et al [25]. In this version of nested sampling, the evidence integral is approximated in terms of a
pseudo-importance sampling density Q(θ)

Ẑ=
1

NTotal

NTotal∑
i=1

L(θi)π(θi)
Q(θi)

, (9)

where NTotal is the total number of nested samples. Posterior weights are then computed using

pi =
L(θi)π(θi)
NTotalQ(θi)

, (10)

and these can be used to obtain posterior samples via rejection sampling, or used directly in weighted
histograms or kernel density estimates to approximate marginal distributions.

4
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In standard importance sampling, the unbiased estimator for the variance of the evidence is given by

σ2[Ẑ] =
1

NTotal(NTotal − 1)

NTotal∑
i=1

[
L(θi)π(θi)

Q(θi)
− Ẑ

]2
, (11)

however, this does not apply when using a pseudo-importance sampling density, which is the case in
multinest [25].

In multinest [22, 25], one or more ellipsoidal distributions are used to construct an approximation of
the current likelihood contour defined by L∗. New points are then drawn from within this proposal
distribution and their likelihood evaluated until L(θ̂)> L∗ and, similarly to diffusive nested sampling, all
these points are used in the evidence summation and define the number of points within a level ni. The
pseudo-importance sampling density for each point is given by

Q(θ) =
1

Ntot

Niter∑
i=1

niEi(θ)

Vtot,i
, (12)

where Vtot,i is the volume of the bounding distribution, Ei is an indicator function that is 1 if the point lies
within the ith ellipsoidal decomposition and 0 otherwise, Niter is the number of iterations, where an iteration
is an instance of the ellipsoidal decomposition and N tot is the total number of points Ntot =

∑Niter

i=1 ni.
This formulation of the evidence removes the requirement that samples are distributed according to the

likelihood-constrained prior so long as the exact distribution of nested samples Q(θ) can be written down.
However, only a single point is removed and updated between each update of the ellipsoidal decomposition,
therefore convergence will require computing the decomposition hundreds or thousands of times. This
makes it ill-suited to use with normalising flows that are, in comparison, slow to train.

2.3.3. Nested sampling via sequential Monte Carlo (SMC)
SMC is a general extension of importance sampling where random samples with corresponding weights are
drawn from a sequence of probability densities such that they converge towards a target density [37]. These
algorithms are typically comprised of three main steps:mutation in which the samples are moved towards the
target density via a Markov kernel, correction where the weights of the samples are updated, and selection
where the samples are resampled according to their weights.

In Salomone et al [38], the authors draw parallels between nested sampling and SMC and show that
nested sampling is a type of adaptive SMC algorithm where weights are assigned suboptimally. They also
highlight several limitations of the standard nested sampling algorithm, including the assumption of
independent samples. They propose a new class of SMC algorithms called nested sampling via SMC and
demonstrate that it is equivalent to nested sampling but addresses the aforementioned limitations. This
formulation bares similarities to the importance nested sampling [24, 25] but removes batches of live points
at each iteration and includes the mutation and selection steps that are typical in SMC.

A downside of this formulation is that since the points are resampled at each iteration, some samples for
which the likelihood has been evaluated are discarded and not used in the final evidence estimate or output.
In this work, we aim to avoid this by not including the resampling step and instead directly using the weights
of the samples when constructing the next level.

3. Core importance nested algorithm

In this section, we motivate and present the core importance nested sampling algorithm used in nessai. We
extend the formulation of importance nested sampling described in section 2.3.2 to allow the use of
normalising flows instead of ellipsoidal bounding distributions. We also draw on the design of diffusive
nested sampling where the likelihood constraint is relaxed such that samples are not rejected based on their
likelihood.

We start by considering the definition of the evidence from equation (9). In importance nested sampling,
the aim is to construct an importance sampling density Q(θ), which we will callmeta-proposal, from which
samples can be drawn, and used to estimate the evidence. The error on this estimate is given by equation (11)
and depends on the number of samples Ntot and Q(θ). If we consider a fixed number of samples, the
meta-proposal that maximises the effective sample size (ESS) of the set of summands L(θi)π(θi)/Q(θi), and
therefore provides the most precise evidence estimate, will be Q(θ)≡ L(θ)π(θ)/Z, i.e. when Q(θ) is equal to
the target posterior. Since the evidence is unknown a-priori, the aim is to construct the meta-proposal such
that Q(θ)∝ L(θ)π(θ).

5
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This formulation of nested sampling is closely related to variational inference [39], where the goal is to
approximate a target probability density. In this case, the target density is L(θ)π(θ) and the approximate
distribution is the meta-proposal Q(θ). The difference is in how the approximate distribution is obtained. In
variational inference, the approximate distribution is optimised by minimising a variational objective,
whereas in this algorithm the distribution is constructed by progressively sampling and adding proposal
distributions.

We now consider how to construct the meta-proposal using normalising flows. An important difference
between the ellipsoidal bounds used in multinest and normalising flows is the space over which they are
defined. For a normalising flow, this depends on the domain of the latent distribution pZ . For the typical
case of a n-dimensional Gaussian the mapping is defined such that f : Rn → Rn, so the flow will have infinite
support. We need the meta-proposal to have the same support as the prior, so we include an additional
invertible transform that maps from Rn to a bounded space, such as the sigmoid s(x) = [1− exp(−x)]−1. We
denote the bounded space X and the unbounded space X ′.

Therefore, instead of considering a series of bounded distributions, we consider a set of N normalised
proposal distributions (normalising flows) {q1, . . . ,qN} all defined over the entire prior volume and with
corresponding weights αj defined such that

∑N
j=1αj = 1. The overall proposal density as a function of θ is

given by

Q(θ) =
N∑

j=1

αjqj(θ). (13)

In practice, in order to sample from Q(θ) we first draw a proposal k ∈ {1, . . . ,N}, drawn from a categorical
distribution with category weights {α1, . . . ,αN}, then a sample is drawn from the sub-proposal qk(θ).

