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Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:People with comorbidities are underrepresented in clinical trials. Empirical estimates of

treatment effect modification by comorbidity are lacking, leading to uncertainty in treatment

recommendations. We aimed to produce estimates of treatment effect modification by

comorbidity using individual participant data (IPD).

Methods and findings

We obtained IPD for 120 industry-sponsored phase 3/4 trials across 22 index conditions (n

= 128,331). Trials had to be registered between 1990 and 2017 and have recruited�300

people. Included trials were multicentre and international. For each index condition, we ana-

lysed the outcome most frequently reported in the included trials. We performed a two-stage

IPD meta-analysis to estimate modification of treatment effect by comorbidity. First, for each

trial, we modelled the interaction between comorbidity and treatment arm adjusted for age

and sex. Second, for each treatment within each index condition, we meta-analysed the

comorbidity–treatment interaction terms from each trial. We estimated the effect of comor-

bidity measured in 3 ways: (i) the number of comorbidities (in addition to the index condi-

tion); (ii) presence or absence of the 6 commonest comorbid diseases for each index

condition; and (iii) using continuous markers of underlying conditions (e.g., estimated glo-

merular filtration rate (eGFR)). Treatment effects were modelled on the usual scale for the

type of outcome (absolute scale for numerical outcomes, relative scale for binary out-

comes). Mean age in the trials ranged from 37.1 (allergic rhinitis trials) to 73.0 (dementia tri-

als) and percentage of male participants range from 4.4% (osteoporosis trials) to 100%
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(benign prostatic hypertrophy trials). The percentage of participants with 3 or more comor-

bidities ranged from 2.3% (allergic rhinitis trials) to 57% (systemic lupus erythematosus tri-

als). We found no evidence of modification of treatment efficacy by comorbidity, for any of

the 3 measures of comorbidity. This was the case for 20 conditions for which the outcome

variable was continuous (e.g., change in glycosylated haemoglobin in diabetes) and for 3

conditions in which the outcomes were discrete events (e.g., number of headaches in

migraine). Although all were null, estimates of treatment effect modification were more pre-

cise in some cases (e.g., sodium-glucose co-transporter-2 (SGLT2) inhibitors for type 2 dia-

betes—interaction term for comorbidity count 0.004, 95% CI −0.01 to 0.02) while for others

credible intervals were wide (e.g., corticosteroids for asthma—interaction term −0.22, 95%

CI −1.07 to 0.54). The main limitation is that these trials were not designed or powered to

assess variation in treatment effect by comorbidity, and relatively few trial participants had

>3 comorbidities.

Conclusions

Assessments of treatment effect modification rarely consider comorbidity. Our findings dem-

onstrate that for trials included in this analysis, there was no empirical evidence of treatment

effect modification by comorbidity. The standard assumption used in evidence syntheses is

that efficacy is constant across subgroups, although this is often criticised. Our findings sug-

gest that for modest levels of comorbidities, this assumption is reasonable. Thus, trial effi-

cacy findings can be combined with data on natural history and competing risks to assess

the likely overall benefit of treatments in the context of comorbidity.

Author summary

Why was this study done?

• There is often uncertainty about how treatments for single conditions should be applied

to people with 2 or more long-term conditions (multimorbidity).

• People with multimorbidity are underrepresented in randomised controlled trials

(RCTs); however, trials rarely report whether the efficacy of treatment differs by the

number of additional long-term conditions (comorbidities) or in the presence of spe-

cific comorbidities.

What did the researchers do and find?

• We analysed individual-participant data from 120 RCTs including 128,331 participants

across 23 index conditions to assess whether the efficacy of treatment differed depend-

ing on the number of comorbidities or in the presence of any of the most common

comorbidities.

• We found no evidence that treatment efficacy differed depending on the number of

comorbidities, or by any specific comorbidities, for any of the index conditions and

treatment comparisons included in this analysis.
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What do these findings mean?

• Within the range of comorbidities included within these trials, treatment effects did not

vary by comorbidity. These findings can be used within evidence syntheses to estimate

the likely overall benefit of treatments in the context of multimorbidity.

• These findings are limited by the fact that people with multiple comorbidities are under-

represented in trials, and those with the highest degree of comorbidity are often

excluded.

Introduction

Multimorbidity, the presence of 2 or more long-term conditions, is a global clinical and public

health priority [1,2]. Most people with a given long-term condition also have comorbidities

(referring to additional long-term conditions in the context of an index condition). There is

uncertainty about how individual long-term conditions should be managed in the presence of

comorbidities [3]. A major driver of this uncertainty is the underrepresentation of people with

multimorbidity in randomised controlled trials (RCTs) [4,5]. Trial populations are typically

younger, healthier, and have fewer comorbidities than people treated in routine clinical prac-

tice. This has led clinical guideline developers to caution against the application of single-dis-

ease recommendations for people with multimorbidity [6]. However, despite the challenges to

clinical management posed by this uncertainty, the efficacy of treatments in the context of

comorbidity is rarely assessed. It is therefore not clear, for most treatments, whether relative

treatment efficacy differs in people with comorbidity.

Assessing individual differences in response to medical treatments is a controversial topic.

Differences in treatment efficacy are typically assessed using subgroup analyses. Subgroup

analyses in RCTs seek to assess if treatment efficacy differs by patient characteristics [7]. Test-

ing of prespecified subgroup effects is common practice in RCTs of medical therapies [8,9]. As

such, subgroup analyses seek to inform stratified approaches to patient care by identifying

groups for whom recommendations may be tailored [10]. However, trials rarely report sub-

group analyses by levels of comorbidity or for specific comorbidities. Furthermore, subgroup

analyses are inconsistently executed and reported, as well as suffering a number of well-docu-

mented statistical pitfalls [7,11], notably that analysis of subgroups risks false positive and false

negative findings [11]. RCTs are generally not powered to detect subgroup effects, and as such,

the sample size in subgroup analyses is frequently insufficient to detect clinically significant

differences in treatment efficacy even if these were to exist [12]. Conversely, by testing multiple

subgroups, the likelihood of chance findings (i.e., false positives) is increased [7,12].

The limitations of trial-level subgroup analyses can be reduced using meta-analyses. How-

ever, when considering whether treatment efficacy varies by comorbidity, traditional study-

level meta-analysis of published findings are likely to be inadequate as trials rarely report sub-

group effects by comorbidity, and those that do may be subject to publication bias. In such cir-

cumstances, any assessment of the effect of comorbidity is therefore based on between-trial

comparisons that are prone to bias [13]. Individual-participant data meta-analysis has the

potential to overcome these problems. We previously demonstrated, using data from >100

industry-sponsored clinical trials, that it was possible to identify comorbidities in most trials

and that multimorbidity was common (although underrepresented) in trial populations

[4,14,15]. Furthermore, in a recent simulation study, we demonstrated that combining trials
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on all comparisons for a given indication in Bayesian hierarchical models has several desirable

properties in terms of estimating treatment effect modification by comorbidity [16]. First, pre-

cision is higher compared to single-comparison meta-analyses, increasing the likelihood of

detecting small (but clinically relevant) subgroup effects where these are present. Secondly,

extreme values are attenuated towards the null (shrinkage), reducing the risk of false positive

findings [16]. Bayesian hierarchical models may therefore be a useful tool to assess treatment

efficacy estimates in the context of multimorbidity.

