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Fast, efficient and accurate triggers are a critical requirement for modern high energy physics experiments 
given the increasingly large quantities of data that they produce. The CEBAF Large Acceptance 
Spectrometer (CLAS12) employs a highly efficient electron trigger to filter the amount of recorded data by 
requiring at least one electron in each event, at the cost of a low purity in electron identification. Machine 
learning algorithms are increasingly employed for classification tasks such as particle identification due 
to their high accuracy and fast processing times. In this article we show how a convolutional neural 
network could be deployed as a Level 3 electron trigger at CLAS12. We demonstrate that the Artificial 
Intelligence (AI) trigger would achieve a significant data reduction compared to the traditional trigger, 
whilst preserving a 99.5% electron identification efficiency. The AI trigger purity as a function of increased 
luminosity is improved relative to the traditional trigger. As a consequence, this AI trigger can achieve a 
data recording reduction improvement of about 65% at standard CLAS12 luminosities when compared to 
the traditional trigger. A reduction in data output also reduces storage costs and post-processing times, 
which in turn reduces time to publication of new physics measurements.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

The Continuous Electron Beam Accelerator Facility (CEBAF) pro-
duces and delivers an electron beam to the four experimental halls 
of the Thomas Jefferson National Accelerator Facility (JLab), includ-
ing the CLAS12 (CEBAF Large Acceptance Spectrometer @ 12 GeV) 
detector [1] located in Hall B. The CLAS12 experimental program 
broadly encompasses electroproduction experiments aiming to fur-
ther the global understanding of hadronic structure and Quantum 
Chromodynamics [3]. The CLAS12 detector was built to have full 
azimuthal angular coverage and a large acceptance in polar angle, 
allowing measurements to be made over large kinematic ranges 
[1]. Very low polar angular coverage, from 2.5 to 5 degrees, is en-
abled by the forward tagger [2], whilst the forward detector covers 
the range of polar angles from 5 to 35 degrees and is segmented 
into six sectors of azimuthal angle. The central detector covers the 
range of polar angles from 35 to 125 degrees, but as it was not 
designed to detect electrons, we can ignore it for the remainder of 
this article. Given the electroproduction nature of its experiments, 
a critical aspect of data taking using CLAS12 is the electron trigger. 
This trigger flags events with at least one detected electron, there-
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fore allowing the filtering of data recorded to tape which in turn 
reduces storage costs and post processing times.

The CLAS12 trigger system [4] was designed to efficiently se-
lect events for the different experiments comprising the CLAS12 
physics program. Specifically, it selects events with scattered elec-
trons detected in the CLAS12 forward detector or forward tagger. 
The forward tagger is composed of a hodoscope which discrim-
inates between electrons and photons, and a calorimeter which 
measures the energy deposited by individual particles. The electron 
trigger in the forward tagger requires a coincidence of a hit in the 
hodoscope and a cluster with energy within a specified range [4]. 
Identifying electrons, on which to form a trigger, in the forward 
detector is more complicated since the forward detector detects 
many more particle types. Resolving these different particle types 
requires more sophisticated particle identification algorithms, as 
will be discussed in Section 2. A diagram of the CLAS12 detec-
tor is shown in Fig. 1, with the forward tagger here hidden from 
view.

The performance of the trigger can be evaluated based on two 
metrics, the purity and the efficiency. The easiest way to describe 
these is by using a confusion matrix, as shown in Table 1. A True 
Positive (TP) is an event with an electron in a given sector that was 
correctly selected by the trigger. A False Negative (FN) is an event 
with an electron in a given sector that was incorrectly rejected by 
the trigger. A True Negative (TN) is an event with no electrons in 
a given sector that was correctly rejected by the trigger. A False 
 under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108783
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108783&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:bryan.mckinnon@glasgow.ac.uk
https://doi.org/10.1016/j.cpc.2023.108783
http://creativecommons.org/licenses/by/4.0/


R. Tyson, G. Gavalian, D.G. Ireland et al. Computer Physics Communications 290 (2023) 108783
Fig. 1. A diagram of the CLAS12 detector showing the central and forward detec-
tors and highlighting relevant subsystems of the forward detector used to identify 
electrons, as discussed in Section 2. Three of the forward detector’s six sectors are 
visible. The forward tagger covering low polar angles is here hidden from view and 
is situated close to the beam-line. Mentioned for completeness, the central detector 
is not used to detect electrons as it does not have the capabilities to identify them 
and will therefore be ignored for the remainder of this article.