With this formulation, we can compute an estimate of the evidence for a set of samples drawn from Q(θ)
using equation (9) and, as noted in Feroz et al [25], we no longer require new samples that have
monotonically increasing likelihood values. Furthermore, as described in Salomone et al [38], we do not
require that new samples be i.i.d. or distributed according to the likelihood-constrained prior. This removes
the need for the rejection sampling that was a bottleneck in the version of nessai we described in Williams
et al [10].

We now outline a simplified importance nested sampling algorithm which we build upon in later
sections. The main changes are to steps 2–5 of the standard nested sampling algorithm outlined in section 2.
Instead of removing a point and finding a single replacement point, we construct a proposal distribution

qj(θ) based on the points sampled thus far and draw a set of N j new pointsΘj = {θi}
Nj

i=1 which are added to
the overall set of points {Θ1, . . . ,Θj−1}. The meta-proposal Q(θ) is then updated to include qj(θ) and the
evidence is updated. The new importance nested sampling algorithm therefore consists of the
following steps:

1. Draw N live points {θi}Nlive
i=1 ∼ π(θ) and compute the likelihood Li = L(θi) of each point,

2. add the next proposal distribution qj(θ),

3. draw N j samples fromΘj = {θi}
Nj

i=1 ∼ qj(θ) and compute the corresponding likelihoods,
4. update the meta-proposal Q(θ) to include qj(θ),
5. compute the evidence and the corresponding error via equations (9) and (11),
6. repeat steps 2–5 until a stopping criterion is met,
7. redraw independent samples from the final meta-proposal,
8. compute the final evidence and posterior weights using the independent samples and equations (9)

and (10).

This includes an additional step not present in standard nested sampling: redrawing independent
samples from the final meta-proposal. Since subsequent proposals are constructed using samples from the
previous iterations, new samples are not i.i.d. and equations (9)–(11) do not strictly apply. However, once
the meta-proposal is finalised, i.i.d. samples can be sampled and used to compute unbiased estimates of the
evidence and posterior weights.

The design of the algorithm hinges on how the next proposal distribution is added, how the number of
samples drawn from each proposal (N j) is determined and how the weights in the meta-proposal Q(θ) are
determined. Note that the first proposal distribution q0(θ) will typically be the prior. We now apply this
simplified algorithm to a toy example.

6
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3.1. Toy example
In this toy example, we consider a simple problem with an analytic evidence and posterior distribution. We
apply the algorithm described in section 3 but with some simplifications. This allows us to validate the core
algorithm.

We use a 2-dimensional Gaussian likelihood with mean µL = 0 and standard deviation σL = 1 and a
Gaussian prior a with mean µπ = 0 and standard deviation σπ = 2. The posterior distribution is therefore
another Gaussian distribution with mean µPost = 0 and standard deviation σPost =

√
1/[(1/σ2

L)+ (1/σ2
π)].

The evidence is given by a Gaussian distribution with mean µπ and standard deviation
√

σ2
L +σ2

π evaluated
at µL, so ZAnalytic = 0.03183.

To make the comparison between the true and sampled posterior distributions easier, we express the
posterior distribution in terms of the log-likelihood p(lnL). To do this, we note that the posterior
distribution defined in terms of the radius squared is p(r2) = χ2

2(r
2)/σ2

Post where χ
2
2 is a chi-squared

distribution with two degrees of freedom. Then

p(lnL) = p(r2)

∣∣∣∣ ∂r2

∂ lnL

∣∣∣∣ , (14)

where

r2 =−2σ2
L
[
ln(2πσ2

L)+ lnL
]
, (15)

which is defined on [0,∞) since the maximum possible value of the log-likelihood is lnL=− ln(2πσ2
L).

The four steps we must define for the simplified algorithm are: how to construct each proposal
distribution, how to determine the number of samples to draw from each proposal, how to determine the
weights for each proposal in the meta-proposal and a stopping criterion. For the proposals, instead of
normalising flows, we use 2-dimensional Gaussian distributions qj(θ) with mean zero and different standard
deviations. We determine the standard deviation of each proposal by setting a likelihood threshold Lt such
that 50% of the points from the previous iteration are discarded and then compute the standard deviation of
the remaining points. We set the number of samples drawn from each proposal to constant Nj = Nlive = 500
and set the weights for the meta-proposal αj to be equal. This means that each proposal will contribute
equally to the meta-proposal. Finally, instead of using a stopping criterion, we define a fixed number of
proposal distributions (iterations) N = 4 where the first is the prior distribution q0(θ)≡ π(θ). This is akin to
fixing the number of iterations in a normal nested sampling algorithm. Once the final proposal has been
added, we draw i.i.d. samples from the finalised meta-proposal and compute the final unbiased evidence
estimate and posterior weights.

We present the results obtained with this algorithm in figure 1. This shows the samples and the 1-σ
contours for each of the proposal distributions, along with the corresponding distribution of log-likelihoods.
We compute two evidence estimates: one with the initial samples that are not i.i.d. Ẑ= 0.03177± 0.00042
and the other with the final i.i.d. samples Ẑ= 0.03191± 0.00042. We find that both are in agreement with
the analytic value, Z= 0.03183, but, as we will see in section 6.1, the initial estimate will be biased, the bias is
just very small in this simple example. This demonstrates that the underlying algorithm can reliably estimate
the evidence. We also compute the posterior weights using equation (10) and plot the weighted histogram in
log-likelihood space, which shows good agreement with the analytic expression from equation (14). Overall,
these results demonstrate the principles of the proposed algorithm and that, for a simple toy example, it
converges to the expected result.

4. Method

Having outlined the underlying algorithm, we now describe each of the steps in the complete algorithm in
detail.

4.1. Constructing proposal distributions
With this formulation of nested sampling, the main design choice is how to construct the proposal
distribution qj(θ) at each iteration (step 2). This is akin to drawing new samples in standard nested sampling
however, since we no longer require an ordered sequence of points with decreasing prior volume, new points
no longer need strictly increasing likelihood values.