This study aims to assess whether treatment effects are modified in the presence of comor-

bidity, by using individual participant data (IPD) from 120 trials to assess whether treatment

efficacy for 23 index conditions differs by (i) number of additional long-term conditions

(comorbidity count); (ii) the 6 commonest comorbidities for each index condition; (iii) by

continuous biomarkers associated with comorbidity.

Methods

Study design

For trials of 23 index conditions, we identified comorbid long-term conditions using IPD for

each trial. We then summarised these as a comorbidity count (in addition to the index condi-

tion) for each participant. Further, we identified the 6 commonest comorbidities for each

index condition across trials and defined a presence/absence variable for each. We estimated

differences in treatment efficacy by fitting regression models to IPD for each trial to obtain

trial-level estimates of covariate–treatment interaction effects. We fit models for age and sex

alone, for a comorbidity count, and for each of the 6 commonest comorbidities for each index

condition. Trial-level estimates were then meta-analysed to obtain drug and index condition-

specific estimates of treatment effect modification by comorbidity. This process is summarised

in Fig 1 and explained in detail below.

All analyses were conducted in R (R Core Team, 2021). Analysis code, metadata (indicating,

for example, how treatment arms and outcomes were selected), and data (except trial IPD) are

available on the project github repository (https://doi.org/10.5281/zenodo.7713360).

Data sources

Trials were identified according to a prespecified protocol [17]. We focused on trials of pharma-

cological agents for 23 index conditions (Table 1). Eligibility criteria were RCTs for one of the

index conditions; registered with the United States Clinical trials registry (clinicaltrials.gov) on

or after January 1990; phase 2/3, 3, or 4; including�300 participants; and with eligibility

defined using an upper age limit of 60 years or more or no upper age limit. Smaller studies and

studies with lower age limits were excluded as they were considered less likely to include suffi-

cient people with comorbidity. From a list of all registered, eligible trials we then identified trials

for which IPD were available from one of 2 repositories: Clinical Study Data Request (CSDR) or

the Yale Open Data Access (YODA) repository. These repositories facilitate sharing of indus-

try-sponsored trial data with third-party researchers. The process of trial identification is

described in detail elsewhere [4].

Quantifying comorbidity

For each participant with a specified index condition in each of the included trials, we identi-

fied comorbidities from a prespecified list of 21 conditions (cardiovascular disease, chronic

pain, arthritis, affective disorders, acid-related disorders, asthma/chronic obstructive pulmo-

nary disease (COPD), diabetes mellitus, osteoporosis, thyroid disease, thromboembolic
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disease, inflammatory conditions, benign prostatic hyperplasia, gout, glaucoma, urinary

incontinence, erectile dysfunction, psychotic disorders, epilepsy, migraine, parkinsonism, and

dementia) [4]. These comorbidities were based on previous work identifying comorbidities

within trial IPD and were based on assessment of medical history and concomitant medication

data. In this previous work, we demonstrated that while for many trials medical history had

Fig 1. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to7:Pleaseverifythatallentriesarecorrect:Overview of analysis. This figure gives an overview of the analysis structure and hierarchy. Analyses of individual-level data within each trial were

conducted within 2 secure repositories (YODA shown in pink and CSDR shown in orange). For each trial, a summary of the results was exported and

meta-analysed within each treatment indication (green). CSDR, Clinical Study Data Request; YODA, Yale Open Data Access.

https://doi.org/10.1371/journal.pmed.1004176.g001
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Table 1. Index conditions, outcomes, and treatment comparisons for included trials.

Index conditions Outcome Treatment comparisons Trials Mean

age (SD)

% Male Comorbidities

Mean Zero One Two Three or

more

Trials with continuous outcomes

Ankylosing

Spondylitis

BASDAI score Interleukin inhibitors (L04AC)-IL6 [1],

Tumour necrosis factor (TNF-) alpha

inhibitors (L04AB) [2]

3 39.9

(11.8)

66.50% 1.45 23.50% 34% 24.70% 17.80%

Asthma FEV1 Glucocorticoids (R03BA) [2],

Other systemic drugs for obstructive airway

diseases (R03DX) [1],

Selective beta-2-adrenoreceptor agonists

(R03AC) [1]

4 43.3

(16.8)

40.20% 0.65 52.20% 33.90% 11% 2.90%

Benign Prostatic

Hypertrophy

IPSS Total Score Drugs used in erectile dysfunction (G04BE)

[5]

5 63.4

(8.5)

100% 1.43 23.90% 34.20% 24.50% 17.40%

Chronic Idiopathic

Urticaria

DLQI Score Other systemic drugs for obstructive airway

diseases (R03DX) [3]

3 42.3

(14.1)

26.50% 1.59 20.40% 32.40% 25.80% 21.40%

Dementia ADAS Score Anticholinesterases (N06DA) [3] and

Thiazolidinediones (A10BG) [3]

6 73 (8.8) 40.90% 1.83 16% 29.40% 26.90% 27.70%

Diabetes HBA1c Biguanides (A10BA) vs. Glucagon-like

peptide-1 (GLP-1) analogues (A10BJ) [1],

Dipeptidyl peptidase 4 (DPP-4) inhibitors

(A10BH) [1],

Dipeptidyl peptidase 4 (DPP-4) inhibitors

(A10BH) vs. Glucagon-like peptide-1 (GLP-

1) analogues (A10BJ) [1],

Dipeptidyl peptidase 4 (DPP-4) inhibitors

(A10BH) vs. Sodium-glucose co-transporter

2 (SGLT2) inhibitors (A10BK) [1],

Glucagon-like peptide-1 (GLP-1) analogues

(A10BJ) [2],

Insulins and analogues (A10A) vs.

Glucagon-like peptide-1 (GLP-1) analogues

(A10BJ) [2],

Sodium-glucose co-transporter 2 (SGLT2)

inhibitors (A10BK) [12],

Sulfonylureas (A10BB) vs. Dipeptidyl

peptidase 4 (DPP-4) inhibitors (A10BH) [1],

Sulfonylureas (A10BB) vs. Sodium-glucose

co-transporter 2 (SGLT2) inhibitors

(A10BK) [1]

22 58.7

(10)

58.60% 1.68 18.60% 31.30% 26.30% 23.80%

Erectile Dysfunction IPSS Total Score Drugs used in erectile dysfunction (G04BE)

[1]

1 62.1

(8.1)

100% 1.24 28.90% 35.90% 22.20% 13%

Gastro-oesophageal

Reflux Disease

Percent heartburn

free days

Proton pump inhibitors (A02BC) [2] 2 47.7

(13.5)

35.10% 0.62 53.8% 33.4% 10.3% 2.5%

Gout Urate Preparations inhibiting uric acid production

(M04AA) [1]

1 51.6

(12.2)

93.80% 0.5 60.7% 30.3% 7.6% 1.4%

Hypertension Systolic blood

pressure

ACE inhibitors, plain (C09AA) vs.

Angiotensin II antagonists, plain (C09CA)

[3],

Angiotensin II antagonists, plain (C09CA)

[1],

Thiazides and plain (C03AA) [1]

5 58.3

(11.8)

54.40% 1.03 35.70% 36.80% 18.90% 8.60%

Inflammatory Bowel

Disease

CDAI Score or

MAYO Score

Interleukin inhibitors (L04AC)-IL12-IL23

[3],

Selective immunosuppressants (L04AA) [2].

