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Abstract—6G is expected to revolutionize the Internet of things
(IoT) applications toward a future of completely intelligent and
autonomous systems. Conventional machine-learning approaches
involve centralizing training data in a data center, where the
algorithms can be used for data analysis and inference. To pro-
mote green computing in IoT applications, Machine-2-Machine
(M2M) technologies are largely focused on lowering energy
consumption and creating effective IT infrastructure. In this
paper, we introduce an AI-enabled One-Shot Interference(O-
SI) Knowledge-Driven unified model block sharing (K-Dumbs)
framework in which actionable knowledge is aggregated from
the training perception robots to facilitate others at the Edge
in the vicinity. To demonstrate the practicality of the proposed
concept, we explore a K-Dumb Fed-Average (FedAvg) algorithm
to meet the massively distributed and unbalanced pattern and
privacy requirement of the Internet of Robotic Things(IoRT).
Simulation results show that, when compared to traditional
Federated Learning (FL) systems, the proposed K-Dumb FedAvg
architecture delivers higher information-sharing and learning
quality. In addition, we validate our method using MNIST
handwritten digits for training image processing with an accuracy
that is close to the centralized solution for up to 80% reduction in
the amount of exchange data with the O-SI method. Furthermore,
the suggested solution reduces IoRT energy consumption by up
to 10 times and protects privacy.

Index Terms—Machine-2-Machine (M2M), Internet of Robotic
Things (IoRT), One-shot Inference (O-SI), Federated Learning
(FL)

I. INTRODUCTION

Machine learning (ML) has received a lot of attention and
is expected to be key to the creation of sixth-generation (6G)
mobile networks [1]. It is essential to anticipate the potential
applications, methodologies, use cases, and problems of 6G
technology at this time [2]. The most recent applications,
including Internet of things (IoT), the Internet of robotic things
(IoRT), Artificial intelligence (AI), Cognitive Networks (CN),
IP multimedia subsystem (IMS), eHealth, Internet of Vehicles
(IoV), not limited to the above application will demonstrate
the 6G cellular network [3]. The 6G next generation of cellular
technology as illustrated in Fig 1. The 2030 agenda includes
investigations and development on 6G wireless networks in
order to meet the demands of the intelligent information
society [4]. 6G will be a key enabler providing low latency
and supporting high throughput and ultra-high-quality videos
[5]. The intelligent information society is expected to have
highly digitized, intelligent, autonomous, global data-driven,
and unconstrained wireless connectivity [6].

One of the main challenges in 6G knowledge aggregation is
to handle the vast amounts of data generated by the numerous

Fig. 1: AI enabled 6G networks

devices and sensors in the network [7]. To overcome this
challenge, various ML and data analysis techniques can be
used, such as Federated learning (FL), edge computing, and
data fusion. Meanwhile, with data from millions/billions of
devices, and limited connectivity resources, uploading data
from all edge devices to a parameter server for centralized
ML is quite infeasible [8]. For these reasons, it is preferable
to implement distributed learning algorithms that allow devices
to collaborate to develop a unified learning model using local
training [9]. FL is one of the most promising distributed ML
frameworks that allow users to benefit from the shared model
built using this rich data without having to store it centrally
[10]. The merging of IoT, AI, and Robotics accelerates the de-
velopment of IoRT application, which increases pragmatically
aware decision-making assistance for complicated machine
intelligence operations [11]

In this paper, we introduce a framework on AI-enabled
knowledge sharing in Dumb robots using FedAvg to achieve
collaborative intelligence sharing. We also use distributive
model selection aggregation at the centralized levels to share
the average weight with unidentified domains to transfer
knowledge. To show knowledge aggregation we simulate a
robot vehicle perception scenario where a new vehicle gains
knowledge and intelligence, without training, but by leveraging
on trained information of previous vehicles. This is done



2

by training models locally in the form of supervised classi-
fiers to identify handwritten digit recognition. After acquiring
knowledge from the models locally, numerous nodes will
upload their weights to the central server, where the selection
and aggregation of the global model will take place. Robust
perception algorithm intelligently shares the global aggregated
weights to new robot vehicles which is immediately able
to complete the perception task without any local training.
This enables vehicles learn quickly, reduces latency in task
completion, and support reduced energy AI by the acquisition
of intelligence with reduced training requirement.

In Section II, describes the related work on FL and ML
offloading and edge computing to support the important devel-
opment based on knowledge sharing. In Section III, we discuss
the architecture of the K-Dumbs decision framework as well
as the problem formulation. Section IV describes the K-Dumb
FedAvg mechanism in detail. Section V discusses simulation
results. Section VI concludes the paper and discusses future
work.

