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ABSTRACT: Self-sorting in functionalized dipeptide systems can
be driven by the chirality of a single amino acid, both at a high pH
in the micellar state and at a low pH in the gel state. The structures
formed are affected to some degree by the relative concentrations
of each component showing the complexity of such an approach.
The structures underpinning the gel network are predefined by the
micellar structures at a high pH. Here, we describe the systems
prepared from two dipeptide-based gelators that differ only by the
chirality of one of the amino acids. We provide firm evidence for
self-sorting in the micellar and gel phases using small-angle neutron
scattering and cryo-transmission electron microscopy (cryo-TEM),
showing that complete self-sorting occurs across a range of relative
concentrations.

■ INTRODUCTION
Gels can be formed by the self-assembly of small molecules
into fibers that entangle to give a network.1−3 In most cases,
such gels are formed from a single species. However,
interesting and useful materials can be prepared from
multicomponent systems. When two molecules that can self-
assemble alone are mixed to form a gel, multiple possibilities
are available.4,5 Assuming a gel is still formed, first, the two
molecules may mix in the self-assembled structures in either a
specific or a random manner. Second, the two molecules may
prefer to assemble independently, giving a self-sorted system
(Figure 1). These possibilities refer to the primary self-
assembled structures, with significant added complexity arising
from how these structures can go on to further interact.6

Each of these systems has a potential use. For example, co-
assembled systems can be used for cell work, whereby one
component provides the matrix and the second component
provides specific sites for cell adhesion or interaction.7,8 Self-
sorted systems have been used to form optoelectronic
systems9−11 and for advanced systems that can change
properties on demand.12 Self-sorting can even be triggered to
occur within cells.13

A key issue is the design of such systems.4,5 Limited methods
exist that are known to drive a system toward a certain type of
assembly. Specific mixing can be driven by mixing electron-rich
and electron-poor gelators.14 Aside from this, there are
examples where different types of systems are formed, but
little in the way of design rules.

For self-sorted systems, many cases rely on the gelators
having sufficiently different molecular structures,15 with the
aim being that structural mismatch favors this assembly. In all
of this, an important point is that most examples report a single
set of conditions, which does not show that the design
elements work across different concentrations and ratios.
Further, the proof of what has been formed tends to rely on
spectroscopy at low concentrations or microscopy, which can
only at best provide a small snapshot of the structures formed.
Some examples exist where gelators of different chirality exist.
Here, again, there are limited design rules with some mixtures
giving more robust gels than using a gelator of a single
chirality,16 while other examples form mixtures where the
different enantiomers or diastereomers disrupt the gelation.17

There are examples where co-assembly or self-sorting can be
controlled by chirality.18

One method we have used to form self-sorted hydrogels
relies on controlling the kinetics of self-assembly. Mixing two
gelators with different apparent pKa values for their terminal
carboxylic acids combined with a slow decrease in pH is an
effective method of forming self-sorted systems.19 There is
however further complexity; at the initial high pH in water,
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micellar structures are formed, and we have found that in some
cases, there is evidence of mixing in the micellar phases leading
to some mixing in the gel state as the pH is decreased.20

Here, we describe the systems prepared from two dipeptide-
based gelators that differ only by the chirality of one of the
amino acids. We provide firm evidence for self-sorting in the
micellar and the gel phase using small-angle neutron scattering
and cryo-TEM, showing that complete self-sorting occurs
across a range of relative concentrations.

■ EXPERIMENTAL SECTION
Materials. N-Boc-L-phenylalanine, L-phenylalanine methyl ester

hydrochloride, D-phenylalanine methyl ester hydrochloride, and 2-
(naphthalen-2-yloxy)acetic acid were obtained from Sigma-Aldrich;
glucono-δ-lactone, 1,4-dioxane, and lithium hydroxide were purchased
from Alfa Aesar; diethyl ether, N-methylmorpholine, sodium
hydroxide, and hydrochloric acid were received from Honeywell;
acetonitrile, chloroform, tetrahydrofuran, and sodium chloride were
acquired from Fisher Scientific; hydrogen chloride (ca 4 mol/L in 1,4-
dioxane) was obtained from Tokyo Chemical Industry; magnesium
sulfate, dichloromethane, trifluoroacetic acid, and isobutyl chlor-
oformate were purchased from VWR International, Fluorochem, and
Thermo Scientific, respectively. All chemicals were used directly
without further treatment. Deionized water was used throughout this
research.