Table 1
The electron trigger confusion matrix.

Confusion Matrix Electron in Sector No Electron in Sector

Selected by Trigger True Positive (TP) False Positive (FP)

Rejected by Trigger False Negative (FN) True Negative (TN)

Positive (FP) is an event with no electrons in a given sector that 
was incorrectly selected by the trigger. This can happen when the 
trigger misidentifies another particle type, or even a spurious hit, 
as an electron.

The efficiency (E), purity (P) and overall accuracy (A) of the trig-
ger are then calculated as:

E = T P

T P + F N
(1)

P = T P

T P + F P
(2)

A = T P + T N

T P + F P + F N + T N
(3)

Despite achieving high efficiency in selecting events with at 
least one electron in at least one of the six sectors of the forward 
detector [4], the CLAS12 electron trigger can misclassify events 
where another particle type is mistaken for the electron in one 
of the six sectors. This decreases the purity of the trigger. Typically 
a balancing game can be played between the purity and efficiency 
in which as one decreases the other increases, therefore easing or 
tightening the requirements on electron identification. This is re-
flected by the overall accuracy which is highest when maximising 
the product of the purity and efficiency.
2

Machine learning algorithms are known to be very effective for 
classification tasks and previous research has demonstrated their 
use as triggers. In [5], it was shown that Multi Layer Perceptrons 
could use low level information from photomultiplier tubes at the 
Jiangmen Underground Neutrino observatory (JUNO) to select neu-
trino events with a high efficiency whilst decreasing the required 
logic resources. Similarly, [6] demonstrates how neural networks 
could process low level information in Drift Tube chambers at the 
Compact Muon Solenoid (CMS) to improve muon identification for 
triggering by using a network to remove noise from the Drift Tubes 
and a separate network to identify the side of passage of the hit 
with respect to a wire within the Drift Tube. Both of these exam-
ples constitute so called Level 1 triggers that take raw hits from 
a single type of detectors to make a trigger decision. The LHCb 
collaboration also employs machine learning algorithms such as 
boosted decision trees for High Level triggers [7]. These are typi-
cally based on variables reconstructed from post processing of low 
level information, with the aim of identifying specific channels or 
reactions such as B production.

In this article we present an AI electron trigger for CLAS12 ca-
pable of higher purity electron selection than the traditional elec-
tron trigger. Our AI trigger employs a convolutional neural network 
applied to low level information taken from hits in two different 
detectors. The trigger we obtain in this way sits somewhere in be-
tween the two kinds of triggers cited above: we construct a Level 
3 trigger which aims to identify electrons by combining low level 
information from various CLAS12 subsystems. As such, the trigger 
can run online without requiring any data post processing whilst 
being able to better identify electrons than the traditional CLAS12 
trigger.

2. CLAS12 electron trigger

The CLAS12 Electron trigger [4] uses information from the for-
ward Electromagnetic Calorimeter [8] (ECAL), the drift chambers 
[9] (DC) and the High Threshold Cherenkov Counter [10] (HTCC) 
to select events with an electron in at least one of the six CLAS12 
Forward Detector sectors.

The ECAL is composed of two separate subsystems, the electro-
magnetic calorimeter (EC) and the pre-shower calorimeter (PCAL), 
both composed of three views (U/V/W), as exemplified in Fig. 2. 
The EC itself contains two calorimeters, the EC inner and EC outer, 
which have 36 strips in each of their three views. The PCAL has 
68 strips in the U view and 62 in V and W [8]. The primary pur-
pose of these detectors is electron identification via the energy of 
their electromagnetic showers as electrons will deposit more en-
ergy than hadrons in the ECAL [4].