II. RELATED WORK

Recent studies centered on edge caching using classic
probability-based approaches. The authors in [12] proposed
Heterogeneous distributed machine learning FL technology
that allows the machine to train a shared prediction model
jointly. Vermesan, O et al. [13] presented a comprehensive
examination of the IoRT concept, technologies, architectures,
and applications, as well as a prediction of future challenges,
developments, and applications. The ie of distributed mobile
edge optimization through FL [14] and intelligent network-
based robots [15] has drawn a lot of interest in the convex envi-
ronment to control communication [16], and certain algorithms
do have a special emphasis on communication effectiveness,
averaging in distributed primal-dual optimization [17], com-
munication efficient using an approximate newton-type [18].In
[19] discussed trading computation for communication and
[20] efficient communication optimization of empirical loss.
Computational harvesting [21] using on-board computing and
self-orchestration on edge clouds relates to moving (computa-
tional or storage) workloads away from the centralized cloud
and toward the endpoints (often the sources of data) offloading
[22].

ML technologies based on artificial intelligence (AI) have
become quite popular on the Internet of Vehicles (IoVs)
with the development of intelligent transportation systems
[23], [24]. IoVs tend to communicate data across cars and
infrastructures because they are built with AI-enabled onboard
sensors. Data sharing includes, but is not limited to, the shar-
ing of processing, telecommunication, and spectral resources;
there is also knowledge traded during the ML process [25].
Through the sharing of knowledge, vehicles can learn through
by sharing their experience. It can enhance decision-making
abilities while also accelerating the learning process [26]. For
instance, the traffic flow models that have been learned can
represent the common understanding of collaborative vehicle
sensing. Based on the data it has gathered, a single IoVs
train a unique algorithm model of current traffic pattern. By
combining the learning models from all cars, a complete
model may be created. In this situation, information sharing
reflects swarm intelligence, which is significant for future

Intelligent Transportation System (ITS) applications like traffic
management and autonomous driving [27], [28].

Although there are many different types of applications for
networked intelligent robots, most of them still aren’t user-
friendly. Artificial Intelligence will play an important role in
promoting knowledge aggregation in the networked intelligent
robot system to be investigated in the future 6G and beyond
green IoT. We explore One-shot Inference sharing algorithm
family , where AI-enable unified global model are shared with
new domain to reap the benefits of data aggregation. The
contributions of this paper are:

• Introducing novel K-Dumbs in robotics architecture to
support green computing in IoRT and Vehicular Robots,
reducing power consumption and Improving efficiency.

• K-Dumbs FedAvg involves one-shot communication be-
tween the server and client

• K-Dumbs uses a simple and useful algorithm that can be
used in this situation to reduce the computational cost,
preserving data privacy and security.

• K-Dumbs identified the problem to reduce the communi-
cation overhead and enable knowledge sharing.

III. SYSTEM MODEL

While the goal of K-transfer to move knowledge from
one domain to another, the aim of K-sharing to reduce the
distribution divergence between several domains is the main
concept. Many advancements can be understood as adapting
the model’s structure (and consequently the loss function) to
be more amenable to optimization by straightforward gradient-
based methods. The recent multitude of successful Deep
Learning (DL) applications has almost exclusively relied on
variants of stochastic gradient descent (SGD). The system
model shown in Fig 2.

Fig. 2: Basic K-Dumb FedAvg Architecture

SGD can be naively applied to the federated optimization
problem, where one batch gradient calculation is performed
each round of communication (let’s say on a client chosen
at random). This method is computationally efficient, but
it requires a large number of training rounds to develop
good models. In our MNIST dataset, we take this baseline
in our experiments and select a M fraction of clients. In a
typical FedSGD implementation with M = 1 as well as a
set learning rate n , each client k computes ak = ∇Fk(zk)
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average gradient of the current model on the it local data zt ,
and central server combines these gradients and update the
zt+1 ← zt − η

∑K
k=1

ni

n ak, since
∑K

k=1
ni

n ak = ∇f(zt) The
equivalent update is provided by ∀k zt+1 ← zt− ηak and then
zt+1 ←

∑K
k=1

nk

n zkt+1. In other words, each client performs
one step of gradient descent on the current model using its
local data, and the server then computes a weighted average
of the resulting models. After we’ve built the algorithm in
this manner, we may add further work to each client by
iterating the local update z t ← zt − η∇Fk(z

k) multiples
time before the averaging steps. These steps are stopped after
the desired epoch to have final global model that is the
combination of all local weighted average. The final weighted
average of resulting models are shared with new domain ∀k
zt+1 ← zt−η∇