Full synthetic protocols and characterization data for the two
gelators used here are described in the Supporting Information
(Figures S1−S18).
Stock Solutions. Stock solutions with a concentration of 10 mg/

mL were prepared in a Falcon Tube by suspending 200 mg of
2NapFF in deionized water (15.97 mL) and adding 1 M sodium
hydroxide solution (1 equiv, 4.03 mL) so that the molar ratio of
sodium hydroxide and 2NapFF was kept as 1:1, and the total volume
of the solution was 20 mL. Then, the solution was stirred at 1000 rpm
overnight to ensure complete dissolution. Afterward, the pH of the
solution was measured and adjusted to approximately 10.5 if needed
with the addition of NaOH (2 M) or HCl (2 M) aqueous using a
pipette with a full scale of 20 μL. Stock solutions with different
volume ratios of (L,L)-, (L,D)-2NapFF were obtained by mixing the
two stock solutions at different volumes and then stirring at 1000 rpm
for 1 h. Subsequently, the pH of the mixtures was measured and
adjusted to 10.5 if needed with the addition of NaOH (2 M) or HCl
(2 M) aqueous using a pipette with a maximum scale of 20 μL.
Gels. Gels were prepared in Sterilin vials (7 mL) by adding 2 mL

of a stock solution prepared as above to glucono-δ-lactone (GdL) (16
mg/mL, 32 mg). The vials were gently rotated by hand to ensure the
completed dissolution of GdL and left to stand overnight quiescently.
Rheology data were collected 18 hours after the addition of GdL.

■ CHARACTERIZATION
pH Measurement. An FC200 pH probe (HANNA

instruments) with a 6 mm × 10 mm conical tip was employed
for all pH measurements. The precision of the pH measure-
ments is stated as ±0.1.
Optical Microscopy. Optical microscopic images (5×

magnification) of solutions were obtained using a Nikon
Eclipse LV100 microscope with a Nikon Plan ELWD 50×/
0.60 lens attached to an Infinity2-1C camera. Images were
taken with no polarizers (NP) or cross-polarizers (CP).
UV−Vis Measurements. An Agilent Cary 60 UV−vis

spectrophotometer (Agilent Technology, Selangor, Malaysia)
was employed to record absorption spectra, using a 0.1 mm
path length quartz demountable cuvette at 25 °C. For gels, 200
μL of pre-gelation solution containing GdL was introduced
into the cuvette while in its liquid state. The cuvette was then
sealed with Parafilm, and the sample was left to gel overnight
before recording the spectrum.
Turbidity Measurements. Using an Agilent Cary 60 UV−

vis spectrophotometer (Agilent Technology, Selangor, Malay-
sia), the turbidity of all samples was measured at a wavelength
of 600 nm with a 2 mm path length quartz cuvette at 25 °C.
For gels, 1 mL of a pre-gelation solution containing GdL was
placed into the cuvette while still in its liquid form. The cuvette
was then sealed with Parafilm, and the sample was left to gel
overnight before the spectrum was recorded.
Rheology. An Anton Paar Physica MCR301 rheometer was

used for rheological performance measurement.
Viscosity Measurement. The viscosity was measured

using the cone (CP50-1 18237) and plate system at 25 °C.
The experiment gap distance between the cone and plate was
fixed at 0.1 mm. Then, a 5 mL pipette and tip were used to
transfer 1.5 mL of the solution onto the rheometer plate to
minimize the shearing effect. The viscosity of each solution
with the rotational shear rate was recorded, varying from 1 to
1000 s−1.
Frequency and Strain Sweep. A vane (ST10-4V-8.8/

97.5-SN42404) and cup system were used to directly measure
the gap in a 7 mL plastic Sterilin vial containing 2 mL of gel
sample was set to 1.8 mm during the entire test. Frequency
sweep was measured from 1 to 100 rad s−1 at a fixed strain of
0.5%; strain sweep was measured from 0.1 to 1000% at a
constant frequency of 10 rad s−1 to guarantee that 0.5% strain
was located in the viscoelastic region required for the
frequency sweep.

Figure 1. Cartoon showing how two gelators (shown as orange and blue) when mixed can form self-assembled fibers that (top) co-assemble and
(bottom) self-sort.