The HTCC was specially designed to discriminate electrons from 
other charged particles. The HTCC consists of 60 mirror sections 
readout by 48 photo-multiplier tubes (PMTs) with clusters made 
of one to four PMT signals collecting the Cherenkov light from 
adjacent mirrors [10]. The number of photo-electrons produced 
in a cluster then becomes a discriminating variable in identifying 
electrons, with the requirement being at least two photo-electrons 
produced in the HTCC for electrons [4].

The DC, shown in Fig. 3 is made of six superlayers in each 
of the six CLAS12 sectors, with six layers per superlayer and 112 
wires per layer [9]. The trigger decision requires at least three lay-
ers in every superlayer and at least five superlayers in every sector. 
There is no signal amplitude information available therefore only 
hit information can be used by the trigger [4].

The electron trigger then combines information from all three 
of these detectors to select events with at least one electron in one 
of the six sectors. This is done in parallel for all sectors by requir-
ing at least two photoelectrons produced in the HTCC and high 
energy deposition in the calorimeters [4]. Geometrical matching 
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Fig. 2. Schematic representation of the calorimeters’ three views taken from [8].

Fig. 3. Left: Diagram showing the three chambers of the DC, each chamber containing two superlayers. The torus magnet allows to measure the charge and momentum of 
charged particles travelling through the DC. The forward detector’s six sectors are also visible. Right: Schematic of the wire layout for one superlayer, with each superlayer 
containing 6 layers of sense wires (red). The view is a cut perpendicular to the wire direction. Both images taken from [9]. (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)
Fig. 4. A diagram of an electron track reconstructed in the forward detector, adapted 
from [1]. The heat maps represent the magnetic field strength close to the target 
and within the forward detector.

between the HTCC signal, the PCAL shower and track candidates in 
the DC helps to further remove background events without a scat-
tered electron in one of the six sectors [4]. Fig. 4, shows an elec-
tron going through the various subsystems of the CLAS12 detector 
where the red line here denotes an electron track as reconstructed 
by the CLAS12 data post-processing [11].

As mentioned earlier, the performance of the electron trigger 
can then be measured using several metrics. The efficiency mea-
sures the proportion of events with an electron which were se-
3

lected by the trigger. The efficiency is hard to measure offline 
given that by definition the events with at least one electron that 
were incorrectly rejected by the trigger won’t be saved. Instead, 
to compare to the work presented here, we refer to the reported 
measurements placing the efficiency over 99.5% in all electron mo-
mentum bins [4]. For this work, the purity of the electron trigger 
was measured as the proportion of events accepted by the trigger 
in a given sector with a particle reconstructed in the same sector 
that was identified as an electron by the usual CLAS12 data post-
processing [11]. This improves on the simple criteria required by 
the trigger first with a more rigorous matching of tracks associ-
ated with the electron in the DC to clusters in the ECAL and HTCC, 
and other CLAS12 subsystems not mentioned here for brevity. The 
same requirements are made on the charge of the particle, the 
number of photoelectrons in the HTCC and the lower threshold 
on the energy deposition in the ECAL. However, an additional re-
quirement is made on the electron sampling fraction, defined as 
the ratio of the energy deposition to the momentum of a parti-
cle. As seen in Fig. 5, the sampling fraction for electrons is centred
around 0.25. A parametrisation is established for both the mean 
and standard deviation of a normal distribution fitted to slices of 
the sampling fraction in bins of momentum. The sampling fraction 
for electrons is then required to be within five standard deviations 
from the mean for a given momentum. The two additional require-
ments on track matching and sampling fraction remove most other 
charged particle types, greatly increasing the particle identification 
purity, but require offline processing and cannot be used for the 
online trigger.
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Fig. 5. The electron sampling fraction at CLAS12.