Tumour necrosis factor alpha (TNF-)

inhibitors (L04AB) [6]

11 38.5

(12.7)

50.10% 0.94 39.10% 36.70% 17.30% 6.90%

(Continued)
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Table 1. (Continued)

Index conditions Outcome Treatment comparisons Trials Mean

age (SD)

% Male Comorbidities

Mean Zero One Two Three or

more

Inflammatory

Arthropathy

ACR numerical Interleukin inhibitors (L04AC)-IL12-IL23

[1],

Interleukin inhibitors (L04AC)-IL6 [4],

Tumour necrosis factor alpha (TNF-)

inhibitors (L04AB) [8],

Tumour necrosis factor alpha (TNF-)

inhibitors (L04AB) vs. Interleukin inhibitors

(L04AC)-IL6 [1]

14 50.8

(12.4)

23.10% 1.25 28.70% 35.80% 22.40% 13.10%

Osteoporosis BMD Total Hip Bisphosphonates (M05BA) [2],

Bisphosphonates (M05BA) vs. Parathyroid

hormones and analogues (H05AA) [1],

Parathyroid hormones and analogues

(H05AA) [2]

5 72 (8.1) 4.70% 2.79 6.10% 17.10% 23.90% 52.90%

Parkinson Disease UPDRS Total Dopamine agonists (N04BC) [4] 4 62.7

(10)

59% 2.04 13% 26.50% 27.10% 33.40%

Psoriasis PASI Score Interleukin inhibitors (L04AC)-IL12-IL23

[2],

Interleukin inhibitors (L04AC)-IL17A [4]

6 45.8

(12.5)

66.50% 1.15 31.70% 36.40% 20.90% 11%

Pulmonary Disease,

Chronic Obstructive

FEV1 Glucocorticoids (R03BA) [3],

Selective beta-2-adrenoreceptor agonists

(R03AC) [1],

Selective beta-2-adrenoreceptor agonists

(R03AC) vs. Anticholinergics (R03BB) [2]

6 63.7

(8.5)

67% 1.5 22.30% 33.50% 25.10% 19.10%

Pulmonary Fibrosis FVC Other protein kinase inhibitors (L01EX) [2] 2 66.8 (8) 79.30% 2.75 6.40% 17.60% 24.20% 51.80%

Restless Legs

Syndrome

RLS Symptom Score

Total

Dopamine agonists (N04BC) [3] 3 53.4

(12.9)

38.90% 1.85 15.70% 29.10% 26.90% 28.30%

Rhinitis, allergic Total Nasal

Symptom Score

Fluticasone (R01AD08) [1] 1 37.1

(16.4)

43.40% 0.59 55.40% 32.70% 9.60% 2.30%

Systemic Lupus

Erythematosus

SLE Disease Activity

Index

Selective immunosuppressants (L04AA) [2] 2 37.8

(11.5)

6% 2.99 5% 15% 22.50% 57.50%

Trials with categorical outcomes

Migraine No. headaches Topiramate (N03AX11) [5] 5 39.3

(11.9)

14.60% 0.75 47.20% 35.40% 13.30% 4.10%

Osteoporosis Vertebral fracture Parathyroid hormones and analogues

(H05AA) [1] and Bisphosphonates

(M05BA) [2]

3 72.8 (7) 4.40% 2.66 7% 18.60% 24.70% 49.70%

Thromboembolic Bleeding [1]; DVT or

PE [1]; DVT or PE

and Bleeding [7]

Vitamin K antagonists (B01AA) vs. Direct

thrombin inhibitors (B01AE) [4],

Heparin group (B01AB) [1],

Heparin group (B01AB) vs Direct thrombin

inhibitors (B01AE) [3],

Direct thrombin inhibitors (B01AE) [1]

9 64.9

(13.2)

58.30% 1.57 20.80% 32.70% 25.60% 20.90%

“Treatment comparisons” indicates the treatment comparisons for each trial based on drug class using the WHO ATC code (for L04AC-Interleukin inhibitors, the ATC

class was also further split according to the specific interleukin(s). Where there is only a single code the comparator is either placebo or usual care). Trial-level data on

number included, age, sex and comorbidity distributions are shown in Hanlon and colleagues [4], supplementary file 6.

BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; TNF, tumour necrosis factor; FEV1, forced expiratory volume in 1 s; IPSS, international prostate

symptom score; DLQI, dermatology life quality index; ADAS, Alzheimer’s Disease Assessment Scale; HbA1c, glycated haemoglobin; GLP1, glucagon-like peptide-1;

DPP4, dipeptidyl peptidase 4; SGLT2, sodium-glucose co-transporter 2; ACE, angiotensin converting enzyme; CDAI, Crohn’s Disease Activity Index; ACR, American

College of Rheumatology; BMD, bone mineral density; UPDRS, Unified Parkinson’s Disease Rating Scale; PASI, psoriasis area and severity index; FVC, forced vital

capacity; RLS, restless legs syndrome; SLE, systemic lupus erythematosus; DVT, deep vein thrombosis; PE, pulmonary embolism.

https://doi.org/10.1371/journal.pmed.1004176.t001
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been redacted, data on concomitant medications were widely available and could be used to

define comorbidities [4]. This involved combining some conditions into the same definition

(e.g., asthma and COPD, which could not be differentiated based on medication use alone).

These definitions were based on the World Health Organisation Anatomic Therapeutic Classi-

fication and are described in our previous publication and available on the project github

repository [4]. Where medical history data was available and coded using the Medical Dictio-

nary for Regulatory Activities (MedDRA) coding system, we also identified the same condi-

tions using MedDRA codes.

Comorbidity count

For the primary analysis, we created a comorbidity count for each participant. This was the

total number of comorbidities present, not including the index condition. This count was used

as a numerical variable in all analyses.

Individual comorbidities

For each index condition, we also identified the 6 most common comorbidities from the full

list of 21 possible comorbidities. These individual comorbidities were analysed as binary vari-

ables (reflecting the presence of absence of that specific comorbidity).

Selected biomarkers/risk factors

In addition to the 21 comorbidities defined using medication and/or medical history, we iden-

tified 5 continuous biomarkers that may indicate comorbidity (e.g., renal impairment, hyper-

tension, anaemia, or liver disease) or risk factors (e.g., obesity). These were based on baseline

trial measurements: estimated glomerular filtration rate (eGFR, as a marker of renal

impairment, taken from trial data where this was available and calculated from creatinine, age,

sex, and race using the Modification of Diet in Renal Disease (MDRD) equations if it was not),

body mass index (as recorded or calculated based on height and weight), fibrosis-4 (FIB-4)

index (as a marker of liver disease calculated from aspartate aminotransferase, alanine trans-

aminase, and platelet counts), haemoglobin, and mid-blood pressure (MBP, defined as 0.5 ×
(systolic blood pressure + diastolic blood pressure)).

Demographics

Age and sex were extracted from each trial based on the trial recorded values at

randomisation.