Biomacromolecules pubs.acs.org/Biomac Article

https://doi.org/10.1021/acs.biomac.3c00246
Biomacromolecules 2023, 24, 2847−2855

2848

https://pubs.acs.org/doi/suppl/10.1021/acs.biomac.3c00246/suppl_file/bm3c00246_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00246?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00246?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00246?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.3c00246?fig=fig1&ref=pdf
pubs.acs.org/Biomac?ref=pdf
https://doi.org/10.1021/acs.biomac.3c00246?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Time Sweep. A cone (PP50/S 17154) and plate system
were employed with the experiment gap at 0.8 mm. Then, 2
mL of the solution was added into a Sterilin vial containing
preweighed 32 mg of GdL, and the vial was gently rotated to
ensure that the GdL was completely dissolved. Subsequently, a
5 mL pipette tip was used to transfer the mixed solution onto
the plate. To prevent the sample from evaporating, the edge of
the cone was sealed with a small amount of mineral oil while
avoiding the mineral oil from contacting the upper surface of
the cone after the measurement proceeded for 15 min. Time
sweep was measured at a constant frequency of 10 rad s−1 and
a strain of 0.5% at 25 °C for 16 h.
Circular Dichroism. CD spectra were collected using

ChiraScan V× Spectrometer (Applied PhotoPhysics, UK). The
solution was placed in 0.01 mm demountable High Precision
Cells (Suprasil Quartz, Hellma Analytics, UK), and the
corresponding spectrum between 300 and 180 nm was
measured at 25 °C. The data spacing was 1 nm, the bandwidth
was set to 1 nm, the scanning speed was 120 nm/min, and
repeats were ticked as 3.
Cryo-Transmission Electron Microscopy (cryo-TEM).

Cryogenic TEM imaging was performed either using FEI
Tecnai 12 TWIN transmission electron microscope operated
at 100 kV or using FEI Talos 200SC FEG that was operated at
200 kV. In general, a drop of the studied sample solution,
approximately 7 μL, was placed on a holey carbon film
supported on a TEM copper grid (Electron Microscopy
Services, Hatfield, Pennsylvania). Prior to TEM sample
preparation, all of the TEM grids used for cryo-TEM imaging
were treated with plasma air to render the lacey carbon film
hydrophilic. A vitrified thin film of the sample solution,
typically less than 200 nm, was produced using the Vitrobot
with a controlled humidity chamber (FEI). The vitrified
samples were then transferred to a cryo-holder and cryo-
transfer stage, cooled by liquid nitrogen. The cryo-holder
temperature was maintained below −170 °C during the
imaging process to prevent the sublimation of vitreous water.
All images were recorded by an EMSIS Megaview G III wide-
angle CCD camera or Thermo Scientific Ceta (CMOS)
camera.

Small-Angle Neutron Scattering. SANS measurements
of the gelator solutions and gel samples were performed at
either ISIS or the ILL. At ISIS, measurements were carried out
using the SANS2D time-of-flight diffractometer (STFC ISIS
Pulsed Neutron Source, Oxfordshire, UK). A simultaneous Q
range of 0.005−1.0 Å−1 was achieved using an incident
wavelength (λ) range of 1.75−16.5 Å and employing two 1 m2

detectors. The small-angle detector was positioned 4 m from
the sample and offset vertically 80 mm and sideways 100 mm.
The wide-angle detector was positioned 2.4 m from the
sample, offset sideways by 980 mm, and rotated to face the
sample. The incident neutron beam was collimated to 8 mm
diameter. Samples were housed in 2 mm pathlength quartz
cuvettes and measured for 60 min each. The “raw” scattering
data were normalized to the incident neutron wavelength
distribution, corrected for the linearity and efficiency of the
detector response, and the measured neutron transmission
(i.e., absorbance) using the Mantid framework.21,22 They were
then placed on an absolute scale by comparison with the
expected scattering from a partially deuterated polystyrene
blend of known composition and molecular weights following
established procedures. The background scattering from a
quartz cell containing D2O was then subtracted.
Measurements using the small-angle neutron scattering

instrument D11 at the Institut Laue−Langevin (ILL;
Grenoble, France) were performed using a neutron wavelength
of 10 Å and three sample-to-detector distances of 39, 8, and 1.2
m (with respective collimation distances of 40.5, 8, and 5.5 m).
An MWPC 3He detector consisting of 128 × 128 pixels of 7.5
× 7.5 mm2 size was used. The employed neutron beam was 13
mm in diameter. The thermostated rack was kept at 20 °C.
Data reduction was performed using the facility-provided
software LAMP. Data have been put on absolute scale by
measuring the secondary calibration standard H2O (1 mm
thickness), cross-calibrated against h/d polymer blends, with
the known differential scattering cross section of 1.245 1/cm
for 10 Å.
Small-Angle X-ray Scattering. SAXS measurements were

performed at Diamond Light Source (Oxfordshire, UK) on the
B21 beamline.23 Samples were loaded into 1.5 mm diameter
glass capillaries using a 1 mL syringe and a 19G needle

