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SUMMARY
Once formed, the fate of memory is uncertain. Subsequent offline interactions between even different
memory types (actions versus words) modify retention.1–6 These interactions may occur due to different os-
cillations functionally linking together different memory types within a circuit.7–13 With memory processing
driving the circuit, it may become less susceptible to external influences.14 We tested this prediction by per-
turbing the human brain with single pulses of transcranial magnetic stimulation (TMS) and simultaneously
measuring the brain activity changes with electroencephalography (EEG15–17). Stimulation was applied
over brain areas that contribute tomemory processing (dorsolateral prefrontal cortex, DLPFC; primary motor
cortex, M1) at baseline and offline, after memory formation, when memory interactions are known to
occur.1,4,6,10,18 The EEG response decreased offline (compared with baseline) within the alpha/beta fre-
quency bands when stimulation was applied to the DLPFC, but not to M1. This decrease exclusively followed
memory tasks that interact, revealing that it was due specifically to the interaction, not task performance. It
remained even when the order of the memory tasks was changed and so was present, regardless of how the
memory interaction was produced. Finally, the decrease within alpha power (but not beta) was correlated
with impairment in motor memory, whereas the decrease in beta power (but not alpha) was correlated
with impairment in word-list memory. Thus, different memory types are linked to different frequency bands
within a DLPFC circuit, and the power of these bands shapes the balance between interaction and segrega-
tion between these memories.
RESULTS AND DISCUSSION

Different memory types are predominately processed within

segregated systems (procedural versus declarative19,20). How-

ever, they interact ‘‘offline’’ following their formation, whichmod-

ifies their fate (retained versus impaired1–6,21). A functional link

between these otherwise segregatedmemory systemsmay sup-

port this interaction.7–13 Such networks may become resistant to

external perturbation because memory processing is driving

their activity.14 This is analogous to a child’s swing driven by

its own momentum resisting the external influence of a parental

hand in its continued back-and-forth. We tested this prediction

by perturbing brain activity using single pulses of transcranial

magnetic stimulation (TMS) and simultaneously measuring its ef-

fects with electroencephalography (EEG15–17). Stimulation was

applied over brain areas (right dorsolateral prefrontal cortex,

DLPFC; left primary motor cortex, M1) that have been implicated

in offline memory processing.4,10,18,22 Specifically, the right
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This is an open access article under the CC BY-NC-ND license (http://
DLPFCwas selected because disrupting its function prevents in-

teractions between different memory types without disrupting

the individual memories.3,4 We applied stimulation to these brain

areas before (baseline) and after (offline) different behavioral

tasks. The critical events that we are seeking to identify occur

offline.23–25

DLPFC circuits linked to the interaction between
different memory types
Initially, a motor task was followed by a word-list learning task.

Participants learned a movement sequence (motor skill group)

or else performed the same number of movements without any

serial structure (control group) and then immediately learned

the same word list (Figure 1; Comparison 1). We measured skill

as the response time advantage of the sequential over random

trials, which is a widely used sensitive and specific measure of

sequence learning, while performance in the task without a serial

structure was measured as a response time, and the word recall
ors. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Experimental design

We applied single TMS pulses to the dorsolateral prefrontal cortex (DLPFC) or the primary motor cortex (M1) and detected the response using an EEG montage

(black dots overlying a brain). This was done in all three groups before (baseline) and after (offline) participants performed two tasks in quick succession (n = 15 per

group).

(A) A motor task without any serial structure was performed (performance1), then a word list learned, and subsequently motor performance was retested

(performance2; control group). By contrast, in another group a motor sequence (skill1) was learned, then a word list, which interacts with the motor sequence,

impairing its retention (skill2
1,4,6; motor skill group). By comparing between these groups, we were able to identify how circuits were changed by tasks that do or

do not interact (Comparison 1; control versus motor skill groups).

(B) We then compared learning the motor skill and word list in a different order (Comparison 2; motor skill versus word recall groups). A word list (recall1) was

learned, then a motor sequence, which interacts with the word list, impairing its retention (recall2
1,4,6). By comparing between these groups, we tested whether

circuit changes were linked broadly to interactions or linked to a specific interaction affecting the fate of a particular memory type.

See also Figure S2.
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was measured as the total number of correctly recalled words

(from the 16-item list1,26). As expected, there was an interaction

between the motor skill and subsequent word list (mean ± SEM;

recall1, 13.6 ± 0.4words) with a significant decrease inmotor skill

between testing and subsequent retesting (motor skill group;

skill1 versus skill2, 95 ± 15 versus 73 ± 14 ms, paired t test,

t(14) = 2.7, p = 0.017). By contrast, enhanced skill develops

over this offline interval when the motor skill is learned in isola-

tion.1,4,6,27–32 In the control group, there was no interaction be-

tween the control task and the word list (13.0 ± 0.5 words)

because without a serial structure to the movements, a motor

sequence memory was not formed, and hence, the performance

(visual response time) was not impaired, but improved (control

group; performance1 versus performance2, 408 ± 15 versus

367 ± 12 ms, paired t test, t(14) = 4.0, p = 0.0011,4,6,33). Other-

wise, the motor skill and control groups were identical with the

same number of movements being performed (in the motor

tasks), which was followed by the same list of words being

learned (in the word-list task). Thus, comparing between the

groups revealed how an interaction between different memory

types modified the response of brain networks (detected with

EEG) to an external perturbation (from a single TMS pulse).

We found that the DLPFC circuit became resistant to perturba-

tion due to an interaction between different types of memory. We

found that the spectral response to single TMS pulses before

(baseline) compared with after (offline) the behavioral tasks

differed significantly between the groups (cluster analysis; time
(offline versus baseline)*group (motor skill versus control), p =

0.006; Figure 2A). This change in the response to single-pulse

stimulations was not correlated with motor skill (skill1; all

p > 0.16), which implies that the changed response cannot sim-

ply be attributed to motor skill. It originated from a fronto-tempo-

ral network (Figure 2A). The response to the single TMS pulses

decreased significantly relative to baseline in the alpha/beta

(6–23 Hz) band following an interaction between the memory

tasks (offline versus baseline; motor skill group, p < 0.001; Fig-

ure 2B). Changes within this alpha/beta frequency band have

been shown to occur during offline memory processing.10,34

By contrast, when a motor performance task replaced the motor

sequence task, which prevents the interaction between memory

tasks, therewas no significant change in the post-TMS spectrum

within any frequency range (offline versus baseline; control

group; all p > 0.45; Figure 2B). At baseline, before the tasks,

the response to stimulation did not differ significantly across

the groups (Figure S1). Thus, the reduced response of a

DLPFC circuit to TMS was due to the interaction between

different memory types, which implies that these offline interac-

tions are processed within a DLPFC circuit.