Treatment arms

Treatment arm comparisons were prespecified prior to undertaking the outcome analyses. For

multiarm trials, the most extreme arms were selected for comparison (e.g., if different dosages

were used, the highest dose was compared to placebo or usual care—e.g., canagliflozin 300 mg,

rather than 100 mg, versus placebo). Where placebo or usual care was included as a trial arm,

this was selected as the comparator. Otherwise, we chose the arm with the least recently devel-

oped treatment as the comparator arm. This was to give the best chance of identifying effect

modification, with the resulting analysis representing an upper limit on the degree of effect

modification observed.
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Outcomes

We aimed to identify outcomes common across trials to facilitate meta-analysis. We obtained

information from clincialtrials.gov via the Database for Aggregated Analysis of ClinicalTrials.

gov (AACT; https: //ctti-clinicaltrials.org/citation-policy/) on all outcomes (primary and sec-

ondary) for each trial. For each index condition, we then identified 1 or more outcomes that

appeared to be common to multiple trials (e.g., forced expiratory volume in 1 s (FEV1) in

COPD trials, 6-min walk distance (6MWD) in pulmonary hypertension trials). Within the

trial repositories, we then reviewed the trial documentation to identify these outcomes for

each trial. For trials of anticoagulants, in addition to the efficacy outcome, we also analysed

bleeding events as these are a common and clinically important adverse outcome.

Statistical analyses

In 4 separate analyses we (i) estimated age and sex–treatment interactions without including

comorbidity; (ii) estimated comorbidity–treatment interactions for the comorbidity count;

(iii) estimated comorbidity–treatment interactions for the 6 commonest comorbidities for

each index condition; and (iv) examined covariate–treatment interactions for continuous bio-

markers. Full descriptions of the modelling are provided in the Supporting information appen-

dix (S1 File) and are described briefly below.

IPD analysis

For trials where the outcome was a continuous variable, for each trial and analysis the change

in each outcome was modelled using linear regression. For analysis (i), the final measure was

regressed on the baseline measure, age (modelled as a continuous variable scaled to 15-year

increments, which was close to the standard deviation for most trials), sex (male versus refer-

ent group of females), arm (binary variable treatment/control), and interactions with arm for

each covariate. For American College of Rheumatology-N (ACR-N, a measure of improve-

ment in disease activity in rheumatoid arthritis, which is itself a measure of change), we did

not include the baseline measure as a covariate. We then repeated this modelling for the

remaining analyses (ii to iv) adding comorbidity covariates in addition to age and sex (comor-

bidity count, specific comorbidities, and continuous biomarkers for analyses (ii to iv), respec-

tively). From these models, the model coefficients, standard errors, and variance-covariance

matrices were obtained and exported from the YODA and CSDR secure analysis platforms.

For trials where the outcome was a count or a binary variable, we fitted similar models

using Poisson regression and logistic regression, respectively.

Meta-analysis

For the continuous outcomes, in order to convert the measures onto a similar scale, we divided

the estimates and standard errors by the minimum clinically important difference (MCID) for

that measure. For most outcome measures, higher scores indicate worse outcomes (e.g., Bath

Ankylosing Spondylitis Disease Activity Index (BASDI)). Where this was not the case (e.g.,

FEV1), we multiplied the values by minus one so that the direction of effect was the same for

all trials. For the variance-covariance matrix, we divided each element by the MCID-squared.

The MCID was selected using the published literature by hand-searching papers in the Core

Outcome Measures in Effectiveness Trials (COMET) database for relevant conditions [18].

This search was supplemented by simple internet searches (Google searches using the full and

abbreviated names for each outcome and MCID, MID, “minimum clinically important differ-

ence,” or “minimum important difference”). Where no published MCID recommendations

PLOS MEDICINE Assessing treatment effect modification due to comorbidity

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004176 June 6, 2023 9 / 25

http://clincialtrials.gov/
http://clinicaltrials.gov/
http://clinicaltrials.gov/
http://ctti-clinicaltrials.org/citation-policy
https://doi.org/10.1371/journal.pmed.1004176


could be found, we used the MCID defined in the power calculations in the trial protocols. At

this stage, for each index condition, we restricted the analysis to the single most common out-

come across trials. In 2 index conditions (Ankylosing spondylitis and hypertension), 2 out-

comes were equally common; BASDAI and Bath Ankylosing Spondylitis Functional Index

(BASFI) and diastolic blood pressure and systolic blood pressure, we arbitrarily chose BASDAI

in the former case and chose systolic blood pressure in the latter as it is more prominent in

clinical decision-making.

For each drug class, the model outputs were then meta-analysed. We used random-effects

meta-analyses where 5 or more trials were included within the same drug class, and fixed

effects where there were fewer than 5 trials. We used Bayesian models since this allowed us to

simultaneously model multiple coefficients (e.g., age–treatment and sex–treatment interac-

tions). The Bayesian models were fit using the brms package [19]. Samples from the posterior

distribution were obtained and summarised as the mean and 95% credible intervals (CI).

P-values were not presented as this was a Bayesian analysis. The full posteriors are provided in

the project repository (doi:10.5281/zenodo.7713360).

In case other researchers wish to use the results of our models of treatment–covariate inter-

actions to inform subsequent analyses as informative priors, we obtained summaries of the

posterior predictions. We did so only for analysis (ii) for continuous outcomes. In order to

provide a more general set of priors, we also predicted the comorbidity count–treatment inter-

action for treatment comparisons/conditions not included in our model by obtaining samples

from the posteriors. The latter are provided to allow researchers to conduct Bayesian analyses

or probabilistic sensitivity analyses if studying conditions/treatment comparisons not included

in our modelling as this represents a prediction for an unobserved index condition/treatment

comparison (albeit one which is assumed to be exchangeable with the conditions/treatment

comparisons included in the current analysis). We then summarised these samples by fitting a

Student’s t-distribution. As with the main analysis, these models were fitted using the brms
package (S1 File).

Ethical approval

This project had approval from the University of Glasgow, College of Medicine, Veterinary

and Life Sciences ethics committee (200160070).

Results

Trial characteristics

Trial baseline characteristics have been reported previously [4]. For trials with continuous out-

comes, there were 20 index conditions and 47 treatment comparisons across a total of 106 tri-

als (n = 88,150 participants). For 9 index conditions, there was only 1 treatment comparison

across all trials. Diabetes, which was the condition for which there were the most trials (22),

had the largest number of treatment comparisons (9) (Table 1). Within each model, all trials

had a single common outcome except inflammatory bowel disease, where the ulcerative colitis

trials used the MAYO score and Crohn’s disease trials used the Crohn’s Disease Activity Index

score. For trials with categorical outcomes, there were 3 index conditions (migraine, osteopo-

rosis, and thromboembolism) and 11 treatment comparisons across a total of 17 trials

(n = 11,624 participants). For thromboembolism, there were 3 more specific categories of indi-

cation—primary prevention (5 trials), secondary prevention (2 trials), and treatment (2 trials).
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Continuous outcomes—Age–and sex–treatment interactions

For all conditions with continuous outcomes, interaction terms for age–and sex–treatment

interactions are shown in Table 2. For most drug classes, interaction terms for age included

the null, indicating no statistically significant associations consistent with modification of

treatment efficacy by age. However, in the diabetes trials, there appeared to be an attenuation

in the treatment effect with increasing age for 3 drug classes (0.07 (95% CI 0.00, 0.13) for sulfo-

nylureas versus SGLT2 inhibitors, 0.09 (95% CI 0.01, 0.17) for DPP-4 inhibitors versus SGLT2

inhibitors, and 0.07 (95% CI 0.04, 0.11) for SGLT2 inhibitors versus placebo). Taking SGLT2

inhibitors versus placebo as an example, this can be read as follows—“the lowering effect on

HbA1c of SGLT2 inhibitors versus placebo is 0.28 (95% CI 0.16, 0.44) mmol/mol smaller

(since the MCID for HbA1c is 4 mmol/mol) per 15-year increment in age, for age 50 years ver-

sus age 80 years, this corresponds to the effect being 0.56 (95% CI 0.32, 0.88) mmol/mol

smaller. Similarly, most interaction terms for sex included the null, with a few exceptions

(Table 2). For example, for glucagon-like peptide-1 (GLP-1) analogues, the interaction term

for sex was 0.29 (0.12, 0.49) indicating that the lowering effect on HbA1c of GLP-1 analogues

is 1.16 (0.48, 1.96) mmol/mol smaller in men than in women.