Table 2
The CLAS12 electron trigger 
purity measured at differ-
ent beam currents.

Beam Current Purity

5 nA 43%
40 nA 28%
45 nA 29%
50 nA 27%
55 nA 23%

The trigger purity will change depending on the running condi-
tions. At higher luminosities, the resulting higher occupancy means 
the purity decreases. This happens, for example, by increasing the 
beam current. The data set used for this article was taken with a 
liquid hydrogen target (LH2) and a 10.6 GeV electron beam. The 
purity at different beam currents is shown in Table 2.

The aim of the AI Trigger is to improve the purity. To this end, 
hits in the DC and the ECAL were composed into separate images 
from which the machine learning classifier will be able to learn 
the energy and momentum distributions characteristic of electrons. 
The DC images are effectively 6 × 112 arrays where the rows rep-
resent each of the six superlayers and the columns represent the 
wires. These arrays are then filled with 0 if a wire did not record 
a hit or with 1/6 per hit per layer. The hits are taken on a sector 
per sector basis, as the AI trigger will be applied on individual sec-
tors, meaning that there can be hits from multiple tracks in each 
of the individual DC images. The ECAL images are effectively 6 ×
72 arrays where the rows represent the U/V/W view for the PCAL 
then the EC inner and EC outer arrays which are stacked side by 
side on the last three rows. The columns represent the individual 
strips. These arrays are then filled with the energy deposited in 
each of the strips, divided by three as three GeV was taken as the 
upper limit on the energy than can be deposited in an individual 
strip. No further normalisation is then applied to either the DC or 
ECAL images. An example of both is given in Fig. 6.

The example in Fig. 6 shows a clean electron track in the DC. 
In practice however, the raw hits in the DC will contain addi-
tional spurious hits, as shown in the first row of Fig. 7. This can 
essentially be thought of as noise and we sought to investigate 
whether this would have an impact on the AI trigger performance. 
To this end, we take the clean DC tracks as reconstructed by 
the usual CLAS12 reconstruction software, to which we add back-
ground taken at 45 nA, 50 nA, and 55 nA to synthetically recreate 
the raw hits measured in the DC at these various beam currents. 
The background is typically taken from random trigger data which 
was initially identified to emulate physics and electronic back-
grounds in the various detectors when simulating the CLAS12 de-
tector [12]. Additionally, we can double the background merged 
with the clean tracks to simulate data taken at 90 nA, 100 nA and 
4

110 nA [12]. From there we can train on the raw hits simulated 
with the background merging. Alternatively, we can follow the ap-
proach described in [13] to de-noise the DC tracks. This allows for 
a realistic comparison between applying the trigger on raw hits or 
clean tracks in the DC. Both approaches could be deployed dur-
ing data taking. To train the de-noising algorithm we followed the 
procedure described in [13], modifying the proposed architecture 
only by simplifying it in the interest of achieving higher prediction 
rates. The output of the de-noiser can be found in the bottom row 
of Fig. 7, showing much cleaner tracks that resemble that shown 
in Fig. 6.

3. Training

Convolutional neural networks [14,15] (CNNs) have become the 
go-to neural networks for image classification and more gener-
ally computer vision. These are composed of convolutional layers, 
which enhance or remove features of their input images, and a 
deep neural network which classifies the output of the convo-
lutional layers, as shown in Fig. 8. For this project we chose a 
specific architecture where the DC and ECAL images are passed 
to separate sets of convolutional layers. The output of both sets 
of convolutional layers is recast into 1D arrays and concatenated 
into a single array which is then fed to a deep neural network 
for classification. The logic behind this choice is that such an ar-
chitecture leaves open the possibility of adding information from 
additional detectors without affecting the structure of the convolu-
tional layers investigated here. The rightmost figure of Fig. 8 shows 
a diagram of the AI trigger architecture.