The new proposal qj(θ) at each iteration is defined in terms of a likelihood threshold Lt: of the current
N live points,Mj are discarded based on a likelihood threshold and the remaining Nlive −Mj points are used to

7
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Figure 1. Results for the toy example described in section 3.1. Top: the final samples are shown in grey, the solid lines show the
1-σ contour for each proposal distribution starting with the prior, lighter colours indicate later iterations. The orange dashed line
shows the 1-σ contour for the analytic posterior distribution. Bottom left: distribution of log-likelihoods for the final samples
drawn from each proposal distribution. Bottom right: distribution of the log-likelihoods of the final samples weighted by their
corresponding posterior weights. The orange dashed line indicates the analytic posterior distribution computed using
equation (14).

construct the next proposal distribution qj(θ). In our implementation, this is done by training a normalising
flow. The result is a series of increasingly dense proposal distributions, which is equivalent to the
distributions becoming narrower in the log-likelihood space. This is shown in figure 1.

We therefore require a method for determining the likelihood threshold Lt used to determine how many
points will be discarded before constructing the next proposal distribution. We consider two methods, both
of which use weights

wi =
π(θi)

Q(θi)
, (16)

which quantify the relative importance of each sample θj compared to the prior. Additionally, one could
include the likelihood in the weights, however, we leave this for future work.

In the first method, the threshold Lt is determined using the (1− ρ) quantile of the likelihood values of
the samples from the previous iteration, where ρ is set by the user. To account for non-prior distributed
samples used in our algorithm, we use a weighted quantile, where the weights are given by equation (16).
This method is based on the standard method used in SMC [38] and diffusive nested sampling [23], but with
the addition of the weighted quantile.

8
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The second method we consider is closely related to the first but uses log-weights logwi instead of wi. We
consider the normalised sum of logwi for the set of N live points ordered by increasing likelihood

λ(M) =

∑M
m=1 logwm∑N
i=1 logwi

, (17)

whereM is the number of live points to be discarded. We then determine the value ofM at which λ(M)⩾ ρ,
for ρ ∈ [0,1] and set Lt ≡ L(θM). This is analogous to shrinking the log-prior volume by a factor ρ at each
iteration whilst also accounting for the different weights of each sample. In practice, since the normalising
flows have support over the entire prior volume, this results in increasing the entropy of qj(θ). We therefore
denote this as the entropy-basedmethod to distinguish it from the quantile-based method.

For both methods, we employ a maximum number of live points that can be removed—this prevents the
remaining live points being too few to robustly train the next normalising flow. This maximum together with
the value of ρ will determine the total number of samples used in the algorithm. We also employ a minimum
number of samples to ensure a minimum change in distribution of training data between subsequent
proposals. We discuss the advantages and disadvantages of both methods in appendix B.

4.2. Training normalising flows with weights
As discussed in section 2.3.3, it is common practice in SMC to resample at each iteration prior to the
mutation step. Different sampling methods can be used, but they all keep the total number of samples
constant by including repeated samples. This works when the mutation step is a Markov kernel, but in this
work we use a normalising flow to perform the equivalent of the mutation step and, when training a
normalising flow duplicates in the training data, can be problematic. In extreme cases, where only a few
samples are representative, the training data could contain tens of copies of the same sample, which will
make training unstable.

Without a step that is equivalent to resampling, deficiencies in training can have a cumulative effect. For
example, if the mapping learnt by the normalising flow qj(θ) under-samples a region of the space compared
to the target, then if another normalising flow qj+1(θ) is trained with samples drawn using qj(θ) then qj+1(θ)
will also under-sample the same region. To counteract this effect, we include weights in the approximation of
(Kullback–Leilber divergence) used to train the normalising flow. We describe this in detail in appendix A. To
train the jth flow, we use all samples from the current meta-proposal Qj−1(θ) that satisfy the likelihood
constraint L(θ)> Lt and then minimise

Loss=− 1

N

N∑
i=1

wi logqj(θi), (18)

where qj(θ) is given by equation (8) and wi are the weights for each sample. In principle these weights could
include the likelihood, however in this work we use the weights given by equation (16) which are
proportional to the ratio of the likelihood-constrained prior and the likelihood-constrained meta-proposal.

4.3. Drawing samples from the proposal distributions
At a given iteration j, once the normalising flow qj(θ) has been trained (step 2), we sample from the flow
(step 3) and evaluate the likelihood for each new sample. This involves sampling from the latent distribution
pZ(z) and then applying the inverse flow mapping f−1 to obtain samples in X ′. These samples must then be
mapped backed to the original space X , where the likelihood can be computed.

The number of samples drawn at a given iteration N j should be determined by drawing from a
multinomial distribution with N possible outcomes (the number of proposal distributions) and
NTotal =

∑N
j=1Nj trials, however the weights for each outcome are not known prior to sampling. Instead, we

set N j and determine the weight for the current iteration αj based on its value. We allow N j to either be equal
to the number of samples removed at that iteration (Mj) or kept constant (Nj = Nlive). The former will
maintain a fixed number of live points N live throughout the run whereas the latter allows for N live to vary. We
discuss the consequences of this approximation in sections 4.4 and 4.7.

Similarly to diffusive nested sampling, all the samples are kept irrespective of their likelihood, which
means that samples can ‘leak’ below the current likelihood threshold.
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4.4. Updating the meta-proposal
Having drawn samples from the current proposal distribution, the meta-proposal Q(θ)must be updated.
The overall form of Q(θ) will depend on the weights αj that are assigned to each proposal. Whilst adding
proposals, we approximate the weights as αj ∝ Nj and normalise them such that they sum to one. This
approximation can be corrected for once the sampling has been terminated by fixing the weights to their
values from sampling, recomputing N j by sampling from a multinomial distribution with weights
{α0, . . . ,αNj} and drawing new samples from each qj(θ) according to N j. However, in practice, we find error
introduced by this approximation to be significantly smaller than the overall error of the estimated evidence.

4.5. Stopping criterion
We define the stopping criterion to be the ratio of the evidence between the live points and the current
evidence

Condition=
ẐLP

Ẑ
, (19)

where ẐLP is computed using equation (9) and including only the live points in the sum. The algorithm will
then terminate when the condition is less than a user-defined threshold τ .

This is more suitable than the fractional change in the evidence between iterations, that is used in
standard nested sampling algorithms, because multiple points are removed simultaneously at each iteration,
the number of points can vary between iterations and points can leak below the current Lt, which all mean
fractional change does not decrease smoothly and instead can fluctuate significantly between iterations.