Continuous outcomes—Comorbidity–treatment interactions

For each drug class, Figs 2 to 6 show the main treatment effect (black points, expressed as

change in minimally clinically important difference) and the estimate for the comorbidity–

treatment interaction based on a comorbidity count (red points) meta-analysed within treat-

ment indications. Fig 7 shows similar estimates for indications in which only a single trial was

included. Meta-analyses for each drug class are shown in Figs 2 to 6 and, for classes where only

1 trial was analysed, trial-level estimates are shown in Fig 7. Comorbidity count was not associ-

ated with any attenuation or strengthening in treatment efficacy; in all cases, the 95% CIs

included the null. This suggests that for all treatments and in all index conditions, it is plausible

that there is no difference in treatment effect by comorbidity (on the absolute scale) within the

range of comorbidity counts observed in the trials. When examining comorbidity–treatment

interactions for the 6 most common comorbidities within each index condition, 95% CIs

included the null for all estimates (S1 Table). Similarly, when assessing modification of treat-

ment efficacy by continuous biomarkers, all estimates included the null (S2 Table).

In a sensitivity analysis, rather than using a fixed effects model for meta-analyses where

there were fewer than 5 trials, we used a random effects model. The 95% CIs were wider, but

the results of these models were otherwise similar to those presented in the main analysis

(S3 Table).

Informative priors for subsequent analyses including different index

condition/treatment comparisons

On predicting treatment effect modification by comorbidity count for a notional unobserved

condition and notional unobserved treatment comparison, the samples from the posterior

were approximately t-distributed (central estimate = 0.01, dispersion = 0.01, degrees of

freedom = 3.24).

Categorical outcomes—Morbidity count–treatment interactions

For the 3 index conditions with categorical outcomes (Table 1), there was no evidence of any

comorbidity count–treatment interactions. These findings are summarised in Table 3.
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Table 2. Covariate–treatment interactions (expressed as multiples of minimal clinically important difference) by age and sex for continuous outcomes; point esti-

mates and 95% CIs.

Index condition Treatment comparison Age–treatment

interaction

Sex–treatment

interaction

Ankylosing Spondylitis Tumour necrosis factor alpha (TNF-) inhibitors (L04AB) −0.02 (−0.09, 0.05) −0.06 (−0.19, 0.06)

Ankylosing Spondylitis Interleukin inhibitors (L04AC)-IL6 −0.01 (−0.10, 0.08) 0.03 (−0.13, 0.20)

Asthma Selective beta-2-adrenoreceptor agonists (R03AC) −1.16 (−2.05, −0.28)* −1.15 (−3.18, 0.87)

Asthma Glucocorticoids (R03BA) 0.12 (−0.37, 0.60) −0.40 (−1.41, 0.64)

Asthma Other systemic drugs for obstructive airway diseases (R03DX) 0.39 (−0.36, 1.13) −0.84 (−2.25, 0.58)

Benign Prostatic Hypertrophy Drugs used in erectile dysfunction (G04BE) −0.04 (−0.51, 0.42) -

Chronic Idiopathic Urticaria Other systemic drugs for obstructive airway diseases (R03DX) 0.09 (−0.15, 0.33) 0.58 (0.07, 1.07)*
Dementia Thiazolidinediones (A10BG) 0.30 (−0.01, 0.61) 0.19 (−0.15, 0.54)

Dementia Anticholinesterases (N06DA) 0.09 (−0.15, 0.32) −0.02 (−0.29, 0.26)

Diabetes INSULINS AND ANALOGUES (A10A) vs. Glucagon-like peptide-1 (GLP-1)

analogues (A10BJ)

0.02 (–0.06, 0.09) 0.04 (–0.05, 0.13)

Diabetes Biguanides (A10BA) vs. Glucagon-like peptide-1 (GLP-1) analogues (A10BJ) 0.05 (−0.04, 0.14) −0.00 (−0.12, 0.12)

Diabetes Sulfonylureas (A10BB) vs. Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) 0.01 (−0.04, 0.06) 0.03 (−0.04, 0.10)

Diabetes Sulfonylureas (A10BB) vs. Sodium-glucose co-transporter 2 (SGLT2) inhibitors

(A10BK)

0.07 (0.00, 0.13)* 0.04 (−0.04, 0.12)

Diabetes Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) vs. Glucagon-like peptide-1

(GLP-1) analogues (A10BJ)

0.08 (−0.04, 0.21) −0.02 (−0.17, 0.14)

Diabetes Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) vs. Sodium-glucose co-

transporter 2 (SGLT2) inhibitors (A10BK)

0.09 (0.01, 0.17)* 0.05 (−0.05, 0.15)

Diabetes Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) 0.02 (−0.03, 0.06) −0.01 (−0.07, 0.06)

Diabetes Glucagon-like peptide-1 (GLP-1) analogues (A10BJ) 0.02 (−0.13, 0.17) 0.29 (0.12, 0.49)*
Diabetes Sodium-glucose co-transporter 2 (SGLT2) inhibitors (A10BK) 0.07 (0.04, 0.11)* −0.01 (−0.05, 0.03)

Erectil Dysfunction Drugs used in erectile dysfunction (G04BE) 0.33 (−0.34, 0.99) -

Gastro-oesophageal Reflux

Disease

Proton pump inhibitors (A02BC) −0.01 (−0.05, 0.04) −0.10 (−0.18, −0.01)*

Gout Preparations inhibiting uric acid production (M04AA) 0.01 (−0.40, 0.43) −0.51 (−1.78, 0.77)

Hypertension ACE inhibitors, plain (C09AA) vs Angiotensin II antagonists, plain (C09CA) 0.28 (−0.12, 0.70) −0.02 (−0.60, 0.59)

Hypertension Thiazides, plain (C03AA) −0.01 (−0.72, 0.70) 1.04 (−0.07, 2.15)

Hypertension Angiotensin II antagonists, plain (C09CA) −0.26 (−1.21, 0.70) −0.02 (−1.36, 1.33)

Inflammatory Bowel Disease Selective immunosuppressants (L04AA) 0.11 (−0.04, 0.27) 0.09 (−0.16, 0.34)

Inflammatory Bowel Disease Tumour necrosis factor alpha (TNF-) inhibitors (L04AB) 0.06 (−0.09, 0.22) −0.04 (−0.40, 0.26)