Unlike the DLPFC circuit, the M1 circuit did not become resis-

tant to external perturbation due to memory interactions. We

found that the spectral response to TMS pulses before (baseline)

compared with after (offline) the behavioral tasks did not differ

significantly between the groups (cluster analysis; time (offline

versus baseline)*group (motor skill versus control), all p > 0.28;
Current Biology 33, 2548–2556, June 19, 2023 2549



Figure 2. The DLPFC but not the M1 circuit

changes due to an interaction between

different memory types

We tested for changes in the response of different

networks (DLPFC versus M1) to single pulses of

stimulation before (baseline) and after (offline)

different tasks. The tasks were either a motor skill

followed by a word list (motor skill group) or a motor

performance task followed by a word list (control

group; Comparison 1; Figure 1).

(A) We found that the change in DLPFC response

differed significantly between the groups ((offline

versus baseline)*group(motor skill versus control),

p = 0.006). The identified cluster (dashed box; time-

frequency plot) corresponded to frequencies within

the alpha/beta range (6–23 Hz) and localized to a

bilateral fronto-temporal network (spatial plots).

(B) There was no significant change in the DLPFC

response to stimulation (both groups combined;

offline versus baseline; p > 0.19). The DLPFC

response only changed significantly when there

was an interaction between memory tasks (motor

skill group; p < 0.001), whereas there was no sig-

nificant change when there was no interaction be-

tween the tasks (control group; p > 0.45). Thus, the

DLPFC response changes were specifically related

to the interaction between different memory types.

(C) We found that the change in M1 response did not

differ significantly between the groups (time (offline

versus baseline)*group(motor skill versus control);

p > 0.284).

(D) However, there was a significant change in the

M1 response (offline versus baseline, p = 0.01). The

identified cluster (dashed box; time-frequency plot)

was within the theta/alpha frequency range (2–10 Hz) and localized bilaterally to premotor and parietal regions (spatial plot). In the time-frequency plots, the black

vertical line and black coil indicate TMS-pulse onset (i.e., 0 ms). The black dashed boxes highlight the significant clusters (frequency range and duration). In the

topographical plots, the red dots identify the position of the TMS coil (in sensor space), while the small black dots show those channels included in the significant

clusters. Both the time-frequency and topographical plots show the same clusters visualized in different ways. The three-dimensional clusters (time, frequency,

and channel) were collapsed across channel—to give the time-frequency plot—or across both time and frequency—to give the topographical plot. Finally, in the

spatial plots (3D magnetic resonance imaging [MRI] average brain), a red dot indicates the position of the TMS coil (in anatomical space).

See also Figures S1 and S2.
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Figure 2C). This suggests that the M1 circuit was not affected by

the interaction between different memory types. It also implies

that comparing between the groups yielded a minimal amount

of motor skill because this would be processed offline, leading

to M1 circuit changes (for example, Buch et al.,10 Muellbacher

et al.,22 and Robertson et al.29). However, we did not observe

changes in M1 responses unique to a specific group (i.e., motor

skill group). Nonetheless, the cluster analysis did reveal a signif-

icant change in the response to the TMS pulse before and after

the behavioral tasks (time (offline versus baseline), 2–10 Hz; p =

0.01). This reduction in response to the TMS pulse affected both

the premotor and parietal cortices bilaterally (source analysis;

Figure 2D). Thus, the decreased response from the M1 circuit,

unlike the decreased response from the DLPFC circuit, was

not due to the interaction between different memory tasks.

Instead, it was due to task performance.

DLPFC and how memory interactions are produced
The DLPFC may have a general role in the interaction between

different memory types. Hence, the response of applying a

TMS pulse to the DLPFC, although modified by the presence

or absence of an interaction (Comparison 1), would not be
2550 Current Biology 33, 2548–2556, June 19, 2023
modified by how an interaction is produced. An interaction can

be produced in different ways.1,4,6 Here, learning a motor skill

and then immediately learning a word list impaired subsequent

skill retention (Comparison 1). Conversely, an interaction is

also generated when learning a word list and then immediately

learning a motor skill, which impairs word-list retention.5,21,35 In

each of these scenarios, the memory task order differs, and

thememory impaired by the interaction differs (motor skill versus

word recall, respectively); however, common between them is an

interaction between different memory types. As a consequence,

changing the memory task order provides a means to test

whether changes in the response of the DLPFC to a TMS pulse

are linked to a feature of a specific interaction, or more broadly

to interactions between different types of memory. We set out

to distinguish between these possibilities.

In the earlier comparison (Comparison 1), participants learned

a motor sequence, then learned a list of words, and showed

impaired recall for the motor sequence (motor skill group; Fig-

ure 1). This group was compared with another group, in which

the task order was reversed, with word-list learning being imme-

diately followed by motor sequence learning (skill1, 84 ± 11 ms;

Figure 1; Comparison 2). We found a significant decrease in



Figure 3. The DLPFC circuit response to TMS

remains, regardless of how an interaction is

produced between different memory types

We tested for changes in the response of different

networks (DLPFC versus M1) to single pulses of

stimulation before (baseline) and after (offline)

different tasks. The tasks were either a motor skill

followed by a word list (motor skill group) or a word

list followed by a motor skill (word recall group;

Comparison 2; Figure 1).

(A) We found that the change in response of the

DLPFC did not differ significantly between the

groups ((offline versus baseline)*group(motor skill

versus word recall); all p > 0.08).

(B) Nonetheless, the change in the DLPFC response

was significant (offline versus baseline; p < 0.001).

The identified cluster corresponded to frequencies

within the theta/alpha/beta range (2–31 Hz) and

localized to a fronto-temporal network. Thus, the

change in DLPFC response remained regardless of

how the interaction between different memory types

was produced.

(C) The change in the response of M1 did not differ

significantly between the groups ((offline versus

baseline)*group(motor skill versus word recall); all

p > 0.33).

(D) However, the change in the M1 response was

significant (offline versus baseline; p < 0.001). The

identified cluster corresponded to frequencies

within the theta/alpha frequency range (2–12Hz) and

localized to premotor and parietal regions (spatial

plot). In each plot, we used the same conventions as

applied in Figure 2.

