Out‐of‐plane electronics on flexible substrates using inorganic nanowires grown on high‐aspect‐ratio printed gold micropillars

Ma, S., Dahiya, A. S. and Dahiya, R. (2023) Out‐of‐plane electronics on flexible substrates using inorganic nanowires grown on high‐aspect‐ratio printed gold micropillars. Advanced Materials, 35(26), 2210711. (doi: 10.1002/adma.202210711) (PMID:37178312)

[img] Text
298389.pdf - Published Version
Available under License Creative Commons Attribution.

5MB

Abstract

Out-of-plane or 3D electronics on flexible substrates are an interesting direction that can enable novel solutions such as efficient bioelectricity generation and artificial retina. However, the development of devices with such architectures is limited by the lack of suitable fabrication techniques. Additive manufacturing (AM) can but often fail to provide high-resolution, sub-micrometer 3D architectures. Herein, the optimization of a drop-on-demand (DoD), high-resolution electrohydrodynamic (EHD)-based jet printing method for generating 3D gold (Au) micropillars is reported. Libraries of Au micropillar electrode arrays (MEAs) reaching a maximum height of 196 µm and a maximum aspect ratio of 52 are printed. Further, by combining AM with the hydrothermal growth method, a seedless synthesis of zinc oxide (ZnO) nanowires (NWs) on the printed Au MEAs is demonstrated. The developed hybrid approach leads to hierarchical light-sensitive NW-connected networks exhibiting favorable ultraviolet (UV) sensing as demonstrated via fabricating flexible photodetectors (PDs). The 3D PDs exhibit an excellent omnidirectional light-absorption ability and thus, maintain high photocurrents over wide light incidence angles (±90°). Lastly, the PDs are tested under both concave and convex bending at 40 mm, showing excellent mechanical flexibility.

Item Type:Articles
Keywords:Flexible electronics, omnidirectional light sensing, out‐of‐plane electronics, photodetectors, printed micropillars.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Dahiya, Dr Abhishek Singh and Dahiya, Professor Ravinder and Ma, Sihang
Authors: Ma, S., Dahiya, A. S., and Dahiya, R.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:Advanced Materials
Publisher:Wiley
ISSN:0935-9648
ISSN (Online):1521-4095
Published Online:13 May 2023
Copyright Holders:Copyright © 2023 The Authors
First Published:First published in Advanced Materials 35(26):2210711
Publisher Policy:Reproduced under a Creative Commons license

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
301728Engineering Fellowships for Growth: Printed Tactile SKINRavinder DahiyaEngineering and Physical Sciences Research Council (EPSRC)EP/R029644/1ENG - Electronics & Nanoscale Engineering
301327`Hetero-print: A holistic approach to transfer-printing for heterogeneous integration in manufacturingPeter SkabaraEngineering and Physical Sciences Research Council (EPSRC)EP/R03480X/1ENG - Electronics & Nanoscale Engineering