4.6. Posterior samples
Similarly to SMC and multinest, our algorithm returns samples {θi}NTotal

i=1 and their corresponding posterior
weights pi given by equation (10). Different methods can then be employed to draw posterior samples. The
standard approach in nested sampling is to use rejection sampling [10] or multinomial resampling [28] to
resample the nested samples using the posterior weights. Alternatively, the weights can be used directly in
weighted histograms or kernel density estimates.

When using multinomial resampling or the weights directly, the posterior samples are not statistically
independent, so it is informative to compute Kish’s ESS [40]

ESS=

[∑N
i=1 pi

]2
∑N

i=1 p
2
i

, (20)

where pi is given by equation (10). This gives an indication of the effective number of posterior samples in
the posterior and allows for comparing results obtained via different sampling methods. It can also be used
to diagnose poorly converged runs, since a low ESS is an indication that the samples and their corresponding
weights are a poor match for the true posterior distribution.

4.7. Post-processing
Once sampling is complete, we correct for the approximation of the meta-proposal Q(θ) discussed in
section 4.4 by redrawing NFinal samples from the meta-proposal according the draws from the multinomial
distribution. The number of samples can be equal to NTotal or can be increased or decreased depending on
the desired output.

This has the additional benefit of allowing more samples to be drawn after sampling has completed and
can be used to obtain more posterior samples or decrease the estimated error on the evidence.

4.8. Complete algorithm
We can now combine all these elements into a complete algorithm which is shown in algorithm 1. The
algorithm incorporates normalising flows but no longer requires that samples drawn from them be i.i.d.
according to the prior. Furthermore, samples are drawn and their likelihoods evaluated in batches and all the
samples are kept irrespective of their likelihood. Finally, the evidence is a simple sum, so it can be updated for
batches of samples. Thus, this algorithm meets all the criteria that were initially set out.

10
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Algorithm 1. Overview of i-nessai.

Input: Likelihood L, Prior π, Tolerance τ , Method for determining N j, NFinal

Output: Evidence Ẑ, samples {Θ1, . . . ,Θj} and posterior weightsW
1 j ← 1;
2 Θ1←{θi ∼ π}N1

i=1;
3 NTotal← N1,q1← π;
4 while condition⩾ τ do
5 j ← j + 1;
6 qj← trained normalising flow;
7 Nj← determined via specified method;

8 Θj←{θi ∼ qj}
Nj

i=1;
9 NTotal← NTotal +Nj;

10 Ẑ← 1
NTotal

∑Ntot

i=1
L(θi)π(θi)

Q(θi)
;

11 W←
{

L(θi)π(θi)
NTotalQ(θi)

}Ntot

i=1
;

12 end
13 Redraw NFinal samples from the final meta-proposal and compute the final evidence

estimate and posterior weights.

4.9. Biases
In our algorithm, the proposal distributions (normalising flows) are trained and then sampled from, rather
than being constructed post sampling. This means that, unlike in multinest, the meta-proposal
distribution is an importance sampling density and equation (11) should give a reliable estimate of the
evidence error. We verify this in section 6.1.

We also note that a different bias in the evidence arises from evaluating each normalising flow with
samples that were also used to train it. This is necessary since the meta-proposal requires evaluating each
normalising flow on every sample. This is a side effect of the small amount of training data available to each
flow and difficulty in setting the hyperparameters for N different normalising flows prior to sampling. This
bias is corrected for when the samples are redrawn as described in section 4.7 which we demonstrate in
section 6.

5. Related work

As described in section 2, the proposed method draws from existing variations of nested sampling: the soft
likelihood constraint from diffusive nested sampling [23], the formulation of importance nested sampling
used in multinest [25] and the use of normalising flows as described in Williams et al [10] and Moss [9].
However, it also has parallels to standard importance sampling and the methods derived from it.

Considering the use of a sequence of normalising flows to approximate a target (or posterior)
distribution, the most closely related works are nested variational inference [41], annealed flow transport
Monte Carlo [42] and preconditioned Monte Carlo [43]. The first is a hybrid between variational inference
and SMC where a series of parameterised distributions are simultaneously optimised using an annealed
version of the target distribution. In the latter two works, the standard SMC algorithm is modified to include
an additional step that uses a normalising flow. Additionally, in Karamanis et al [43] the authors apply their
algorithm to gravitational-wave inference, however only a single simulated event is analysed rather than a set
of events.

As with any stochastic sampling algorithm for Bayesian inference, this work can also be compared to
simulation-based or likelihood-free inference [33] where the posterior distribution is approximated using
repeated simulations of the data instead of evaluating the likelihood. This technique has been applied to data
analysis in physics and astrophysics, including but not limited to gravitational-wave data analysis [44–47],
cosmology [48, 49] and particle physics [50]. The approach used in these methods involves training on a
dataset that is representative of the entire parameter space and then being able to perform inference for any
given point in that space. This is the opposite to the approach employed in this work, where the algorithm is
general purpose and is not trained for a specific task but instead is trained on the fly, removing the need for
expensive initial training at the cost of being slower when performing inference.
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Figure 2.Mean estimated log-evidence before (blue cross) and after (orange dot) the resampling step described in section 4.7 for
an n-dimensional Gaussian and Gaussian mixture. The error-bars show the mean estimated error for the log-evidence. The
estimated evidence has been rescaled using the true value such that the distributions of log-evidences should be centred around
zero. The number of samples drawn during the resampling step is set such that is equal to the number of samples accumulated
during the initial sampling.

6. Results

We present results obtained using the algorithm described in section 4.8 on range of problems. We
implement the algorithm in the nessai software package and it is available at [51]. To distinguish it from the
version of nessai described in Williams et al [10], we will refer to it as i-nessai.

We run all our experiments using normalising flows based on RealNVP [36] as we find that more
complex flows, such as neural spline flows [52], over-fit to the small amount of data available1 and,
compared to the other components of the algorithm, are too computationally expensive to justify using.
Furthermore, i-nessai requires storing the normalising flow for each level so using a flow with more
parameters can significantly increase the memory footprint of the algorithm.