Inflammatory Bowel Disease Interleukin inhibitors (L04AC)-IL12-IL23 0.11 (−0.08, 0.30) 0.05 (−0.27, 0.36)

Inflammatory Arthropathy Tumour necrosis factor alpha (TNF-) inhibitors (L04AB) vs Interleukin inhibitors

(L04AC)-IL6

0.39 (−1.04, 1.82) 2.41 (−0.66, 5.48)

Inflammatory Arthropathy Tumour necrosis factor alpha (TNF-) inhibitors (L04AB) 0.17 (−0.44, 0.79) −0.87 (−1.82, 0.11)

Inflammatory Arthropathy Interleukin inhibitors (L04AC)-IL12-IL23 1.72 (−1.92, 5.36) 0.31 (−5.40, 6.03)

Inflammatory Arthropathy Interleukin inhibitors (L04AC)-IL6 0.28 (−0.33, 0.88) 0.00 (−1.12, 1.12)

Osteoporosis Bisphosphonates (M05BA) vs. Parathyroid hormones and analogues (H05AA) 0.06 (−0.05, 0.17) −0.00 (−0.26, 0.25)

Osteoporosis Parathyroid hormones and analogues (H05AA) −0.13 (−0.27, 0.02) -

Osteoporosis Bisphosphonates (M05BA) 0.01 (−0.05, 0.07) 0.30 (0.14, 0.45)*
Parkinson Disease Dopamine agonists (N04BC) 0.19 (−0.20, 0.59) −0.28 (−0.77, 0.19)

Psoriasis Interleukin inhibitors (L04AC)-IL12-IL23 0.04 (−0.11, 0.19) −0.43 (−0.68, −0.18)*
Psoriasis Interleukin inhibitors (L04AC)-IL17A 0.07 (−0.03, 0.16) −0.30 (−0.47, −0.12)*
Pulmonary Disease, Chronic

Obstructive

Selective beta-2-adrenoreceptor agonists (R03AC) −0.34 (−0.91, 0.22) 0.00 (−0.68, 0.68)

Pulmonary Disease, Chronic

Obstructive

Glucocorticoids (R03BA) 0.07 (−0.19, 0.32) −0.15 (−0.43, 0.15)

(Continued)
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Discussion

In an IPD meta-analysis of 120 trials, we examined whether the efficacy of drug treatments dif-

fered by comorbidity. For 20 index conditions where the outcome variable was continuous

(e.g., glycosylated haemoglobin in diabetes trials), efficacy did not differ by the total number of

comorbidities or by the presence or absence of specific comorbidities. Similarly, for 3 condi-

tions (17 trials) examining outcomes which were discrete events (e.g., thromboembolism,

bleeding, headaches, and fractures), there was no evidence of treatment effect modification by

comorbidity count or by specific comorbidities.

Several previous studies have reported findings on treatment effect modification in IPD

meta-analyses and meta-analyses of reported subgroup effects. However, these have largely

been confined to major cardiovascular disease trials (e.g., for showing similar efficacy of statin

in people with and without diabetes [20], differential benefit of blood pressure lowering ther-

apy in people with and without diabetes [21], or showing questionable net benefit of aspirin in

primary prevention [22]) or to concordant conditions defined as those closely related to the

index condition or target event for the trial (such as hypertension in stroke trials [23]). These

studies have not considered the impact of comorbidity more broadly or of discordant comor-

bidities not related to the index condition of the trial. This represents an important omission,

because there are a number of mechanisms by which the presence of discordant conditions

might plausibly modify treatment efficacy (positively or negatively) including increased diag-

nostic misclassification, altered pharmacokinetics, or pharmacodynamics (e.g., altered drug

excretion in people with mild renal impairment or increased benefits of antiplatelet drugs in

the presence of coexistent inflammatory conditions) and altered treatment-related behaviours

(e.g., better or worse treatment adherence due to existing treatment regimens). Our study adds

to this sparse literature showing that, on average, treatment effects are similar across different

populations within trials (at modest comorbidity counts of 3 or fewer). This supports the stan-

dard assumption that treatment effects are similar when generalising from trial to non-trial eli-

gible populations, at least for populations with limited prevalence of comorbidity such as in

these trials.

Although we found that treatment efficacy did not differ by comorbidity count, net overall

treatment benefits may nonetheless differ in people with differing degrees of comorbidity.

This is because differences in the baseline risk (e.g., the absolute risk of the outcome that the

treatment is intended to prevent), differences in susceptibility to treatment-related adverse

events, differences in competing risks (e.g., absolute risk of mortality from other causes), and

Table 2. (Continued)

Index condition Treatment comparison Age–treatment

interaction

Sex–treatment

interaction

Pulmonary Disease, Chronic

Obstructive

Selective beta-2-adrenoreceptor agonists (R03AC) vs. Anticholinergics (R03BB) 0.09 (−0.26, 0.42) 0.12 (−0.27, 0.53)

Pulmonary Fibrosis Other protein kinase inhibitors (L01EX) 0.05 (−0.48, 0.56) −0.22 (−0.83, 0.42)

Restless Legs Syndrome Dopamine agonists (N04BC) −0.05 (−0.45, 0.36) −0.09 (−0.78, 0.58)

Rhinitis, allergic fluticasone (R01AD08) −0.86 (−2.55, 0.84) 1.40 (−2.32, 5.13)

Systemic Lupus Erythematosus Selective immunosuppressants (L04AA) 0.03 (−0.12, 0.19) −0.24 (−0.74, 0.26)

Estimates are expressed as multiples of the minimum clinically important difference for each outcome. The effect estimates (age and sex) were obtained from a model of

each outcome on treatment arm, age, sex and age–and sex–treatment interactions. Blank cells in the sex column are where there were no female participants in the trial

(benign prostatic hypertrophy and erectile dysfunction) or no male participants (osteoporosis).

* Indicates where the 95% CI does not include the null.

https://doi.org/10.1371/journal.pmed.1004176.t002
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differences in the burden of treatment (e.g., higher treatment burden in the context of multi-

morbidity leading to reduced concordance or reduced quality of life) may all lead to differ-

ences in the net overall benefit of treatment [24]. Therefore, where comorbidity alters the

(baseline) natural history of diseases, the likelihood of adverse treatment effects (e.g., comorbid

Fig 2. Main treatment effect and comorbidity–treatment interactions (ankylosing spondylitis, asthma, BPH, CIU, and dementia): This plot shows

the main treatment effect (black) and the comorbidity–treatment interaction (red) based on a comorbidity count. Trial-level estimates (circles) and meta-

analysed estimates (diamonds) are presented along with 95% CIs (whiskers). Details of effect estimates, heterogeneity, and model diagnostics can be found

here: https://zenodo.org/badge/latestdoi/611754942. BPH, benign prostatic hypertrophy; CI, credibility interval; CIU, chronic idiopathic urticaria.

https://doi.org/10.1371/journal.pmed.1004176.g002
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Fig 3. Main treatment effect and comorbidity–treatment interactions (diabetes, GORD, hypertension, and IBD): This plot shows the main

treatment effect (black) and the comorbidity–treatment interaction (red) based on a comorbidity count. Trial-level estimates (circles) and meta-

analysed estimates (diamonds) are presented along with 95% CIs (whiskers). Details of effect [3]estimates, heterogeneity, and model diagnostics can be

found here: https://zenodo.org/badge/latestdoi/611754942. CI, credibility interval; GORD, gastro-oesophageal reflux disease; IBD, inflammatory bowel

disease.

https://doi.org/10.1371/journal.pmed.1004176.g003
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renal impairment) or life expectancy (e.g., via discordant comorbidities associated with mor-

tality), the effects of treatment must differ even assuming that there is no difference in efficacy.