Figure 2. Chemical structures of (a) (L,L)-2NapFF and (b) (L,D)-2NapFF with to-scale cartoon of cross-sectional view of the nanotubes formed by
each and the transition in structure on gelation. In the micellar state, (L,L)-2NapFF forms nanotubes with a core radius of 1.7 nm and a wall
thickness of 1.9 nm; (L,D)-2NapFF forms nanotubes with a core radius of 13.4 nm and a wall thickness of 1.4 nm. On gelation, for (L,L)-2NapFF,
the core collapses and lateral aggregation occurs, leading to the apparent formation of elliptical cylinders, whereas for (L,D)-2NapFF, large
nanotubes persist as the pH decreases.
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immediately after GdL addition, allowing gelation in the
capillary. The capillaries were sealed with parafilm, loaded into
a three-dimensional (3D) printed cell, and then into the
instrument via the multipurpose sample (MPS) cell.24 20 × 1 s
frames were collected on the samples. The X-ray beam
possessed a wavelength of 0.9537 Å and an energy of 13 keV.
An EigerX 4M (Dectris) detector was used at a sample-to-
detector distance of 3712.7 mm, resulting in a Q range of
0.0026−0.34 Å−1. The data were processed in Dawn Science
(version 2.25, https://dawnsci.org/). The scattering from
deionized water in a glass capillary was used as the background.
The two-dimensional (2D) images were azimuthally integrated
to produce the 1D I vs Q plots.

■ RESULTS AND DISCUSSION
2NapFF is a robust gelator, forming micellar structures at a
high pH and gels at a low pH.25,26 Where both phenylalanines
are the L-enantiomer ((L,L)-2NapFF; Figure 2a), the small-
angle neutron scattering (SANS) data show that at a high pH,
nanotubes are formed with a core radius of 1.7 nm and a wall
thickness of 1.9 nm.25 This is corroborated by cryo-TEM.25

Gels are formed when the pH is decreased, where the core of
the nanotubes collapse and lateral aggregation of the resulting
cylindrical structures occurs.26 We have also shown that the
(L,D)-2NapFF diastereomer (Figure 2b) self-assembles into
large, thin-walled rigid nanotubes at a high pH with a core
radius of 13.4 nm and a wall thickness of 1.4 nm as shown by
SANS and again corroborated by cryo-TEM.25 When the pH is
decreased, gels form where these structures persist. Consider-

Figure 3. (a) Photographs of solutions of (L,L)-2NapFF and (L,D)-2NapFF are different ratios at an overall concentration of 10 mg/mL; (b−l)
cross-polarized optical microscopy images of the solutions shown in (a) with ratios of (L,L)-2NapFF and (L,D)-2NapFF shown on each image in red
text; (m) viscosity data at 10 s−1 and (n) CD data at 223 nm for solutions with various volume ratios of (L,L)- and (L,D)-2NapFF.
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ing the very different structures present in the single-
component systems at both high and low pH values, we
hypothesized that mixing (L,L)-2NapFF and (L,D)-2NapFF
might result in self-sorted systems based on the morphology of
self-assembled structure despite the similarity in molecular
structure.
(L,L)-2NapFF and (L,D)-2NapFF were prepared as described

previously.25 Solutions of each were prepared at a concen-
tration of 10 mg/mL at a pH of 10.5. At this concentration,
both (L,L)-2NapFF and (L,D)-2NapFF form liquid crystal
phases as shown by polarized microscopy, with (L,D)-2NapFF
forming a more turbid solution by eye (Figure 3a). The
solutions of (L,L)-2NapFF and (L,D)-2NapFF at a high pH
were mixed to give solutions at several different ratios with a
constant overall concentration of 2NapFF of 10 mg/mL.
Visually, the turbidity decreased as the composition of the
(L,L)-2NapFF increased.
Polarized light microscopy images (Figures 3b−l and S19)

showed significant birefringence for ratios of (L,L)-2NapFF:
(L,D)-2NapFF of 50:50 to 0:100. Birefringent domains are also

observed in solutions for the other ratios excluded 90:10 and
60:40. The viscosity varied across the series, with the mixture
at 60:40 (L,L-)2NapFF:(L,D)-2NapFF being the most viscous
(Figures 3m and S20). The turbidity of the samples increased
as the amount of (L,D)-2NapFF in the mixtures was increased
(Figure S21).
Circular dichroism spectra for solutions of (L,L)-2NapFF and