As a CNN trains, each of the filters will be optimised, along with 
the weights of the deep neural network, so as to improve the CN-
N’s performance. Several hyperparameters can then be tuned by 
the user, such as the number of nodes and layers in the neu-
ral network, the number of convolutional layers and filters per 
layer, and the stride which represents the step size as the filter 
is scanned across the image. Here, training was done in python 
with the TensorFlow library [16] using the Adam optimiser at a 
learning rate of 1 × 10−5, and a negative log likelihood loss func-
tion. Whilst optimising the network architecture, we found that 
varying the number of layers and nodes per layer in the deep 
neural network did not have a major impact on the purity or ef-
ficiency of the AI trigger, and decided to use three layers with 
1000, 500, and 2 nodes respectively. Next we tuned the number 
of convolutional layers and filters in each of these. It was found 
that adding more filters per layer increased the purity at an ef-
ficiency above 99.5% but had little impact on the prediction time 
as long as the number of filters did not increase too much past 
64. On the contrary, adding more than two layers slowed the CNN 
down without improving its performance, although adding a sec-
ond layer did provide a marked improvement in performance. The 
chosen architecture kept the two branches for the DC and ECAL 
images identical, each having two convolutional layers with 64 and 
16 filters respectively. The stride of the filters was set to (1,2) to 
decrease the number of operations performed by the CNN and in-
crease its prediction rate.

The output of a CNN, and of multivariate classifiers in general, 
is given as the probability that an event is taken from the positive 
sample. This is called the response, and a perfect classifier would 
assign a response of 1 to all positive events and a response of 0 
to all negative events. As shown in Fig. 9, for an imperfect classi-
fier the response for both positive and negative events lies along 
the entire [0,1] range. The decision to select or not an event is 
then reduced to a lower threshold cut on the response, the value 
of which is chosen based on the performance of the CNN at given 
thresholds. For both the trigger trained on raw hits in the DC or 
trained on de-noised tracks, Fig. 9 shows how the accuracy, effi-
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Fig. 6. Left: An example of a DC image containing an electron track in a given sector. The colour axis represents the number of layers with the same wire number, divided 
by six as normalisation. Right: an example of an ECAL image containing all ECAL hits in a given sector for a single event. The colour axis represents the energy deposited in 
each strip divided by three.

Fig. 7. The top row demonstrates the process of adding spurious noise to a clean track to synthetically create raw hits as measured by the DC. The bottom row demonstrates 
how the de-noiser can be applied to the raw hits to return a cleaner track.

Fig. 8. Left: an example of a 2D Convolutional Neural Network. Right: the architecture chosen for the AI trigger CNN. The DC and ECAL images are fed to separate sets of 
convolutional layers.
5
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Fig. 9. Left: CNN Response. Right: the accuracy, efficiency and purity of the AI trigger as a function of the threshold cut on the CNN response. The black dashed line is set at 
1.0, whilst the grey dashed line is set at 0.995. The top row shows the results of the trigger trained on raw hits in the DC. The bottom row shows the results of the trigger 
trained on de-noised tracks. For both rows, the data set used to measure the metrics has background merged so as to mimic a data set taken at 90 nA.

Table 3
The purity, efficiency and accuracy at different cuts on the response first for the trigger trained on 
raw hits in the DC, then for the trigger trained on denoised tracks in the DC. For both, the data set 
used to measure the metrics has background merged so as to mimic a data set taken at 90 nA.

Trained on Raw DC Hits Trained on De-noised DC Tracks

Threshold on Response Purity Efficiency Accuracy Purity Efficiency Accuracy

0.01 83.0% 99.9% 89.7% 83.4% 99.9% 90.1%
0.04 88.8% 99.7% 93.6% 89.8% 99.8% 94.2%
0.08 91.2% 99.5% 95.0% 92.2% 99.5% 95.6%
ciency and purity vary as a function of this cut on the response, 
with Table 3 giving examples of the different metrics for various 
cuts on the response. The AI trigger should match the traditional 
CLAS12 electron trigger efficiency of 99.5%, so the suggested cut on 
the response would here be taken at 0.08, for a purity of 91% to 
92% depending on the training. Both the trigger trained on raw DC 
hits and the trigger trained on de-noised DC tracks achieved simi-
lar performance, with the trigger applied to de-noised tracks only 
marginally outperforming the other. For the remainder of this arti-
cle it is useful to bear in mind that the aim of the AI trigger is to 
achieve as high a purity as possible, whilst keeping the efficiency 
above a certain threshold.
6