See also Figures S1 and S2.
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word recall between testing and subsequent retesting

(recall1 versus recall2, 13.5 ± 0.5 versus 12.4 ± 0.6, paired t

test, t(14) = 3.23, p = 0.006). Word recall is retained over this in-

terval when the list is learned in isolation; however, by immedi-

ately acquiring the motor sequence after word-list learning, the

different types of memory task interact, and subsequent word

recall is impaired.1,4,6,33 Common between these groups is the

interaction between different memory types. However, how

this interaction is produced is different (i.e., memory task order;

Figure 1).1,4–6,21,33 Thus, comparing between these groups

tested whether the response of the DLPFC to a TMS pulse was

specifically due to how the memory interaction was produced.

Comparing the two groups, we found that the resistance of the

DLPFC circuit to a TMSpulse was notmodified by how themem-

ory interaction was produced. We found that the spectral

response to TMS pulses before (baseline) compared with after

(offline) the behavioral tasks did not differ significantly between

the groups (cluster analysis; time (offline versus baseline)*group

(motor skill versus word recall), all p > 0.08; Figure 3A). Instead,

there was a significant decrease in the spectral response to sin-

gle TMS pulses applied over the DLPFC, regardless of how the

memory interaction was produced (i.e., unaffected by task order;

time (offline versus baseline), p < 0.001; Figure 3B). This cluster

largely overlapped with the circuit identified in the earlier com-

parison (Comparison 1) as being linked to the interaction be-

tween different memory types, both in terms of frequency range

(including alpha to beta; 2–31 Hz) and spatial distribution

(a fronto-temporal network revealed using source estimate
analysis; Figure 2A). Thus, regardless of how an interaction is

produced between different types of memory tasks, there is a

decrease in a DLPFC circuit response.

The response of the M1 circuit to a TMS pulse was also not

modified by how the memory interaction was produced. We

found that the change in the post-TMS power spectra before

(baseline) compared with after (offline) the memory tasks did

not differ significantly between the groups (cluster analysis;

time (offline versus baseline)*group (motor skill versus word

recall); all p > 0.33; Figure 3C). However, there was a significant

change in the post-TMS power spectrum before compared with

after the tasks (time (offline versus baseline); p < 0.001; Fig-

ure 3D). There was a significantly decreased response within

the theta/alpha frequency range (2–12 Hz) distributed over a pre-

motor-parietal network (revealed using source-estimation anal-

ysis). This overlaps with the network identified earlier, also

following TMS pulses applied to M1, as being insensitive to the

interaction between different memory types (see Comparison

1). Thus, a similar M1 network was identified, unaffected by

memory interactions, and insteadmodified by task performance.

Distinct DLPFC frequency bands and protection from
interference
We found a decrease in the response of the DLPFC to single-

pulse TMS within the alpha/beta band, which was linked to the

interaction between different memories. We used cluster anal-

ysis to test for a correlation (positive or negative) between the

change in the strength of the alpha or beta frequency bands
Current Biology 33, 2548–2556, June 19, 2023 2551



Figure 4. Different frequencies within the

DLPFC circuit shapes the fate of different

memory types

(A and B) We found a significant negative correlation

between motor skill change and the change in the

DLPFC response to a TMS pulse (A) within the alpha

range (8–12 Hz; p = 0.04), but (B) not within the beta

range (13–19 Hz; all p > 0.85).

(C) Conversely, we found no significant correlation

between the word recall change and DLPFC

response change within the alpha range (8–12 Hz;

p = 0.82).

(D) However, there was a significant correlation in

the beta range (13–19 Hz; p = 0.02). The topogra-

phies show the spatial distribution of the significant

relationship between DLPFC response change

and performance change (skill or words). These

were identified using a cluster analysis (Spearman

correlation) and each (three-dimensional) cluster

collapsed across time and a specific frequency

band (alpha or beta) to create the spatial plot. We

selected a channel from within an identified cluster

and used the same channel when there was no

identified cluster (red asterisks). From these

selected channels, we show the time-frequency

plots, and four representative pixels (red dashed

rectangle) have been used to illustrate the relation-

ship between power change (DERSP) and the

normalized change in memory task performance (D

skill or D word recall). The color of the scatter dots

and the corresponding time-frequency pixel indicate

the Spearman correlation coefficient in the pixel.
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and the behavioral expression of the memory interactions. To

factor out differences in initial performance (i.e., skill1 and

recall1), we used a normalizedmeasure of impaired performance

in the different memory tasks (for example, (skill2 � skill1)/skill1).

We found a negative correlation between the normalized

decrease in motor skill with the power decrease in the alpha

(p = 0.04), but not within the beta frequency band (all p > 0.85;

Figures 4A and 4B). Conversely, we found a negative correlation

between the normalized decrease in word recall with the power

decrease in the beta (p = 0.02), but not within the alpha frequency

band (all p > 0.82; Figures 4C and 4D). This showed that a mem-

ory (action versus words) was protected from being disrupted by

another, different type of memory when the strength of a partic-

ular frequency band decreased (alpha versus beta, respectively).

Overall, the interaction between different memory types was

linked to the functional state of the DLPFC circuit.

We found that offline memory processing makes networks

less susceptible to external influences. The creation of stable

functional networks during offline processing attenuates the

external influence of single TMS pulses upon brain activity. We

found that an M1 circuit showed a decreased response due to

task performance. By contrast, a DLPFC circuit showed a

decreased response exclusively following memory tasks that

interact, revealing that it was due specifically to the interaction,

and not task performance (Figure 2). It remained regardless of

how the memory interaction was produced, showing that it

was due to interactions generally (Figure 3). Within the DLPFC

circuit, the change in the strength of alpha (but not beta) was
2552 Current Biology 33, 2548–2556, June 19, 2023
linked to minimizing the interaction of the motor skill with a

word list and, consequently, maintaining motor skill. Conversely,

it was the change in the strength of beta (not alpha) that was

linked to minimizing the interaction of the word list with subse-

quent motor skill and so maintained word recall (Figure 4).

Thus, the offline processing of different memories is linked to

different frequency bands, and the strength of these within a

DLPFC circuit shapes the interaction or segregation between

the different types of memory.

We compared the effects of single TMS pulses upon EEG

activity before (baseline) and after (offline) task performance.

This design isolates those changes specifically due to per-

forming the tasks (Figure 1). The same numbers of single

TMS pulses were applied at the same stereotactically main-

tained positions (over right DLPFC and left M1) during both

baseline and the subsequent offline recording. By comparing

between these recording sessions, the general effects of

TMS, such as sensory stimulation, were factored out to reveal

specifically those changes in how brain activity responded to

TMS pulses, which are due to task performance. What is iden-

tified using this approach is how the response to single-pulse

stimulation changes due to task performance (Figures 2

and 3). Thus, the change in response to single pulses (base-

line versus offline) reveals how the brain state is modified by

task performance.