We start with a series of tests using analytic likelihoods followed by a test using a more challenging
likelihood and compare these results to those obtained with nessai. We then apply i-nessai to two
different gravitational-wave analyses. Finally, we investigate parallelisation of the algorithm and how it scales
with the number of live points.

For all experiments, we use the entropy-based method for constructing each proposal distribution
described in section 4.1 with ρ= 0.5. We discuss this choice in appendix B. We also set the number of
samples per flow to a constant Nj = Nlive. Code to reproduce all the experiments is available at https://doi.
org/10.5281/zenodo.8124198 [53]

6.1. Validation using analytic likelihoods
We start by validating i-nessai using likelihoods for which the evidence can be computed analytically in n
dimensions. We choose to analyse the simple case of an n-dimensional Gaussian. For a more complex case,
we employ the n-dimensionalM-component Gaussian mixture likelihood described and used in Moss [9]
and Higson et al [21]

LGM(θ) =
M∑

m=1

W(m)
(
2πσ(m)2

)−n/2
exp

(
−|θ−µ(m)|2

2σ(m)2

)
, (21)

where µ(m) and σ(m) are the mean and standard deviation of each component in all dimensions and∑M
m=1W

(m) = 1. We use the same hyperparameters [9, 21]:M= 4,W(m) = {0.4,0.3,0.2,0.1},
µ
(m)
1 = {0,0,4,−4}, µ(m)

2 = {4,−4,0,0}, µ(m)
n = 0 ∀ n ∈ {3, . . . ,n} andm ∈ {1, . . . ,M}, and

σ(m) = 1 ∀m ∈ 1, . . . ,M.
For both likelihoods, we consider n= {2,4,8,16,32} and use uniform priors on [−10,10]n. The

analytical log-evidence for both models is lnZ=−n log20. We analyse each likelihood 50 times, including
redrawing the samples as described in section 4.7, and examine the distribution of the log-evidence estimates
and the corresponding estimated error. In figure 2, we include the result of the redrawing of the samples and
recomputing the final log-evidence estimate. This shows that without redrawing the samples there is a bias in
the estimated log-evidence, however this bias is small compared to the value of the log-evidence, for example,
for the 32-dimensional Gaussian and Gaussian mixture the true log-evidence is−95.86 and the average
biases are 0.6% and 0.9% respectively. After redrawing the samples, i-nessai reliably estimates the evidence

1 A single instance of over-fitting across all the flows will not significantly impact results, however, if the flows consistently over-fit then
the final result will be over-constrained.
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Figure 3. Comparison of results produced using nessai (orange) and i-nessai (blue) when applied to the n-dimensional
Gaussian, Gaussian mixture and Rosenbrock likelihoods as described in sections 6.1 and 6.3. From top to bottom, results are
shown for the final estimated log-evidence rescaled by a reference evidence (the true value for the Gaussian and Gaussian mixture
and the mean value obtained with i-nessai for the Rosenbrock), the estimated log-evidence error, the total number of
likelihood evaluations, the total wall time in seconds and the ESS of the posterior distribution. Results are averaged over 50 runs
with different random seeds for both samplers and the error bars show the standard deviation.

for both models for all values of n. We also compare the distribution of the re-computed log-evidences
alongside the expected distribution computed using equation (11) in appendix C and observe that the
estimated log-evidence errors agree with the observed distributions.

6.2. Comparison with standard nested sampling
We now compare i-nessai with standard nested sampling, in particular the standard version of nessai.
This allows us to verify the results obtained with i-nessai, compare the observed and estimated evidences
and evidence errors, the number of likelihood evaluations, the wall time and ESS of the posterior
distribution. We repeat the analyses described in section 6.1 using nessai and present the results for both
likelihoods in figure 3.

Figure 3 shows that i-nessai produces estimates of the log-evidence for the Gaussian and Gaussian
mixture that are consistent with nessai but have significantly lower variances and the corresponding
estimates of the error are correspondingly smaller. We explore how the error on the log-evidence estimate
scales in section 6.7. Furthermore, figure 3 shows that i-nessai requires a comparable number of
likelihood evaluations in lower dimensions but more than an order of magnitude less in higher dimensions
and a similar trend is seen with the wall time. However, this behaviour is highly dependent on the
user-defined settings, which in these experiments were set based on the requirements for the
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high-dimensional analyses. The ESS of the posterior distribution highlights a notable difference between the
two samplers; with nessai the ESS increases as the number of dimensions increase for both likelihoods
whereas with i-nessai, for the Gaussian Mixture likelihood, it decreases in higher dimensions but is still of
order 104. Since in importance nested sampling the ESS depends on how well the meta-proposal
approximates the likelihood times the prior, a lower ESS indicates a ‘worse’ approximation. In contrast, in
standard nested sampling, and therefore nessai, the ESS does not depend on the convergence of the sampler
and an under- or over-constrained result can still have a large ESS.

6.3. Testing onmore challenging likelihoods
To further test i-nessai, we consider the n-dimensional Rosenbrock likelihood [54] which has highly
correlated parameters and is recognised as a challenging function to sample. We use the more involved
variant [55, 56] where the log-likelihood is defined as

lnLRosenbrock(θ) =−
n−1∑
i=1

[100(θi+1 − θ2i )
2 +(1− θi)

2], (22)

with a uniform prior on [−5,5]n. We test for n= {2,4,8} and run i-nessai 50 times for each n. Above
n= 2 there is no analytical solution for the log-evidence of the Rosenbrock likelihood, so we compare results
to those obtained with nessai. We present these results in figure 3. We observe that i-nessai is consistent
with nessai for n= 2 but for n= {4,8} predicts a lower evidence than nessai, however the relative
difference is less than 1%. The number of likelihood evaluations and wall times are comparable between both
samplers but i-nessai has a larger ESS in n= {2,4} and lower in n= 8. To better understand these
differences, we inspect the results obtained with nessai and find that the insertion indices [10, 57] are
consistent with the results being over-constrained (see appendix D). This corresponds to the log-evidence
being marginally over-estimated which agrees with the differences in estimated log-evidence observed in
figure 3.