In Fig. 10 and Table 4 we show the same metrics when apply-
ing the trigger trained on de-noised tracks in the DC to a data set 
taken in completely different experimental conditions, notably by 
decreasing the beam energy to 5.986 GeV and changing the tar-
get to a liquid deuterium target (LD2). In this case, we apply the 
trigger to the clean DC tracks with no background merging as an 
approximation to de-noised tracks. Both Fig. 10 and Table 4 show 
that despite significant differences in experimental conditions the 
trigger maintained a reasonable performance, which is important 
given that at the start of a new experiment there would not be 
any data available to re-train the trigger. As such, this means that 
we can initially re-use triggers for different experiments up until a 
sufficient amount of data is taken to re-train the trigger.
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Fig. 10. Left: CNN Response. Right: the accuracy, efficiency and purity of the AI trigger as a function of the threshold cut on the CNN response. The black dashed line is set 
at 1.0, whilst the grey dashed line is set at 0.995. Both plots demonstrate the results of the AI trigger applied to a data set taken in different experimental conditions than 
those on which the trigger was trained.
Table 4
The purity, efficiency and accuracy at different cuts on the re-
sponse for the AI trigger applied to a data set taken in different 
experimental conditions than the trigger was trained on.

Threshold on Response Purity Efficiency Accuracy

0.01 81.6% 99.8% 88.7%
0.03 84.4% 99.7% 90.6%
0.05 85.7% 99.5% 91.4%

4. Further testing

As shown in [4], the traditional CLAS12 electron trigger is above 
99.5% over the entire momentum range. The efficiency of the AI 
trigger was therefore tested on data sorted into 1 GeV bins of 
electron momentum, as shown in Fig. 11, demonstrating good ef-
ficiency for all values of momentum, for both the triggers trained 
on noisy or de-noised DC tracks. Note that the threshold on the re-
sponse could be decreased for the first momentum bin to increase 
the efficiency, at the cost of a decreased purity. We did not study 
the purity of the trigger as a function of momentum due to the 
fact that multiple tracks or spurious hits in a given sector make 
it impossible to bin the negative sample in momentum. To calcu-
late the efficiency we can easily bin the positive sample by making 
bins in electron momentum but there’s an ambiguity that would 
confuse the evaluation of the purity as a function of momentum 
when deciding which track to use to bin the negative sample.

As shown in Table 2, the purity of the traditional CLAS12 trig-
ger varies with beam current, and we therefore repeated those 
measurements with the AI trigger trained on noisy or de-noised 
DC tracks. Fig. 12 shows that the AI Trigger is stable with beam 
current whereas the traditional CLAS12 trigger purity clearly de-
creases as a function of beam current. The efficiency of the AI 
Trigger is also stable with beam current and plotted in Fig. 12.

We can calculate the data reduction (DR) achieved by the AI 
trigger relative to the traditional CLAS12 trigger as:

D R = E AI |(P AI − P C L A S12)| (4)

for E and P the efficiency and purity of the two triggers. The 
impact of luminosity on the trigger purity is an important con-
sideration given future upgrades at JLab aiming to increase the 
luminosity. As shown in Fig. 13 the AI trigger could considerably 
reduce the amount of recorded data whilst improving the purity of 
7

Fig. 11. The efficiency of the AI triggers for 1 GeV momentum bins. The data set 
used to measure the metrics has background merged so as to mimic a data set 
taken at 90 nA. The threshold on the response is set at 0.08 for both triggers. The 
black dashed line is set a 1, and the grey dashed line is set at 0.995 as the efficiency 
of the current CLAS12 electron trigger is above 99.5% in all momentum bins.

these data sets, which in turn will reduce costs of storage and post 
processing times.