(L,D)-2NapFF showed different signals. The CD spectra of
(L,D)-2NapFF were much weaker than the (L,L)-2NapFF. In
the mixtures, the CD signals became less intense as the ratio of
(L,D)-2NapFF increased (Figures S22, S23, and Tables S1−
S3). In all cases, the spectra were dominated by the
phenylalanine and naphthalene rings with signals between
200 and 230 nm, with a maximum wavelength of 225 nm and a
wavelength range of 240−290 nm.27,28 The signal intensity at
223 nm declined almost linearly with the increasing addition of
(L,D)-2NapFF (Figure 3n).
To understand these systems in more detail, we collected

SANS data for mixtures of the (L,L)-2NapFF and (L,D)-
2NapFF (Figure S24). The data for the single-component

Figure 4. SANS data (black circles) with fits to a two-cylinder model (full fit parameters in Table S1) for ratios of (L,L)-2NapFF:(L,D)-2NapFF of
(a) 100:0; (b) 70:30; (c) 50:50; (d) 30:70; and (e) 0:100. (f) Cryo-TEM image of the 30:70 mixture showing the coexistence of large nanotubes
(one highlighted in orange) and thinner structures (one highlighted by a blue arrow). The scale bar for (f) represents 500 nm. (g) Zoom-in view of
a cryo-TEM image showing the formation of a nanotube. The scale bar is 500 nm.
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systems fitted well to hollow cylinder models as previously
described and summarized above (Table S4).25 The data for
the mixtures were successfully fit to a combination of two
hollow cylinders (Table S4). One of these has parameters that
are identical to those of the (L,D)-2NapFF alone across this
range of composition and concentration with a core of 13.4 nm
and a wall thickness of 1.4 nm. The parameters for the second
hollow cylinder depend on the exact composition and
concentration (Figure 4). It therefore appears that the (L,D)-
2NapFF robustly forms the same structures (Figure S25) while
the structures formed by (L,L)-2NapFF are affected by
composition and concentration. We can rule out our changes
in concentration leading to these changes by comparing to data
for the (L,L)-2NapFF alone (see Figure S26). At lower
concentrations, for example, 3 mg/mL, the SANS data fit
best to a flexible cylinder model with a radius of around 3.1
nm. Hence, in the presence of the second component, the
micellar structures at low concentrations of (L,L)-2NapFF are
different from those formed by (L,L)-2NapFF alone, again
exemplifying the complexity of these systems. Cryo-TEM
images corroborate the SANS data. Two populations of the

structure are found in all mixtures examined (Figure S27 and
Table S5). Hence, at a high pH, we have a self-sorted micellar
system with two co-existing populations. We highlight that this
is not always the case; we have recently shown that two
structurally dissimilar functionalized dipeptides form mixed
micelles at a high pH.29 We also note that due to operational
issues, the cryo-TEM data were collected around 1 year after
sample formation, implying that there is no kinetic trapping
occurring.
An interesting case was observed for one case where we were

able to observe the formation of nanotubes from (L,D)-
2NapFF. In one image (Figure 4g), there is clear evidence that
these nanotubes are formed by the wrapping up of a tape-like
structure, presumably formed from a bilayer as has been
observed for other systems.30,31

It is worth noting that we have worked with other examples
where co-assembly occurs20,29�in these cases, the molecules
are very different, but the micellar structures are a wormlike
micelle and a spherical micelle. Since very different molecules
can co-assemble at a high pH20,29 and (in some cases also at a
low pH20), the self-sorting here does not seem to be driven

Figure 5. (a) Photographs, (b) plots of gelation time and pH of gel versus volume ratio, (c) strain, (d) frequency sweep, and (e) modulus at 10 rad
s−1 of gels formed by solutions with various volume ratios of (L,L)-, and (L,D)-2NapFF. For (c) and (d), full symbols represent G′ and open symbols
represent G″. In all cases for (b)−(e), the data points represent the average value of the experimental data of the three samples, and the error bar
represents their standard deviation.
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simply by the small differences in molecular structure, but
rather by the fact that both of these structures form robust
nanotubes at a high pH. However, further work is needed with
other systems to understand this. It may be that mixing
preformed micellar solutions as is done here also favors self-
sorting and that it may be possible to drive more toward co-
assembly by direct dissolution of a mixture of the two solids.32