∑
fak(global) to minimize the communication

overheads. we call this approach K-Dumb FedAvg. Three
important parameters determine how much computation is
done: M, the percentage of clients that compute each round; E,
the number of training passes each client does over its local
dataset each round; and B, the local mini-batch size that is
used for client updates. Averaging models in parameter space
could generate an arbitrarily terrible model for general non-
convex objectives. In model transfer, the convolution layers
try to extract low-level characteristics concerning activity
recognition. We do not alter these layers’ parameters during
back-propagation since we keep them and the max-pooling
layers frozen. The fully connected layers are at a higher
level, they focus on learning unique qualities for the task and
user.Hence, throughout training, we update their parameters.
The weighted average shared with new domain without leaking
any information from the user’s, protect privacy and security.
In the FedAvg technique, it has been demonstrated that aver-
aging the models with shared initialization can achieve good
performance in loss reduction [29].

IV. K-DUMB FEDAVERAGE

A. Federated Optimization
For optimization, the recent slew of successful deep learning

applications has almost entirely depended on versions of
stochastic gradient descent (SGD). By starting with SGD,
the method is designed exclusively for FL. Each client itera-
tively cycles through the present system with its own data,
and the server computes an arithmetic mean of the total.
Examples of ideal problems for FL include personalizing
for recommendation systems, speech recognition and natural
language processing, and computer vision applications [30].
FL is derived from a common distributed optimization issue
in which:

• non-IID The amount of training data that each user
shares is determined by their usage, the local data set of
any individual user will not be typical of the population
distribution.

• Unbalanced The amount of local training data will vary
depending on which customers utilize the service or app
more frequently than others.

• Widely Disseminated We predict that the number of
clients taking part in optimization will be significantly
greater than the average number of times per client.

• Limited communication Edge devices generally have
poor, expensive, or no internet connectivity.

These challenges lie outside the purview of the current effort;
instead, we employ a controlled setting conducive to experi-
mentation. However, it still handles the critical challenges of
client availability as well as unbalanced and non-IID data.

B. Edge Intelligence

The phenomenal increase in the number of connected de-
vices distributed widely inside the IoT has caused the volume
of data collected and exchanged to increase at breakneck speed
[31]. The inefficiencies of centralizing all this data on the
cloud have resulted in the emergence of new computer and
networking paradigms in recent years [32]. There are benefits
to processing near the data sources in terms of uploading
latency and bandwidth.

The inherent benefits of data privacy another important ad-
vantage because raw data does not travel very far. Furthermore,
the data is used to feed increasingly advanced AI models,
particularly Deep Learning (DL), is becoming more and more
popular across a broad range of industries and application
areas. The dangers and disadvantages of sharing personal
information online have been more evident in recent years. FL
is the answer to edge computing that utilizes DL technology
while safeguarding data privacy [33].

C. Problem Conceptulization

In this section, we focus on the optimization of non-IID
(non-Independent and Identically distributed) and IID proper-
ties, as well as the importance of communication restrictions.
An implemented distributed optimization system must deal
with various real-world challenges, including client data sets
that vary as new data is added and removed and client avail-
ability, which is directly related to the local data distribution.
We implement Federated Averaging with Local Stochastic
Gradient Descent (FedAvg-SGD), each participating percepton
robot trains a local model using SGD on its own data, and
periodically updates the global model by sending its model
parameters to the central server. The central server aggregates
the parameters from all devices using the FedAvg method,
which takes the average of all the parameters to obtain a new
global model. This procedure is carried out repeatedly until
it reaches a predetermined criterion or convergence. The new
global model is then broadcasted to the new domain of robots
which was not part of the training initially. The new perception
robot reaps the benefits of knowledge sharing, which uses
the inference of the globally trained model to initialize digit
recognition.

We make the assumption of a synchronous updating mech-
anism with communication rounds. There are M clients in all,
each with its own set of local data. A random proportion of C
of clients is chosen at the start of each round, and the server
broadcasts the current global model state to each of these
clients [29]. For efficiency, we only select a subset of clients as
adding more clients after certain point results in diminishing
returns. Then, each selected client does the local calculation
and sends an update to the clouds based on the global degree
and its local data set. The changes are subsequently applied
to the server’s global state, and the cycle begins again.
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While we concentrate on the non-convex cost function of
neural networks, the method we use also applies to any finite-
sum objective of this type [29].

min
z∈Rd

f(z) where f(z)def
=

1

n

n∑
i=1

fi(z) (1)