5. Software and implementation

As mentioned above, the AI trigger was trained and tested in 
python using the tensorflow library. However, to fit in with stan-
dard CLAS12 software the trigger will be deployed in Java, using 
the Deeplearning4j library [17]. The software implementation for 
the AI trigger has already been written and is accessible here [18]. 
The python code used to train and test the trigger can be found in 
the Training directory, with the Java code used to deploy the trigger 
is in the /src/main/java/org/jlab/trigger directory of the github repos-
itory. The InputDataStream interface is used to parse data on which 
to call the trigger whilst the TriggerProcessor interface is used to 
apply the trigger to data parsed from the InputDataStream. A Tester
class is provided which can operate as a standalone to read, parse 
and apply the trigger to a given data set before performing the 
tests described in this article. The general idea for deployment 
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Fig. 12. Left: The purity of the AI (red) and traditional CLAS12 (green) triggers as a function of beam current. Right: The efficiency of the AI triggers as a function of beam 
currents. For both AI triggers the cut on the response was placed at 0.08 in both plots.
Fig. 13. The data reduction achieved by the AI trigger relative to the CLAS12 trigger.

is that during data taking the information from different detec-
tors will already be collated by the CLAS12 Event Builder [11] and 
passed to the Event Transfer ring, which will provide a data stream 
to the AI trigger. The trigger will then return the response of the 
CNN which can then be used to make a trigger decision.

We also tested the performance of the trigger to ensure that 
it can be deployed during online data taking without leading to a 
decrease in event rate. CLAS12 ran at a rate of 20 kHz in the past 
with plans to increase this in the near future. When applying the 
trigger to a given data set, the predictions can be split into batches 
with varying sizes. The prediction rate of the AI trigger trained and 
applied on noisy or de-noised tracks was measured for different 
batch sizes on a GPU with a Nvidia GeForce RTX 2080 Ti graph-
ics card with 11 GB GDDR6 RAM and 4352 CUDA cores. Simple 
tests in python showed that whilst the trigger itself was able to 
reach a prediction rate of 100 kHz, de-noising the DC tracks re-
quires two neural networks, which considerably slows down the 
prediction rate to around 40 kHz. As CLAS12 is segmented into six 
sectors and the trigger must make a prediction for each individ-
ual sector separately, a single GPU would only be able to reach an 
event rate of around 16 kHz for the AI trigger only, whilst adding 
8

Fig. 14. The prediction rate of the AI trigger as a function of the batch size, for pre-
dictions grouped into batches. The prediction rate was measured using the software 
available at [18]. Quoted here are the average rates from 100 measurements. Given 
that for each event the trigger must make a prediction for each of the forward de-
tector’s six sectors, the event rate for a single GPU can be roughly estimated as the 
prediction rate divided by six.

the de-noiser decreases this to around 7 kHz. Given that we plan 
to deploy the trigger in Java, we also measured the prediction rate 
for the single trigger without the de-noiser using the software de-
scribed above. As shown in Fig. 14 the prediction rate increases 
as the number of events to which the trigger is applied increases, 
before plateauing around 100 kHz for a batch size of 600. Further-
more, it was found that running the same process on several GPUs 
in parallel is slower than running several processes separately each 
on their own GPU.

The proposed deployment of the AI trigger would split the data 
stream to several GPUs working in parallel with the trigger being 
called on a set of events rather than individual events. With six 
GPUs predicting on batches of 600 events, the trigger can reach a 
prediction rate of 97 kHz which is more than sufficient to keep 
up with the data acquisition rate. A final important consideration 
is that, for this body of work, the trigger was tested on data that 
was already recorded with the CLAS electron trigger. As such, to 
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Table 5
For both the AI (blue) and traditional (green) triggers, the purity at an efficiency of 99.5%, the functional form of the effi-
ciency, purity and data reduction as a function of beam current and the prediction rate on a batch size of 600 predictions.