We found that single TMS pulses had less effect upon circuits

during offline processing. The effect of a pulse upon brain activity

was attenuated offline (compared with baseline). The



ll
OPEN ACCESSReport
circumstances of this decrease depended upon the network.

When TMS was applied to M1, the decrease simply followed

task performance. By contrast, when TMS was applied to

DLPFC, the attenuated power was due specifically to the inter-

action between the different memory tasks (Figures 2 and 3).

This dissociation reveals the different contributions made by

M1 and DLPFC circuits to memory processing and the impor-

tance of the DLPFC to interactions between memories. Although

the attenuated response to stimulation occurs under different

circumstances, nonetheless, it may be due to the same underly-

ing mechanism.

Learning leads to the formation of neuronal ensembles.36,37

These consist of cells distributed throughout the brain becoming

flexibly linked together to create functional circuits.12 Their for-

mation due to learning may make the brain less sensitive to a

TMS pulse because the ongoing oscillation resists the perturbing

effects of the pulse.38–40 This is analogous to a child’s swing hav-

ing sufficient momentum to resist an external influence, from a

parental hand, when the swing is in motion.14

Being resistant to external perturbation explains how a

neuronal ensemble has a consistent pattern of activity during

memory processing.41 However, these stable activity patterns

will be disrupted by learning another, different type of mem-

ory, which when allocated to the same ensemble reduces its

stability, making it less resistant to perturbation.41 The inter-

ference between the different memories reduces the resis-

tance of an ensemble to perturbation; consequently, the effect

of stimulation is less attenuated and so returns to baseline.

This leads to greater memory impairment (from interference)

being linked to smaller differences in the response to single

TMS pulses compared with baseline (i.e., a negative correla-

tion; Figure 4). Thus, the emergence of ensembles during

learning explains both how brain activity becomes resistant

to the external perturbation from a TMS pulse and how this

resistance is (negatively) correlated with impaired perfor-

mance due to memory interactions.

The interaction between different memory types was shaped

by the functional state of the DLPFC network. The motor skill

was protected from interference from learning the word list

when alpha (but not beta) strength decreased. Conversely, the

word list was protected from interference from learning a motor

skill when beta (but not alpha) strength decreased (Figure 4).

Earlier studies have linked alpha power changes to motor skill

learning and beta power changes to word recall.42,43 Changes

in these different frequency bands within a DLPFC circuit modi-

fied the interaction, resulting in interference between different

memory types. The functional state of the DLPFC circuit can

also be modified artificially to change the interaction between

different memory types4,5; for example, directly modifying its

state by applying repetitive TMS over the DLPFC or indirectly

modifying its state by applying stimulation to functionally con-

nected areas includingM1.44–46 Thus, changes in the DLPFC cir-

cuit’s functional state provide a flexible organization in which the

interaction or independence between different memory types

can be changed for adaptive benefit.

Decreasing the interaction between memories could have an

adaptive benefit. It would improve accurate memory recall by di-

minishing interference between memories. Although accurate

recall is adaptive in some circumstances, for example, when a
recall is rewarded,47,48 an impaired recall also has adaptive

benefits.21,49 The interaction between, and the consequent inter-

ference of, a memory has been linked (both correlatively and

causatively) to the sharing of abstract serial information between

different memory types.6,21,33,49 Accuracy is sacrificed to extract

common features.49 This allows information acquired in one sit-

uation (learning a sequence of words) to be applied in a new

context to enhance the learning of a different type of memory

(sequence of actions6,21). Thus, functional changes within a

DLPFC circuit can flexibly modify the balance between segrega-

tion and interaction between different memory types for an

adaptive benefit.

Overall, this work shows how the segregation between

different memory systems breaks down. The DLPFC is cen-

tral to this shift from memory independence to interactions.

The response of the DLPFC circuit to a TMS pulse

decreased exclusively when different memory types inter-

acted and occurred, regardless of how this interaction was

produced (Figures 2 and 3). The decrease is consistent

with the formation of functional networks during offline pro-

cessing, which because they are driven by ongoing process-

ing are less affected by perturbation from single TMS

pulses. This attenuation was specifically within the alpha/

beta frequency range, which has been implicated previously

in offline memory processing.10,34 The attenuation in alpha

(but not beta) strength was linked to the protection of the

motor skill from interference from the word list; conversely,

the attenuation in beta (but not alpha) strength was linked

to the protection of the word list from interference from

the motor skill (Figure 4). The protection from interference

shows that the interaction between different memory types

has reduced, and instead, they are being processed inde-

pendently. Thus, the physiological state of the DLPFC circuit

balances the independence or interaction between different

memory types.
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Materials availability
This study did not generate any novel unique reagents.

Data and code availability
The data generated during this study have been deposited at Zenodo and are publicly available at the time of publication. DOIs are

listed in the key resource table. This paper does not report original code. Any additional information required to reanalyze the data

reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental design
We tested how the response of brain activity to an external perturbation changed during offline memory processing. All experiments

had a similar design (Figure 1). Each used single pulses of Transcranial Magnetic Stimulation (TMS) to perturb networks, and this was

measured concurrently with EEG. We compared the effect of a TMS pulse applied over the right dorsolateral prefrontal cortex

(DLPFC) and left primary motor cortex (M1) upon EEG activity before (baseline) and after (offline) behavioral tasks. This comparison

factored out the general effects of TMS, such as sensory and cutaneous stimulation to reveal specifically those changes in how brain

activity responded to TMS pulses, which are due to performing the behavioral tasks. We were able to specifically isolate those

changes due to an interaction between different memory types by contrasting the brain activity changes in response to an external

perturbation across different behavioral tasks. All the experimental work was approved and overseen by the local (National Health

Service; West Coast of Scotland) research ethics committee.

Different types of memory tasks were used. A motor skill and then a word-list were learned, which interact and lead to impaired

motor skill retention (motor skill group1,4,6). Participants learned the motor sequence (�10am), the skill acquired was then measured

on a test block (skill1), participants then learned a word-list, had their recall tested (recall1), and subsequently 10-hrs later had their

skill retested (skill2; motor skill group; Figure 1). This was compared against another group, in which the motor skill task was replaced
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by a motor performance task (control group; Comparison 1; Figure 1). These tasks were identical in every respect, including being

visually cued and having the same number of movements, however, themovements had no serial structure in themotor performance

task. It is only when there is a consistent serial regularity that amotor sequencememory is formed, which interacts and is impaired by

learning a subsequent word-list task.1,4,6,33 Thus, comparing between these groups showed how networks response to an external

perturbation (TMS pulse) changed depending upon whether or not there was an interaction between the tasks.