For example, while there is strong evidence that the benefits of dual antiplatelet therapy

(DAPT) following myocardial infarction (versus a single antiplatelet) outweigh the risks

Fig 4. Main treatment effect and comorbidity–treatment interactions (IBD, inflammatory arthropathy, and osteoporosis): This plot shows the

main treatment effect (black) and the comorbidity–treatment interaction (red) based on a comorbidity count. Trial-level estimates (circles) and meta-

analysed estimates (diamonds) are presented along with 95% CIs (whiskers). Details of effect estimates, heterogeneity, and model diagnostics can be

found here: [4]https://zenodo.org/badge/latestdoi/611754942. CI, credibility interval; IBD, inflammatory bowel disease.

https://doi.org/10.1371/journal.pmed.1004176.g004
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[25,26], this may not be true for patients with coexisting COPD. Cardiovascular mortality is

commoner in COPD than the general population, favouring DAPT [27]. However, non-car-

diovascular mortality is also higher [28], favouring single-antiplatelet therapy because of com-

peting risks. Intensive control of blood glucose and other risk factors in diabetes [29,30] and

Fig 5. Main treatment effect and comorbidity–treatment interactions (Parkinson’s disease, psoriasis, COPD, and pulmonary fibrosis): This plot

[5]shows the main treatment effect (black) and the comorbidity–treatment interaction (red) based on a comorbidity count. Trial-level estimates

(circles) and meta-analysed estimates (diamonds) are presented along with 95% CIs (whiskers). Details of effect estimates, heterogeneity, and model

diagnostics can be found here: https://zenodo.org/badge/latestdoi/611754942. CI, credibility interval; COPD, chronic obstructive pulmonary disease.

https://doi.org/10.1371/journal.pmed.1004176.g005
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anticoagulant use in atrial fibrillation [31] provide similar examples where the net overall treat-

ment benefits are uncertain for people with comorbidity.

This is the first IPD clinical trial meta-analysis, as far as we are aware, to examine whether

treatment efficacy differs by comorbidity. Nonetheless, there are several important limitations.

Fig 6. Main treatment effect and comorbidity–treatment interactions (restless legs syndrome and SLE): This plot shows the main treatment effect

(black) and the comorbidity–treatment interaction (red) based on a comorbidity count. Trial-level estimates (circles) and meta-analysed estimates

(diamonds) are presented along with 95% CIs (whiskers). Details of effect estimates, heterogeneity, and model diagnostics can be found here: https://

zenodo.org/badge/latestdoi/611754942. CI, credibility interval; SLE, systemic lupus erythematosus.

https://doi.org/10.1371/journal.pmed.1004176.g006
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First, while for some index conditions (e.g., diabetes) there were many trials, for others there

were few trials and so relatively few participants, limiting the precision with which covariate–

treatment interactions could be estimated. Furthermore, the individual trials were neither

designed not powered to measure comorbidity–treatment interactions. Specifically, the higher

Fig 7. Main treatment effect and comorbidity–treatment interactions (single trial estimates): This plot shows the

main treatment effect (black) and the comorbidity–treatment interaction (red) based on a comorbidity count. Trial-

level estimates (circles) are presented along with 95% CIs (whiskers). Details of effect estimates, heterogeneity, and

model diagnostics can be found here: https://zenodo.org/badge/latestdoi/611754942. CI, credibility interval.

https://doi.org/10.1371/journal.pmed.1004176.g007
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levels of comorbidity observed in clinical practice (e.g., 5 or more comorbidities) are rare

within the trial participants. This reduces the likelihood of detecting a comorbidity–treatment

interaction were one to exist. Therefore, while our results are consistent with there being no

comorbidity–treatment interactions, this should be interpreted within the range of comorbidi-

ties, index conditions, and treatment comparisons that are presented.

Second, most trials were phase 3 trials focussed on efficacy outcomes (e.g., change in a dis-

ease marker such as blood pressure or glycosylated haemoglobin) rather than pragmatic trials

focussed on harder outcomes (such as the incidence of specific adverse health outcomes). The

findings for the smaller number of trials (17 in total) where we did have harder outcomes

(headaches, bleeding, thromboembolism, and fracture) were similar to the findings for the

remaining trials; there was no evidence of treatment effect modification by comorbidity count

on the conventional scale (additive for continuous outcomes and relative for noncontinuous

outcomes). Nonetheless, the small number of trials and indications where hard outcomes were

studied means that caution is needed in extrapolating our findings to trials or meta-analyses

focussing on such outcomes. Also, for some conditions and indications, the main effects were

small or included the null. Where this was the case, the chances of detecting treatment effect

modification are lower.

Third, while this analysis assesses treatment efficacy, we did not assess whether comorbidi-

ties lead to variation in adverse effects of treatment. An appreciation of both benefits and

harms is required in order to inform judgements about the net benefits of treatment in the

context of comorbidity.

Table 3. Comorbidity–treatment interactions for binary and count outcomes; point estimates and 95% CIs.

Condition Outcome Intervention Comparator Number of

trials

Comorbidity–treatment

interaction

Migraine No. of headaches Topiramate (N03AX11) Placebo 5 1.03 (0.85, 1.22)

Osteoporosis Fracture of

vertebrae

Teriparatide (H05AA02) Placebo 1 0.87 (0.58, 1.30)

Zoledronic acid

(M05BA08)

Placebo 2 0.96 (0.79, 1.17)

Primary prevention

(thromboembolism)

Bleeding* Dabigatran (B01AE07) LMWH (B01AB) 2 1.06 (1.00, 1.12)

Dabigatran (B01AE07) Warfarin

(B01AA03)

1 1.00 (0.96, 1.04)

DVT or PE Dabigatran (B01AE07) LMWH (B01AB) 3 1.07 (0.89, 1.26)

Secondary prevention

(thromboembolism)

Bleeding* Dabigatran (B01AE07) Placebo 1 0.82 (0.64–1.05)

Dabigatran (B01AE07) Warfarin

(B01AA03)

1 1.06 (0.94–1.19)

DVT or PE Dabigatran (B01AE07) Placebo 1 0.96 (0.60–1.54)

Dabigatran (B01AE07) Warfarin

(B01AA03)

1 1.05 (0.64–1.70)

Treatment (thromboembolism) Bleeding* Dabigatran (B01AE07) Warfarin

(B01AA03)

2 1.00 (0.90–1.10)

DVT or PE Dabigatran (B01AE07) Warfarin

(B01AA03)

2 0.91 (0.75–1.10)

The interaction estimates represent the ratio per one-unit increase in comorbidity count; effect measures estimates above one indicate worse outcomes in the

intervention compared to the comparison arm. For number of migraines, the effect estimates are on the rate ratio scale, for the remainder the effect estimates are on the

odds ratio scale.

* For anticoagulant medication, where bleeding is a common complication, we analysed bleeding outcomes in addition to efficacy outcomes.