6.4. Probability–probability (P–P) test with binary black hole signals
As a more practical test for i-nessai, we repeat the analysis used to validate nessai in Williams et al [10],
where we used bilby [4] and nessai to analyse simulated signals from compact binary coalescence of
binary black holes injected into 4 s of data sampled at 2048Hz in a three-detector network. For this analysis,
we use the same priors (described in appendix C of Williams et al [10]) and enable phase, distance and time
marginalisation in the likelihood. This reduces the parameter space to 12 parameters. We analyse 64
injections simulated from the same priors and produce a P–P plot and corresponding p-values using bilby.
This analysis includes the resampling step described in section 4.7 and we re-draw the same number of
samples that were used in the initial sampling, doubling the number of likelihood evaluations. The P–P plot
is presented in figure 4 with individual and combined p-values. The combined p-value is 0.3798 which
demonstrates that i-nessai reliably recovers all 12 parameters. Furthermore, these results are obtained
without introducing any of reparameterisations used in standard nessai [10] to handle, for example, angles
and spin magnitudes.

In figure 5, we show the sampling time and the number of likelihood evaluations required to reach
convergence. The median number of likelihood evaluations is 6.5× 105 and the median wall time is 119min.
We also include results obtained using nessai and dynesty[28]2, which has been used extensively for
gravitational-wave inference [15–17, 58]. P–P plots for both samplers are shown in figure E1. We observe
that the median reduction in the number of likelihood evaluations are 2.68 and 13.3 for nessai and
dynesty respectively. These equate to reductions in the total wall time of 4.2 times and 17.2 times.

6.5. Binary neutron star analysis with reduced order quadrature (ROQ) bases
We simulate the signal from a binary neutron star merger similar to GW190425 [59] at a distance of 45 Mpc
using IMRPhenomPv2_NRtidalv2 [60] and inject it into 80 s of simulated noise from a two-detector
network with aLIGO noise spectral density sensitivity [12] sampled at 8192Hz. The resulting signal has an
optimal network SNR of 30.12.

To analyse the signal, we use IMRPhenomPv2 [61–63] with a ROQ basis [64] to reduce the cost of
evaluating the likelihood3. We also limit the analysis to assume aligned spins and use a low-spin prior a
described in Abbott et al [59]. We run the analysis using i-nessai, nessai and dynesty. We repeat each

2 We use dynesty version 1.0.1 with the custom random walk implementation included in bilby version 1.2.1 [4, 58].
3 We use the ROQ data available at https://git.ligo.org/lscsoft/ROQ_data.
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Figure 4. Probability–probability plot for 64 simulated signals from binary black hole coalescence analysed using i-nessai. The
shaded regions indicated the 1-, 2- and 3-σ confidence intervals. Individual p-values are shown for each parameter and the
combined p-value is also shown.

Figure 5. Total sampling time versus number of likelihood evaluations for i-nessai (blue dots), nessai (orange crosses) and
dynesty (green plus signs) for the 64 binary black hole injections described in section 6.4.

analysis with four different random seeds and combine the posterior distributions for each seed into a single
distribution. We use 16 cores for each analysis to decrease the overall wall time. The settings for i-nessai
are tuned to ensure that the effective number of posterior samples are comparable to the other samplers.
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Figure 6. Evolution of the proposal distributions (qi(θ)) included in the meta-proposal when performing inference on the binary
neutron star injection described in section 6.5. Brighter colours indicate later iterations in the algorithm. Left: the 90% contours
for each of the proposal distributions in the chirp mass–mass ratio space. Only a small region of the parameter space around the
highest likelihood is shown. The cross-hair indicates the injected value. Right: the distribution of log-likelihoods for each of the
proposal distributions.

Table 1. Total likelihood evaluations, wall time in minutes and ESS of the posterior distribution for the binary neutron star analysis with
ROQs as described in section 6.5 for dynesty, nessai and i-nessai. Results are averaged over four runs and the mean and standard
deviations are quoted. All analyses were run with 16 cores.

Wall time (min) Likelihood evaluations Effective sample size

dynesty 376.3± 8.1 4.30× 107± 7.12× 104 13098± 131
nessai 57.9± 8.9 1.42× 106± 1.74× 105 13036± 45
i-nessai 24.3± 3.0 1.01× 106± 8.99× 104 14625± 3539

In figure 6, we show how the meta-proposal evolves as more proposal distributions (normalising flows)
are added over the course of sampling. This shows how the proposals converge around the parameters of the
injected signal which correspond to the region with the highest log-likelihood.

To quantify the differences between the results, we compute the Jensen–Shannon (JS) divergence between
the marginal posterior distributions for each parameter as described in Romero-Shaw et al [58]. We use the
threshold described in Ashton and Talbot [65] to determine if the JS divergence indicate significant statistical
differences between the results. We find that all the divergences are below the threshold, except for the
in-plane spin χ1, for which i-nessai and nessai agree but dynesty marginally disagrees with both. We
include the complete set of JS divergences in appendix F and a corner plot comparing the distributions in
figure G1 .

We also compare the total number of likelihood evaluations and wall time for each sampler in table 1.
From these results we see that, on average, i-nessai requires 1.4 and 42.5 times fewer likelihood
evaluations than nessai and dynesty respectively.

6.6. Parallelisation
As mentioned previously, the formulation of nested sampling used in this work does not have the same serial
limitations of standard nested sampling. The algorithm we present is designed around drawing new samples
and evaluating their likelihood in parallel. This leverages the inherently parallelised nature of the normalising
flows. However, the process of training subsequent proposals to add to the meta-proposal is still a serial
process.

In standard nessai, the costs of rejection sampling and training set an upper limit for the reduction in
wall time that can be achieved by parallelising the likelihood evaluation. However, the total cost of training
typically accounted for less than 8% of the total wall time [10]. In i-nessai, the rejection sampling step is
no longer necessary, so the training is now the main limiting factor and the potential reduction in wall time is
far greater. In figure 7, we present results showing how the wall time decreases for an increasing number of
cores for one of the binary black holes injections used in section 6.4. This shows how initially the wall time is
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Figure 7. Comparison of the wall time spent training the normalising flows and evaluating the likelihood in nessai and
i-nessai as a function of the number of cores. Results are shown for one of the binary black hole injections described in
section 6.4 and are averaged over four runs.