We compared learning amotor sequence (test; skill1) and then a word-list (motor skill group) against another group (Comparison 2;

Figure 1). The same memory tasks were performed, but in the reverse order. Participants learned the word-list (�10am), had a free

recall test administered (recall1), then learned the motor sequence, had their skill tested (skill1), and subsequently 10-hrs later had

their free recall retested (recall2; word recall group; Figure 1). In both groups, the initial task (motor sequence, word-list, respectively)

interacts offline with a different type of memory task impairing its retention (10 hours later, (skill2 or recall2)
1,4,6). The interference be-

tween these different types of memory task wasmeasured as a change in performance between testing and retesting (skill2 – skill1 or

recall2 – recall1;respectively
1,4,6,21). The memory task order differs; but, what is common between them is an interaction between

different memory types.1,4,6 Thus, comparing between these groups provides a test of how a network’s response to an external

perturbation (from a TMS pulse) changed depending upon how the interaction between the different memory types was produced.

Finally, a structural magnetic resonance imaging (MRI) of each participant’s brain was used to identify target areas (in the case of

the right DLPFC) and maintain coil position throughout the experiment with a frameless stereotactic system (please see Transcranial

Magnetic Stimulation (TMS)).

Participants
We recruited 51 right-handed (as defined by the Edinburgh Questionnaire54), healthy participants, with no medical, neurological, or

psychiatric history, normal or corrected to normal vision, who met the additional safety criteria for the use of MRI and TMS.55,56 All

participants provided written informed consent for the study, approved by the local institutional review board. Some of the partici-

pants (n = 6) were excluded from further analysis because they were able to recall four or more items of the motor sequence (please

see Motor sequence learning task). This amount of recall can prevent a motor task being disrupted by word-list learning, and rather

than impairing its subsequent recall, the motor skill is enhanced.57 Using this exclusion criterion ensured that there was a consistent

performance measure for the interaction between memory tasks (i.e., skill impairment). The remaining 45 participants (30 females,

23.9±3.6 years; mean ± std) were randomly and equally divided across the three groups (n = 15 per group). Similar number of par-

ticipants (per group) have been used to successfully detect EEG changes in response to a TMS pulse, and interactions between

different memory types.1,4,58

METHOD DETAILS

Motor sequence learning task
We used a modified version of the serial reaction time task (SRTT26,59). A solid circular visual cue (diameter 20mm, viewed from

approximately 800mm) could appear at any one of four possible positions, designated 1 to 4, and arranged horizontally on a com-

puter screen. Each of the four possible positions was indicated on screen by a circle with a narrow border and corresponded to one of

the four buttons on a key-pad, upon which the participant’s fingers rested. When a target appeared, participants were instructed to

respond as quickly and accurately as possible by pressing the appropriate button. If the participant made an incorrect response, the

stimulus remained until the correct button was selected. Once the correct response was made, the cue on the screen disappeared

and was replaced by the next cue after a delay of 400ms. Response time was defined as the interval between presentation of a stim-

ulus and selection of the correct response.

Participants were introduced to the task as a test of reaction time. Yet, the position of the visual cue followed a repeating 12-item

sequence (2-3-1-4-3-2-4-1-3-4-2-1). They were not told about the 12-item sequence, and there were no cues marking the introduc-

tion of the sequence. Learning started on an initial, short training block that contained 15 repetitions of the motor sequence (180 tri-

als), and then on a longer training block that contained 25 repetitions of the sequence (300 trials). The skill acquired was accessed

immediately after learning on a test block (180 trials; skill1) and again subsequently (10-hrs later) on a retest block (180 trials; skill2;

Figure 1). Each of the blocks had a similar structure with an initial 50 random trials preceding the sequential trials, and thesewere then

followed by another additional set of 50 random trials. The random trials contained no item repeats (for example, -1-1- was illegal),

and each item had approximately the same frequency of appearance. Each set of random trials in each block was unique, which

minimized the chance that participants might become familiar with the random trials. The short-training, training, and test block

together took approximately 15-20 minutes to complete.

A free recall test was administered when participants had completed the motor task. Participants were asked if they had noticed a

pattern to the visual cues of the task, and if so, to report verbally as many items of the sequence as possible.1,4 It was scored as the

longest, continuous and accurate verbally recalled segment of the sequence that was at least three items long (i.e., a triplet or more).

Those recalling 4 ormore items from the 12-item sequence in the correct order were excluded from subsequent analysis (n = 6; <12%

of the sample). A greater recall (i.e., > 4 items) can prevent a motor task being disrupted by word-list learning, and rather than impair-

ing its subsequent recall, the motor skill is enhanced.57 By excluding those participants, we ensured that the interaction between the

memory tasks had a consistent affect upon performance (i.e., skill impairment1,4,6).
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Motor performance task
We also used a modified version of the sequence learning task (control task). It was identical in every respect to the motor

sequence learning task, except that all the sequential trials were replaced by an equal number of random trials. The same random

trials were used for all participants performing the task. Removing the serial structure of the sequence learning task prevents the

interaction with the word-list task, whilst ensuring the performance of the same number of visually guided movements over the

same duration.1 Thus, using this task isolates the interaction between memory tasks from task performance (Comparison 1;

Figure 1).

Word-list task
A single word, from a list of 16 words (drawn from the California Verbal Learning Task), was presented on a computer screen for

2s. The word was then removed and replaced by another word also drawn from the list of 16 words. This process continued until

all 16 words had been presented. The list of words was: truck, spinach, giraffe, bookcase, onion, motorcycle, cabinet, zebra, sub-

way, lamp, celery, cow, desk, boat, squirrel, and cabbage. These same 16 words were presented individually and in the same

order for five iterations for each participant. At the end of each of these presentations, participants were asked to verbally recall

as many of the words as possible. Participants were not prompted for particular words, nor were they told those words, if any,

which they had failed to recall. Following the fifth recall, there was a ten-minute interval. A free recall test was then administered

with participants asked to recall as many of the words as possible (recall1), and this same test was administered 10-hrs later

(recall2; Figure 1). It took approximately 15 minutes to complete the learning (five iterations) and conduct the initial free recall

test of the word-list.