Trigger Purity Efficiency (%) Purity (%) Data reduction (%) Prediction Rate

vs Beam Current (nA) vs Beam Current (nA) vs Beam Current (nA)

AI 91.2% -0.001 x + 0.996 -0.017 x + 0.928 0.32 x + 0.497 97 kHz

CLAS12 29% 99.5% -0.34 x + 0.429 N/A N/A
achieve a similar performance to what was shown here, we suggest 
deploying the AI trigger in conjunction with the preexisting CLAS 
electron trigger.

6. Discussion

Triggers with high efficiency and purity are absolutely criti-
cal for high energy physics experiments as these tend to produce 
vast quantities of data, some of which may not be relevant to 
the given experiment. Here we have investigated the use of con-
volutional neural networks as an electron trigger for the CLAS12 
detector. The AI trigger was trained on hits in the CLAS12 drift 
chambers and on the energy deposited in the strips of the CLAS12 
calorimeters. Overall, the trigger was shown to improve the pu-
rity compared to the traditional CLAS12 trigger without decreasing 
the efficiency. This is especially true when increasing the lumi-
nosity, given that the AI trigger data reduction relative to the 
traditional trigger improves at a rate of 0.32% per nA. We also com-
pared the performance of the trigger when trained and applied on 
noisy or de-noised drift chamber data, resulting in the de-noised 
trigger achieving a marginally higher purity for a fixed efficiency 
but having a much decreased prediction rate due to the require-
ment of adding a separate neural network. The results measured 
for the traditional trigger and AI trigger (without de-noiser) are 
summarised in Table 5, with the purity for an efficiency of 99.5% 
previously shown in Table 3, the functional form of the efficiency, 
purity and data reduction as a function of beam current shown in 
Figs. 12 and 13, and the prediction rates shown in Fig. 14.

Another crucial requirement for a triggering system is that it 
must keep up with the rate of data taking. Tests made on a stan-
dard consumer GPU showed that for sufficiently large batch sizes 
the trigger event rate is capable of keeping up with the CLAS12 
data acquisition rates, as shown in Fig. 14 and summarised in 
Table 5 for a batch of 600 predictions. This corresponds to 100 
events given that the trigger must make a prediction for each of 
the 6 sectors of the forward detector. Deploying the trigger on sev-
eral separate GPUs would also enable faster processing and allow 
to keep up with high data acquisition rates. We also recommend 
calling the AI trigger in conjunction with the preexisting CLAS12 
electron trigger to achieve a similar performance to what is shown 
in Table 5. The software to deploy the trigger is already available 
and ready for use.

Overall, the method described here promises to greatly improve 
on traditional-particle-identification based triggers, as it can effi-
ciently identify the required particles whilst improving the back-
ground rejection to achieve a higher purity. This approach to trig-
gering may prove critical given that future experiments, and pos-
sible upgrades such as higher luminosity running at JLab, aim to 
take increasingly larger quantities of data, at increasingly higher 
rates where the AI trigger outperforms the traditional trigger. Im-
proving the triggering system will be key to reducing storing costs 
and post processing times for these new experiments.

As highlighted for the proposed EIC Comprehensive Chromody-
namics Experiment (ECCE) detector at the up coming Electron Ion 
Collider (EIC), online data selection is key for monitoring purposes 
9

and near-real time analysis [19]. Experiments based at both JLab 
or the EIC will benefit from accurately identifying electrons whilst 
keeping up with the data taking rate. Given that most physics 
channels investigated at either facility will contain at least an elec-
tron, identifying electrons will allow to flag events for online mon-
itoring or analysis, such as online calibrations and measurements 
of physics observables. Shorter post processing times are also key 
to achieving physics publication objectives. As we demonstrated 
here the AI trigger is adaptable to new running conditions. This 
flexibility means that good event selection is achievable from the 
start of an experiment, with shorter post processing times early on 
in the experiment enabling early offline monitoring, faster calibra-
tions and eventually publication of results.
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