Gels were then prepared from the solutions containing
different ratios of (L,L)-, and (L,D)-2NapFF by lowering the pH
slowly and controllably using the hydrolysis of GdL to gluconic
acid to achieve reproducible and homogeneous kinetics of pH
change and gelation.33,34 Vial inversion showed that all of the
ratios formed self-supporting materials (Figure 5a). Consistent
with our previous report, (L,L)-2NapFF started to gel earlier
than (L,D)-2NapFF (Figure 5b) on the basis of the higher pKa
of the terminal carboxylic acid.25 Following the gelation by
rheology with time, both the storage modulus (G′) and loss
modulus (G″) gradually increased as the assembly progressed
and became essentially constant after about 5 h (Figure S28
and Table S6) except for ratios of 10:90 and 0:100, which took
around 10 and 15 h, respectively. The gradual conversion of
the viscous solutions to a gel was associated with the decrease
in pH, with the resulting gels having a final pH of 3.1−3.4
(Table S5). A final gel was confirmed by the linear viscoelastic
region in the strain sweep of the final gels (Figure 5c), and
both G′ and G″ being frequency-independent (Figure 5d). The
final values of G′ and G″ varied slightly with the ratio of (L,L)-
2NapFF and (L,D)-2NapFF. The turbidity of the gels increased
as the concentration of (L,D)-2NapFF in the mixture increased
(Figure S29).
To understand the gel phase, we again used SANS to probe

the underlying structures (Figure S30 and Table S7). The data
for the (L,L)-2NapFF alone agree with our previous data,26

showing that the network is formed by structures that best fit
to a flexible elliptical cylinder model. For (L,L)-2NapFF, as the
pH decreases, the core first collapses, followed by lateral
association of the resulting cylinders.26 For the (L,D)-2NapFF,
the structures best fit to a hollow cylinder model,25 showing
that the micellar structures template the structures in the gel
state. The SANS data for the mixtures rich in (L,D)-2NapFF
(50:50 and higher) can be fit to a mixture of a hollow cylinder
and flexible elliptical cylinder models, with the parameters for
the hollow cylinder being close to that for the pure (L,D)-
2NapFF. At lower concentrations, the data best fit to a flexible
elliptical cylinder model alone. We interpret this as there being
self-sorting in these systems, but the scattering being
dominated by the L,L-2NapFF as this becomes the highest
concentration species.

■ CONCLUSIONS
Previous work examining multicomponent systems similar to
those described here in water tends to focus on the gel state,
with little if any discussion of the importance (or not) of any
structures present prior to gelation.7,35−39 There seems to
often be an assumption that there is complete dissolution prior
to gelation, which we and others have shown is often not the
case for such hydrophobic molecules that are charged at high
pH.32,40 This is an interesting point�in most organogel
systems, gels are formed by heating to dissolve the gelator and
then cooling to form the gels. Similarly, for gelators such as
those used in this work, gelation can often also be achieved by
dissolution in a good solvent such as DMSO followed by the
addition of water. Indeed, mixed assemblies have been

prepared by such methods.41−43 In this scenario, there ought
to be molecular dissolution prior to water addition and
gelation.
Here, this pre-formation of a micellar dispersion at a high

pH prior to gelation at a low pH provides different possibilities
in terms of self-sorting and co-assembly (and scenarios in
between) compared to direct dissolution. We show that the
structures formed at a high pH can persist into the gel state
and self-sorting can occur on the basis of the chirality of one of
the amino acids. Chirality has been examined previously in
low-molecular-weight gelling systems44,45 but generally as
single components where the gelling efficiencies of different
enantiomers and diastereomers have been compared.46−48 For
example, Xu’s group has compared the L,L and D,D- analogues
of naphthalene dipeptides from the perspective of in vivo
hydrolysis.49 Here, we have shown that self-sorting can be
driven by the chirality of a single amino acid in these
functionalized dipeptide systems, with two distinct micellar
structures being formed at a high pH. The structures formed
are affected to some degree by the relative concentrations of
each component showing the complexity of such an approach.
This aspect of relative concentration is rarely discussed as a
possible means of tuning the system in multicomponent
systems. On lowering the pH, a gel is formed in all cases, with
self-sorting again occurring. Hence, the structures under-
pinning the gel network are predefined by the micellar
structures at a high pH, and differences here can be driven
by a change in the chirality of a single amino acid. This work
shows both the power and complexity of these systems.
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