Transcranial Magnetic Stimulation (TMS)
We tested how offline processing modified the effect of a perturbation applied as a single TMS pulse (over the left M1 or the right

DLPFC). Stimulation was applied focally to these brain areas using standard figure-of-eight coils connected to two biphasic stimu-

lators (Magstim Rapid2, Magstim Company) at an intensity of 80% of the individual resting motor threshold (rMT). This intensity was

chosen because: (1) it is sufficient to produce measurable EEG responses60; while being (2) unlikely to evoke MEPs when TMS is

applied to M1, avoiding peripheral somatosensory potentials in EEG; and (3) elicits only small scalp muscle contractions, minimizing

the muscle-artifact contamination of the EEG.61

We identified the left M1 as the optimal location for inducing motor evoked potentials (MEP; recorded using surface electromyog-

raphy) in the first dorsal interosseous (FDI) muscle of the relaxed right hand. The rMT was defined as the lowest intensity that was

capable of inducing at least ten measurable MEPs (>50 mV) in the contralateral FDI muscle following 20 single TMS pulses.62 This

method has been widely used and shown to consistently and accurately target the hand area of M1.63 Participants held both of their

hands relaxed during the rMT-estimation.

Right DLPFC was defined based on earlier functional imaging studies identifying DLPFC activations.64 This same location was

targeted successfully with repetitive TMS to modulate the interaction between different types of memories (Talairach co-ordinates;

x = 40, y = 32, z = 304,23).

To ensure accurate and consistent targeting, we first acquired individual anatomical T1-weighted MRI scans (MP-RAGE imag-

ing sequence) using a 3T MR scanner (Magnetom Trio Siemens, Erlangen, Germany). The scans were then used to both guide the

TMS targeting, and ensure that the location was maintained via a frameless stereotactic system (Brainsight TMS, Rogue Resolu-

tions Ltd).

Combined simultaneous single pulse TMS and EEG recording
EEG was continuously recorded with a TMS-compatible EEG system (BrainAmp, Brain Products) from 62 Ag/AgCl-sintered elec-

trodes (EasyCap GmbH, Herrsching, Germany) mounted on an elastic cap according to the International 10–10 system. AFz and

TP9 served as reference and ground, respectively. To monitor eye movements, an additional electrode was placed on the outer

canthus of the left eye and referenced offline to Fp1. We kept all electrode–skin impedances below 5 kU to ensure high-quality re-

cordings, and a high sampling rate (5 kHz) to minimize the duration of the TMS-pulse artifact in EEG.

To protect participants’ hearing and suppress potential TMS-related auditory responses, the participants wore foam ear-

plugs through which masking noise was played65 (3M E-A-RTONE Insert Earphone 3A 410-3002). We tailored the noise level

for each participant by gradually increasing the volume until they could not hear the coil click anymore or until any further

volume increase would be uncomfortable. During the recordings, participants sat on a comfortable chair in a dimly illumi-

nated and electrically shielded room. To minimize muscular artifacts in the EEG signal, participants rested their heads on a

chin support and were asked to remain relaxed. Participants were also instructed to stay focused on a provided fixation

cross throughout the entire session to minimize their eye-movement artifacts and the drowsiness-related prominent poste-

rior alpha activity.

Both baseline and subsequent offline TMS–EEG sessions consisted of 126 TMS pulses applied over the right DLPFC and the same

number applied over the left M1 (252 single pulses in total, randomly distributed between sites). They were delivered with an inter-

stimulus interval (ITI) of 4-6 s (4.9±0.6 s, mean ± std). The 252 pulses were distributed across three blocks of 7 minutes each with a

1-minute break between blocks (�23 min in total).
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QUANTIFICATION AND STATISTICAL ANALYSIS

All the performance data was graphically explored using MATLAB (2017a, The MathWorks, Natick, Massachusetts, United States of

America (USA)). Specifically, we examined the distribution of the data using histograms, normal probability plots, and verified that the

data followed a normal distribution using the Shapiro-Wilk test.

In the sequence learning task (i.e., the SRTT), response times were defined as the time to make a correct response. Any response

time in the top one percentile (i.e., a = 0.01) of a participant’s data was identified using aGrubbs’ Test and removed.We quantified the

amount of sequence learning by subtracting the average response time (RT) of the final 50 sequential trials from the average response

time of the 50 random trials that immediately followed.59,66 The difference between random and sequential RT is a widely used

learning measure, which is both sensitive and specific to learning of the motor sequence (for example, Nissen and Bullemer,59 Will-

ingham et al.,66 and Boyd and Winstein67; for review, Robertson26). It is a measure of the RT advantage of the sequential over the

random trials, and so it increases as performance of the sequence improves. Accuracy in this task even with limited experience is

very high (>95%27,31,66). The free recall of the motor sequence was scored as the longest, continuous and accurate verbally recalled

segment of the sequence that was at least three items long (i.e., a triplet or more). In the other motor task (the performance task) there

was no serial structure, and so no distinction between sequential and random trials. We used the average RT of the final 100 trials in

each block to quantify performance. These are the same final number of trials within the test and retest blocks as used in the

sequence learning task to quantify skill (i.e., 50 sequential plus the subsequent 50 random trials). For the word-list learning task,

we analyzed the total number of words correctly recalled (i.e., total recall1,4,6).

The change in performance between testing and subsequent retesting (i.e., skill1 vs. skill2 plus recall1 vs. recall2) was used as a

measure of interference with the other type of memory task (i.e., word-list andmotor skill learning task, respectively). We used paired

t-tests to determine the significance of these performance changes within groups. All the statistical tests used in the analysis were

two-tailed unless otherwise stated.

EEG Analysis
Initially, TMS-related artifacts were removed (preprocessing) from the EEG signal, which was then transformed into time-frequency

domain. Specifically, we transformed the EEG signal into event-related spectral perturbation (ERSP), which is a measure quantifying

how an external event, i.e., a TMS pulse, perturbs a circuit’s spontaneous oscillatory activity.68 By comparing the ERSP at baseline

and the subsequent offline sessions, we could assess howmemory interactionsmodulate the response to external perturbation in the

probed networks (Figure 1). Analyses were performed using custom MATLAB (Version 2017a, The Mathworks, Natick, Massachu-

setts, USA) scripts, combined with the EEGLAB toolbox (UC San Diego, La Jolla California, USA69), TMS–EEG signal analyzer plugin

(TESA50) and the fieldtrip toolbox70 (http://fieldtriptoolbox.org).