Figure 8. Scaling of i-nessai as a function of the number of live points N live for an 16-dimensional Gaussian likelihood, as
described in section 6.1. Results are averaged over 10 runs and the error-bars show the observed standard deviation. From top to
bottom the results show the mean estimated log-evidence rescaled by the true value, the mean estimated standard deviation for
the log-evidence, the total number of likelihood evaluations, the total wall time and the effective sample size (ESS) of the posterior
distribution as defined in equation (20).
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dominated by the cost of evaluating the likelihood but as more cores are added the inherent cost of sampling,
which includes training the flows and drawing new samples, becomes the dominant cost. However, in this
example, it only accounts for 13% of the total wall time when running on a single core.

6.7. Algorithm scaling
In i-nessai the number of live points has a different function to that in a typical nested sampler since, in
combination with the method used to determine new levels, it will determine how many points are removed
at an iteration and how many remain to train the normalising flow. We previously noted that, for nessai,
2000 points were needed for reliable results [10]. We now test i-nessai with different values of N live and set
the number of samples per flow Nj = Nlive.

We evaluate the scaling of i-nessai as a function of N live and present the results in figure 8 for a
16-dimensional Gaussian likelihood sampled with Nlive = {100,500,1000,2000,4000,6000,8000,10000}.
The estimated log-evidence is consistent with the true value for all values of N live and both the observed and
estimated standard deviations decrease as N live increases, which is consistent with equations (9) and (11). We
observe that the number of likelihood evaluations scales approximately linearly with the number of live
points. This contrasts with the wall time which, for a 100 times increase in the number of live points, only
increases by∼22 times. This is the result of using a likelihood that has a low computational cost, so the cost
of running the sampler is dominated by the operations related to the normalising flow: training, drawing
new samples and computing the meta-proposal probability as given by equation (13). In practice, most
likelihoods will have a higher computational cost and the wall time will scale approximately linearly with
N live.

7. Discussion and conclusions

In this work, we present an importance sampling-based nested sampling algorithm, i-nessai, that builds
on existing work [23, 25, 38] to incorporate normalising flows and overcome the main bottlenecks in
nessai described in Williams et al [10]. The resulting algorithm is a hybrid between standard nested
sampling and SMC, where normalising flows are successively trained and added to an overall meta-proposal
that describes the distribution of samples.

We demonstrate that i-nessai reliably estimates the log-evidence and associated error for Gaussian and
Gaussian mixture likelihoods in up to 32 dimensions. When we compare these results to those obtained with
standard nessai, we observe that i-nessai converges significantly faster and requires fewer overall
likelihood evaluations. Furthermore, the observed variance in the estimated log-evidence is consistently less
than for nessai. This demonstrates that i-nessai produces consistent evidence estimates at a fraction of
computational cost while also being more precise.

We perform inference on 64 simulated gravitational-wave signals from binary black hole coalescence
using i-nessai and show that it passes a P–P test (figure 4) which indicates that it produces unbiased
estimates of the system parameters. Furthermore, these results are obtained without introducing problem
specific reparameterisations. Similarly to the analytic likelihoods, we compare these results to those obtained
with nessai and dynesty and observe a median reduction in the number of likelihood evaluations of 2.68
and 13.3 times respectively, which equates to a 4.2 and 17.2 times reduction in the total wall time.

To further demonstrate the advantages of i-nessai compared to standard samplers, we perform
inference on a simulated GW190425-like binary neutron star merger using ROQ bases [64] and aligned
low-spin priors. The inference completes in just 24min, 2.4 and 15.5 times faster than nessai and dynesty
respectively, while also producing consistent posterior distributions and only requiring 1.01× 106 likelihood
evaluations compared to 1.42× 106 and 4.30× 107 respectively.

We also show how the likelihood evaluation can be parallelised in i-nessai and find that, once of the
cost of evaluating the likelihood becomes negligible, training the normalising flows and drawing new
samples are the main limiting factors. This is in contrast to nessai, where performing rejection sampling is
the main limiting factor, accounting for approximately 40% of the time when running on a single core. In
i-nessai training and drawing new samples account for significantly less of the total time. It therefore has
improved scaling with respect to the number of cores compared to nessai, as shown in figure 7.

A downside of this approach when compared to nessai is that the order statistics-based tests proposed
in Fowlie et al [57] and included in nessai are no longer applicable since we no longer require points be
distributed according to the likelihood-constrained prior. It is therefore harder to identify under- or
over-constraining in i-nessai. The ESS (equation (20)) can be used to diagnose issues during sampling,
however it is not always a reliable diagnostic.
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In future work we will consider alternative methods for constructing the meta-proposal which do not
rely on discard samples, for example using only the weights in equation (18) and we will explore optimising
the meta-proposal weights after sampling. We will also explore applications of i-nessai more complete
gravitational-wave analyses like those described in [15–17] which included calibration uncertainties and
waveforms with higher-order modes. Another possible application to explore is model comparison; typically,
if we want to obtain a posterior distribution for a different prior than that used for the sampling, the existing
posterior samples must be re-weighted using an alternative prior. However, the formulation of the nested
sampling in this work would allow for the prior to be changed post-sampling and the evidence recomputed
by updating equation (4), so long as the new prior does not extend the boundaries of the prior using during
the initial sampling.

In summary, we have introduced an importance nested sampling algorithm, i-nessai, that leverages
normalising flows and addresses the bottlenecks in nessai [10]. We have demonstrated that i-nessai
produces results that are consistent with standard nested sampling for a range of problems, whilst requiring
up to an order-of-magnitude fewer likelihood evaluations and having improved scalability. Similarly to
nessai, i-nessai is a drop-in replacement for existing samplers, meaning it can easily be used to accelerate
existing analyses.
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Appendix A.Weighted Kullback–Leilber divergence

The KL divergence of two distributions p(x) and q(x) is defined as

KL(p,q) =

ˆ
p(x) log

[
p(x)

q(x)

]
dx. (A.1)

If we consider the case of minimising the KL divergence between two distributions p(x) and q(x) where p(x)
is fixed, then

KL(p,q) =−
ˆ

p(x) logq(x)dx+

ˆ
p(x) logp(x)dx,

−
ˆ

p(x) logq(x)dx+ constant.
(A.2)

The constant term is independent of q(x) so we only need to compute the first term when minimising the KL
divergence. Using a Monte Carlo approximation of the integral with samples x drawn from r(x) this becomes

KL(p,q)≈ K̂L(p,q) =− 1

N

N∑
i=1

p(xi)

r(xi)
logq(xi)+ constant. (A.3)

If r≡ p and this reduces to

K̂L(p,q) =− 1

N

N∑
i=1

logq(xi)+ constant, (A.4)

and we can ignore the constant when optimising q(x). However, if r ̸≡ p and both p(x) and r(x) are tractable,
then we can define

K̂L(p,q) =− 1

N

N∑
i=1

wi logq(xi)+ constant, (A.5)

where wi ≡ p(xi)/r(xi). This allows for the KL divergence to be minimised using samples that are not from
the target distribution.