DVT, deep vein thrombosis; LMWH, low molecular-weight heparin; PE, pulmonary embolism.

https://doi.org/10.1371/journal.pmed.1004176.t003
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Fourth, while we include a large number of trials across a range of index conditions, this is

not a representative sample in terms of the larger body of trials. Specifically, there were all

industry-sponsored trials (as the CSDR and YODA repositories only held industry-sponsored

trial data for the conditions of interest). Furthermore, not all sponsors share data in this way

nor do sponsors share data for all trials conducted. We have previously demonstrated that

these trials were similar to the wider body of industry-sponsored trials in terms of characteris-

tics such as size, phase, and significance of the primary outcome [4]. However, it is possible

that by selecting only industry-sponsored trials inclusion criteria and selection processes may

be more restrictive than for other trials. This means that, while we did not detect any evidence

of treatment effect modification by comorbidity, it cannot be assumed to be absent particularly

in other trials which may be more pragmatic or have less restrictive selection criteria.

Finally, while comorbidity was present in all the included trials, they remain underrepre-

sentative in terms of the extent comorbidity [4,32–34]. Specifically, there were few people in

the included trials with high comorbidity counts (e.g., 4 or more conditions). This highly mul-

timorbid population is not uncommon in routine clinical practice [35] and presents consider-

able challenges for clinical decision-making [3]. Their exclusion from these trials means that

our findings cannot be assumed to be directly transferable to patient groups with the highest

degree of multimorbidity, for whom uncertainties over the net benefit of treatments are often

greatest [36,37].

Our findings have implications for the conduct of future evidence syntheses. In order to

estimate net overall treatment benefits, clinical guidelines and health technology assessments

routinely use evidence synthesis [38]. Such approaches combine (i) estimates of relative treat-

ment efficacy with (ii) “natural” history (standard comparator rates) to calculate absolute effec-

tiveness, commonly expressed as the absolute risk reduction (ARR) or number needed to treat

[39]. However, hitherto evidence synthesis has rarely been used to estimate net overall treat-

ment effects for people with multimorbidity. This may partly be due to uncertainty as to

whether and how efficacy estimates differ in people with and without comorbidities. Since esti-

mating the natural history rates of target and adverse events for people with multimorbidity is

relatively straightforward using routine healthcare data (since such data are sufficiently large

and rich in people with multimorbidity to produce such estimates), and within the limitations

outlined above, our findings support the standard assumption of estimates of treatment effi-

cacy being constant (at least at the modest levels observed within trial populations).

To support such evidence syntheses, we have provided a set of informative priors that can

be used to propagate, into the final treatment effectiveness estimates, the additional uncer-

tainty arising from applying estimates from clinical trials to populations rich in multimorbid-

ity. We summarised the variation in treatment effects by comorbidity count as a set of

Student’s t-distributions. These distributions can be used to inform modelling studies (e.g.,

health technology assessments) designed to extrapolate treatment effect estimates from trial

populations to routine clinical practice where multimorbidity is more common. This has the

potential to better inform regulatory bodies and guideline developers as they seek to make

treatment recommendations for people with multimorbidity.

Our findings also have relevance for analyses of comorbidity subgroup findings in both sin-

gle clinical trials and as part of meta-analyses. The lack of information for estimating subgroup

effects in clinical trials and dangers of falsely claiming spurious subgroup effects is well estab-

lished and a range of approaches have been advocated for dealing with this problem. These

include limiting the number of subgroups and performing corrections for multiple testing

(e.g., the Bonferroni technique used in frequentist analysis), the analysis of treatment effect

modification according to participant’s prognostic risk scores at baseline (which reduce the

dimensionality of the problem and prioritises characteristics known to predict differences in
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the rates of target events) [40] and in a Bayesian context the use of subject-matter expert

knowledge (via prior elicitation). The prior distributions derived from our modelling for the

comorbidity–treatment interactions can help inform such prior-elicitation exercises. Another

technique used in Bayesian subgroup analyses is to use off-the-shelf conservative priors

designed to avoid over fitting [41]; our findings will help provide reassurance that such priors

are unlikely to be overly conservative for modelling comorbidity–treatment interactions.

Finally, our results have relevance for reporting of clinical trial results. Both comorbidity

and frailty can be measured using data already collected from clinical trials and—as we show

—it is feasible to estimate comorbidity–treatment interactions using such measures. In our

project, this required access to IPD a process which is expensive (in terms of analysis time)

and complex (requiring formal contractual agreements). The PATH statement advocated that

clinical trials should report treatment effect modification by baseline prognostic risk score

[40]. We agree that this is a useful approach because it reduces the complex problem of sub-

group analysis into a single measure (reducing overfitting), and because, by definition, it tar-

gets variables which most strongly predict the risk of target events. This latter aspect is

important as it helps inform evidence synthesis models applying trial results to a target popula-

tion with a higher target event rate. For similar reasons, we propose that trials should also

report evidence of treatment effect modification by comorbidity or degree of frailty; this

would reduce the risk of overfitting by reducing comorbidity to a single variable that predicts

rates of competing events. To inform judgements about net benefits, this same information

should be provided for adverse events. In addition, more research is required to establish

whether specific comorbidities may attenuate or strengthen treatment efficacy, as if these

effects were in the opposite direction for different comorbidities, then a cumulative count of

comorbidities may obscure this effect.

In conclusion, we found no evidence that treatment efficacy differed by comorbidity within

the levels of comorbidity observed within clinical trial populations. This finding held whether

comorbidity was measured using a simple condition count or by the presence or absence of 6

common conditions. Nonetheless, comorbidity is underrepresented in trials, especially at

higher levels often seen in clinical practice, and in these contexts, the applicability of trial effect

estimates needs to be carefully considered. The analysis of these trials may be used to inform

subsequent evidence syntheses, analysis and reporting of individual trials, meta-analyses, and

health economic models. We provide model outputs in the form of prior distributions to sup-

port such analyses.
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S1 File. Statistical methods. This file contains a more detailed description of the statistical

analysis and model specifications.
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S1 Table. Comorbidity–treatment interactions for the 6 most common comorbidities

within each index condition. This table shows the coefficients and 95% CIs for the comorbid-

ity–treatment interaction for each of the 6 most common comorbidities within each index

condition. Each comorbidity was modelled separately.
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S2 Table. Comorbidity–treatment interactions for continuous biomarkers. This table

shows the coefficients and 95% CIs for the comorbidity–treatment interaction continuous bio-

markers associated with comorbidity. Biomarkers assessed were estimated glomerular filtra-

tion rate (eGFR, as a marker of renal impairment, taken from trial data where this was
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available and calculated from creatinine, age, sex, and race using the MDRD equations if it was

not), body mass index (as recorded or calculated based on height and weight), fibrosis-4 (FIB-

4) index (as a marker of liver disease calculated from aspartate aminotransferase, alanine trans-

aminase, and platelet counts), haemoglobin, and MBP (defined as 0.5 × (systolic blood pres-

sure + diastolic blood pressure)).

(XLSX)

S3 Table. Random effects meta-analyses for indications with <4 trials. This table presents

the results for meta-analyses of less than 5 trials using a random effects meta-analysis present-

ing alongside the fixed-effects findings from the main manuscript.

(XLSX)
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