Preprocessing
We removed the typical TMS-related noise and artifact signals from the EEG data. The data were segmented into 2000-ms long

epochs, each consisting of 1000ms of data around the TMS pulse. The artifact removal process was threefold. First, for each trial,

the TMS-pulse (from -2 to 6 ms with respect to the TMS pulse) was cut and replaced with a ‘mirrored’ version of the baseline data

right before the TMS pulse (-8 to -2 ms50). In addition, the recharging delay, which depends on the stimulation intensity, was visu-

ally identified for each dataset, removed and interpolated using a spline function.71 Second, noisy channels were detected and

corrected accordingly by means of the source-utilized noise-discarding algorithm (SOUND52,72). Finally, eye-movement-, mus-

cle-, and exponential-decay artifacts were removed with the combination of the independent component analysis (ICA51) and

the signal-space-projection–source-informed-reconstruction method (SSP-SIR52,73), tailored for muscle-artifact rejection.74,75

The data analysis scripts were based on the open-source EEG and TMS-EEG data analysis toolboxes, EEGLAB and TESA,

respectively.50,69

Analysis of the oscillatory response to single pulse stimulation
To analyze the oscillatory response to external perturbation, we computed the ERSP, ameasure that quantifies the ability of a specific

event, e.g., the TMS pulse, to perturb the spontaneous spectral activity.

Each trial was first transformed into time-frequency domain by applying fast Fourier transform to 500ms sliding time-windows

(Hanning taper) moving in 20ms steps. The analysis was restricted to 2-40 Hz and for 0-350ms following the pulse because cortical

waves are typically identified below 40 Hz following a TMS pulse and last for about 300ms.76,77 The power values at each frequency

were transformed into decibels with respect to the corresponding frequency-specificmean power during 500ms to 100ms before the

TMS pulse. For each participant, session, and condition, the obtained time-frequency transformations were finally averaged across

the trials to obtain the corresponding four ERSP-conditions (baseline and offline-session for the right DLPFC stimulation plus baseline

and offline-session for left M1 stimulation). The offline conditions (right DLPFC and left M1) were normalized with respect to the cor-

responding baseline conditions (right DLPFC and left M1, respectively). Normalization was conducted on each participant’s ERSP

data by dividing the conditions (both baseline and offline) by the scalar normalizing factor. This was calculated from baseline condi-

tion as the Frobenius norm of the three-dimensional ERSPmatrix (channels x time x frequency78). Frobenius norm robustly quantifies

the overall power in signals that are centered around zero, such as ERSP. This factored out variability across participants in the ERSP

at baseline.79–81
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We statistically compared changes in the TMS-triggered ERSP due to memories interaction by using 2-by-2 non-parametric clus-

ter-based statistics analysis. Time (offline vs. baseline) as awithin-group factor andGroup as a between-group factor (Comparison 1;

motor skill vs. control groups or Comparison 2;motor skill vs. word recall groups) including all channels and frequencies (2-40Hz) and

individual time points between 0-350ms, separately.53 The possible interaction between these factors (Time*Group) specifically iden-

tifies ERSP changes that are due to the interference between different types of memory.

To test whether the memory interaction shapes the TMS-triggered ERSP in a particular way, we ran the following cluster statistics

to test the Time*Group interaction (Comparison 1; motor skill vs. control groups; Comparison 2; motor skill vs. word recall groups).

This was achieved by computing the ERSP change from baseline to offline session for each participant. Next, we ran two-tailed

unpaired t-tests (significance level p<0.05) at each sample to compare the ERSP changes between groups (across all 62 channels;

0-350ms; 2-40 Hz). Any neighboring significant samples were then assembled into clusters. The resulting clusters were tested for

significance by comparing them to the permuted cluster distribution, obtained by shuffling the participants across the groups to pro-

duce two surrogate groups for every permutation (10000 permutations; two-tailed tests; significance level p<0.05). Differences be-

tween the shuffled surrogate groups were simply due to random stochastic variations. If the actual clusters, describing the group

difference in how ERSP changed over time, belonged to the most positive or most negative 2.5 % in the permuted maximum cluster

distribution, the Time*Group interaction was considered significant.

We also tested the effect of Time (offline vs. baseline) on the TMS-triggered ERSP. This test will identify changes attributable to

performing tasks in succession. To test the effect of time, we combined both groups (i.e., for Comparison 1 motor skill and control

groups, and for Comparison 2 motor skill and word recall groups). Next, we ran two-tailed paired t-tests (significance level p<0.05) at

each sample to compare the ERSP changes between the baseline and offline sessions. Any neighboring significant samples were

then assembled into clusters. The resulting clusters were tested for significance by comparing them to the permuted cluster distri-

bution, obtained by randomly shuffling the baseline- and offline-session samples of each participant to produce two surrogate ses-

sions for each group (10000 permutations; two-tailed tests; significance level p<0.05). If the actual clusters, describing the difference

between the baseline and offline sessions belonged to the most positive or most negative 2.5% in the permuted maximum cluster

distribution, the effect of time was considered significant.

To visualize the clusters resulting from both interaction (Time*Group) and time (offline vs. baseline) contrasts, we collapsed the

three-dimensional signal (time, frequency, channel) either across channels – to give the time-frequency plot – or across both time

and frequency – to give the topographical plot (Figures 2 and 3). Topographies were masked by the most significant cluster, i.e.,

in the case of significant contrasts, the significant cluster was selected, whereas for non-significant contrasts, the cluster closest

to significance was selected. As a result, the spatio-spectral–temporal samples that did not belong to the selected cluster were

set to 0 and, therefore, are white in the topographical plot.

When appropriate, post-hoc cluster tests were run for exploring the associated effects of time (offline vs. baseline) within each

group. These cluster tests were run similarly as when testing the effect of Time.

Finally, to exclude the possibility that different baseline levels could explain the observed differences between the groups, cluster

statistics, using an ANOVA, were run to compare the baseline-session ERSPs across the groups (please see Figure S1).

Source analysis
We performed source-space analysis to estimate the activity changes directly at the cortical level. As a source model, we used the

2000-dipole version of the New York Head with free dipole orientations.82 To save computational time, the data were downsampled

to 125-Hz sampling frequency prior tominimum-norm estimation. Then, to obtain the cortical ERSP estimates, each TMS–EEG trial of

each participant was first transformed to current space using minimum-norm estimates with singular-value-truncated regularization

(the 30 most significant dimensions were included83). Next, using the obtained cortical-current curves, we calculated ERSP, within

the 6-30Hz and 0-350ms ranges after the TMS onset, for each of the 2000 sources. Finally, each of the source-specific ERSP map

was normalized with respect to the appropriate baseline session.