Appendix B. Methods for constructing the next proposal distribution

We test the quantile-based method and the entropy-based methods for constructing the next proposal
distribution described in section 4.1 and consider the stability and number of iterations required to converge.
We find that the quantile-based method for determining the next level is sensitive to outliers in the
meta-proposal Q(θ). This leads to large changes in the number of discarded samplesMj between iterations
which in turn can make the algorithm unstable. In contrast, the entropy-based approach is far more stable
and leads to smoother variations in the number of discarded samples which we attribute to the use of the
log-weights. Additionally, we find that the entropy-based method converges quicker than the quantile-based
because the prior volume shrinks faster. As such, we use the entropy-based method for all our experiments.

Appendix C. Validating the variance estimator

We validate the unbiased estimator for the variance of the evidence from equation (11) for i-nessai using
the Gaussian and Gaussian mixture likelihoods described in section 6.1. We use the results from the analyses
described in section 6.1 and produce probability–probability (P–P) plots comparing the observed
distribution of evidences and a Gaussian distribution with the mean equal to the true evidence and the
standard deviation estimated using equation (11) averaged over the 50 runs per dimensions. The results are
presented in figure C1 and show good agreement between the estimated and observed distributions.
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Figure C1. Probability–probability (P–P) plots for the estimated evidences for the Gaussian and Gaussian mixture models
described in section 6.1 for n= {2,4,8,16,32}. The theoretical distribution is assumed to be a Gaussian centred around the true
evidence with the standard deviation given by the estimated standard deviation equation (11) averaged over 50 analyses per
dimension. The 1-, 2- and 3-σ confidence intervals are indicated by the shaded regions.

Figure D1. Distribution of the p-values for the insertion indices [57] when analysing the Rosenbrock likelihood 50 times using
nessai with n= {2,4,8}.

Appendix D. Insertion indices test for the Rosenbrock likelihood

In section 6.3, we analyse the Rosenbrock likelihood for n= {2,4,8} using nessai and i-nessai and find
that the estimated log-evidence disagreed as shown in figure 3. In Fowlie et al [57], the authors proposed
using order-statistics to check the convergence of nested sampling runs. This involves computing an
insertion index for each new sample according to where it is inserted into the current ordered set of live
points. If new samples are distributed according to the prior, then the overall distribution of the insertion
indices should be uniform. This can be quantified by computing a p-value for the overall distribution using
the Kolmogorov–Smirnov statistic [79] for discrete distributions [80]. We compute p-values for each analysis
and presented the results in figure D1. If the results are unbiased then the distribution of p-values should be
uniform on [0,1], however we observe that for n> 2 the distributions are not uniform, indicating problems
during sampling. This agrees with the observation that for n= {4,8}, with the settings used, nessai
over-estimates the log-evidence.
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Appendix E. Probability–probability plots for other samplers

Figure E1. Probability–probability (P–P) plot showing the confidence interval versus the fraction of the events within that
confidence interval for the posterior distributions obtained using nessai and dynesty for 64 simulated compact binary
coalescence signals produced with bilby and bilby_pipe. The 1-, 2- and 3-σ confidence intervals are indicated by the shaded
regions and p-values are shown for each of the parameters and the combined p-value is also shown.
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Table F1. Jensen–Shannon divergences in units of 1× 10−3 nats for the marginal posterior distributions between nessai, i-nessai
and dynesty. Values shown are the mean and the 1-σ quantiles computed over 100 different realisations of 5000 samples.

dynesty-nessai dynesty-i-nessai nessai-i-nessai

M 0.610.20−0.20 0.690.22−0.19 0.530.21−0.13

q 0.520.29−0.16 0.360.22−0.11 0.300.18−0.08

χ1 2.240.78−0.55 2.610.77−0.59 0.530.27−0.17

χ2 1.680.60−0.46 1.930.47−0.54 0.730.22−0.22

δ 1.370.29−0.28 1.470.34−0.28 1.590.38−0.31

α 1.040.22−0.25 1.150.25−0.27 1.370.30−0.28

θJN 0.710.22−0.17 0.740.21−0.21 0.790.26−0.23

ψ 0.180.13−0.06 0.210.15−0.09 0.190.10−0.09

tc 1.290.42−0.25 1.560.31−0.39 1.570.39−0.33

Appendix F. Jensen–Shannon (JS) divergence for comparing marginal posterior
distributions

We compute the JS divergence between the marginal posterior distributions obtained in section 6.5 as
described in Romero-Shaw et al [58]. We use bootstrapping to compare 100 different realisations of 5000
samples from each posterior and quote the mean JS divergence and standard deviation in table F1. Following
Ashton and Talbot [65], for 5000 posterior samples, the JS divergence threshold is 2× 10−3 nats. The
divergences between i-nessai and nessai agree for all the parameters, whereas for dynesty there is
marginal disagreement in the posteriors for the aligned spin χ1. However, since nessai and i-nessai are
in agreement, we do not investigate this further in this work.

23



Mach. Learn.: Sci. Technol. 4 (2023) 035011 M J Williams et al

Appendix G. Binary neutron star corner plot

Figure G1. Posterior distributions for the GW190425-like injection described in section 6.5. Results are shown for dynesty in
green, nessai in orange and i-nessai in blue. The 1-σ confidence intervals for each parameter are shown in the marginal
histograms.
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