We used a non-parametric permutation approach to test for statistically significant differences in the cortical ERSP maps.84 When

comparing two groups, the subject-specific ERSP maps were pooled together, from which random partitions were drawn 1000

times. Using the permuted partitions, the maximum statistics across the whole cortical space were formed for each time-frequency

point. Finally, the real ERSP difference at each time-frequency-spatial point was compared to the correspondingmaximum statistics.

All ERSP differences larger than 95% of the maximum statistics were considered significant. When running within-group tests

comparing the baseline and offline ERSP maps, the permutation approach was similar, except now for sampling the random parti-

tions, each subject-specific ERSP-map pair (offline vs. baseline) was randomly shuffled at each round. The resulting cortical source

maps showed the net ERSP-change across the significant time-frequency points (restricted to 6-30Hz and 0-350ms after the TMS

onset).

Testing the relationship between neurophysiology and behavior
We tested the relationship between ERSP changes, and the change in memory performance. This was achieved using cluster sta-

tistics, with a two-tailed Spearman correlation as the test statistic. The identified ERSP and memory-performance changes were the

dependent and independent variables, respectively. We used the Spearman rank correlation because it only assumes a monotonic

relationship between the EEG measure and behavioral performance, as opposed to the more restricted requirements of a linear

relationship.
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We ran cluster-correlation tests. This was done for the normalized change in motor skill, and word recall due to interference from

the other type of memory (word-list learning or motor skill learning; respectively1,6). Using a normalized measure of memory impair-

ment factored out differences in initial performance. It was calculated as the difference in performance between retesting and earlier

testing, and divided by the earlier performance at testing (i.e., (skill2-skill1)/skill1 or (recall2-recall1)/recall1).

At each time-frequency-channel point we ran two-tailed correlation tests (significance level p<0.05) to relate the ERSP changewith

the corresponding memory-performance change. Any neighboring significant samples were then assembled into clusters. The re-

sulting clusters were tested for significance by comparing them to the permuted cluster distribution, obtained by shuffling the partic-

ipant-specific memory-performance measures to random participants (10000 permutations; two-tailed tests; significance level

p<0.05). With this permutation strategy, any correlation manifested in the permutation rounds could only reflect spurious ERSP-

memory-performance-change relationships. If the actual clusters, describing how ERSP correlated with the behavioral performance

change, belonged to the most positive or most negative 2.5 % in the permuted maximum cluster distribution, the correlation was

considered significant (please see Figure 4, which shows the correlation analysis).

We mapped the clusters across all the channels (62) and all the time points between 0–350ms. However, we run the cluster sta-

tistics separately for the different frequency bands implicated in the interference between the different memory types (i.e., alpha and

beta frequency bands; for more details please see results and discussion). Only by conducting separate cluster analysis for each

frequency band was it possible to test for a frequency based dissociation in memory fate.85

To visualize the three-dimensional clusters (time, frequency, channel), we collapsed across time and a specific frequency band

(alpha or beta) to create the topographical plots. From within the significant cluster we selected a representative channel and

show the time-frequency plots (the other two dimensions of a cluster). Finally, from these we selected four representative pixels,

which are shown as scatter plots of the power change (DERSP) against the normalized change in memory task performance (D skill

or D word recall; see Figure 4).

Finally, we also tested for a relationship between motor skill and any cluster identified as being significantly different between the

motor skill and control groups (i.e., a significant time*group interaction; Comparison 1). This was to determine whether any difference

to single pulse stimulation between the groups was due to motor sequence skill (acquired in the motor skill group). We tested for a

relationship using a Spearman correlation between initial skill and ERSP changes. The ERSP changes were within the channels, fre-

quency bands and time domain identified as being significantly different between the groups in their response to single pulse stim-

ulation (i.e., the time*group cluster; Comparison 1). At each time-frequency-channel point, we ran two-tailed correlation tests (sig-

nificance level p<0.05) to test for a relationship between initial skill (skill1) and the ERSP change. Any neighboring significant

samples were then assembled into clusters. The resulting clusters were tested for significance by comparing them to the permuted

cluster distribution, obtained by randomly assigning participant-specific initial skills across the participants (10000 permutations;

two-tailed tests; significance level p<0.05). With this permutation strategy, any correlation between skill and ERSP found in the per-

mutation rounds would be spurious. If the actual clusters, describing how ERSP correlated with the initial skill, belonged to the most

positive or most negative 2.5 % in the permuted maximum cluster distribution, the correlation was considered significant.

Analyses of spontaneous oscillatory activity
We examined how spontaneous oscillatory activity was affected by task performance (see Figure S2). This was achieved by

analyzing oscillatory activity not affected by the TMS pulses, before (baseline) and after (offline) task performance.

We restricted the analysis to 2-40 Hz and from -450 to -100ms before the pulse (and 4-6 s after the previous pulse). This provided a

window identical in duration as in the ERSP analysis (total duration of 350 ms), and as far as possible from the influence of the earlier

TMS-pulse. For each participant and session, we merged the data between sites of stimulation (DLPFC and M1). The focus was on

spontaneous activity changes, as opposed, to those in response to single pulses of stimulation. As in themain analysis, we averaged

the power values of the time-frequency transformations across trials and normalized with respect to the corresponding baseline ses-

sion, which factored out inter-individual power variability. However, the normalized power values were averaged across time (-450 to

-100ms).With spontaneous changes time becomes irrelevant, as there is no event.We used cluster-based statistics to identify spon-

taneous activity changes before (baseline) and after (offline) the different tasks across the different groups. We compared sponta-

neous changes between themotor skill and control groups (Comparison 1) and between themotor skill andword-recall groups (Com-

parison 2; Figure 1). At each channel and across each frequency (62 channels; 2-40 Hz with 1-Hz frequency bins), we used two-tailed

unpaired t-tests (significance level p<0.05) to compare the changes in the spontaneous oscillatory activity between groups, and two-

tailed paired t-tests (significance level p<0.05) to compare changes between the baseline and offline sessions. When appropriate,

post hoc cluster tests were used to explore the effects of time (offline vs. baseline) for each group. Finally, to exclude the possibility

that different baseline levels could explain the observed differences between the groups, cluster statistics, using two-tailed unpaired

t-tests, were run to compare the baseline spontaneous oscillatory activity between the groups.
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