Technically, the learning objective for user i is denoted as

min
Θi
Li =

nk∑
k=1

ℓ(yki , fi(x
i
k))

where l indicates the loss of the network,(xi, yi)
k
i=1 are the

subset of the data size k, θ denotes the parameter to be learned,
i.e., the weight (z) and bias. Deep Neural networks are trained
through a mathematical operation sequence that transforms
input data into an output prediction. Backpropagation is a
process that uses optimization prediction and the true label
to compute gradients of the neural network parameters with
respect to a loss function. These gradients are then used to
update the parameters in the direction of minimizing the loss
function, which improves the network’s prediction accuracy
over time. Thus, As a result, we may rewrite objective (1) as

fi(z) =

K∑
k=1

nk

n
Fk where f(z) =

1

n

n∑
i=1

fi(z)

Where n denotes the number of devices involved in training
andz ∈ Rd denotes the d parameters of a global model (e.g.,
weights of a neural network) The partition can also be formed
by distributing the data uniformly across the device, assuming
a set of data i device assigned to a fixed client M, usually the
IID assumption. The number of local updates per round for a
client with uk = E nk

B ; Pseudo-code is given in Algorithm 1.

Algorithm 1 K-Dumb FedAvg [29]: The M clients are indexed
by k; B is the local minibatch size, E local epochs, learning
rate n.
Require: Server executes z0
Ensure: for each round t = 1,2,.... do

m← max(C .K, 1)
St ← random set of m clients.
k ∈ St in parallel do
for each client k .
zkt+1 ← Client Update(k, zt)
Client Update(k, zt) : ||Run on client k
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch ∈ B do
z ← z − n∇l(z; b)

Ensure: return w to server
Obtained z∇optimized
Share with New node kn

The fundamental concept is to use the data aggregation
mechanism to extract the knowledge from the global model
to share with other devices to reduce energy consumption,
improve reliability and to satisfy the low latency requirements.

V. SIMULATION RESULTS

Our motivation comes from tasks like object detection and
image classification, where sophisticated models can consid-
erably improve robotics usability. For each of these tasks, we
first selected a small-enough surrogate dataset that allowed
us to carefully investigate the K-Dumb FedAvg hyperparam-
eters. Finally, we analyze K-Dumb on substantial modeling
to demonstrate its performance on a real-world problem with
a natural data split between clients. Our preliminary research
comprises two model families and one datasets. MNIST data
sets are used for handwritten digit recognition problems with
our two of family algorithms: 1) A simple Multilayer Percep-
tron Network (MLP) with two hidden layers of 200 units each,
activated by ReLu. 2) A Convolutional Neural Network (CNN)
with a (5×5) convolutional layer, followed by 2 pooling layers
and a final softmax output layer to obtain the global weight
of the training and test data set. The data partition was done
in two ways IID and non-IID.

We are primarily concerned with standard performance, but
K-Dumb FedAvg is also effective at optimizing test loss, even
when test-set accuracy has plateaued. The below observation
for all two models class displays the MNIST CNN and MLP
(multi-layer perceptron) communication rounds [29] vs one-
shot Inference.

Model Epoch IID Non-IID (equal)
MLP 10 91.25% 75.94%
CNN 10 97.17% 85.97%

MLP(One-shot Inf) 1 89.67% 74.89%
CNN(One-shot Inf) 1 95.47% 83.62%

TABLE I: Comparison between rounds of communication
efficiency

According to Table 1 results comparison, if the level of
knowledge sharing needs to be improved, the level of access
to training in the actual model must first be increased for
convergence. Table 1 shows the model’s average accuracy in
comparison with rounds of communication. Figure 3 shows
the average accuracy of One-shot Inference accuracy against
communication rounds for the MNIST CNN. In this scenario,
a fraction of users were selected to train the MNIST models
and it appears to achieve a target accuracy with a set of com-
munication rounds. Figure 4 shows MLP compare (IID & non-
IID) with a fraction of users C=0.1 and optimizer n, presents
the One-shot Inference average accuracy vs. communication
rounds loss on MNIST dataset.

Fig. 3: Avg-acc in CNN against Communication rounds
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Fig. 4: Avg-acc in MLP against Communication rounds

K-Dumbs FedAvg predicts high-quality results by sharing
weights only, preserving privacy and data security with only
a single shot of communication rounds, as shown by the
results in Fig 5 showing a range of model topologies, our tests
illustrate that K-Dumbs FedAvg may be made practical for
efficient knowledge sharing in the Internet of Robotic Things
(IoT).

Fig. 5: Test-Accuracy in MNIST CNN of IID and non-IID

While partitioning the MNIST IID data, extra processing
per client improves accuracy while decreasing the number of
communication rounds required to reach the desired results.
The non-IID are less efficient but still significant. For all
two model classes, the K-Dumbs FedAvg converges to higher
accuracy with the AI-enabled O-SI method.

VI. CONCLUSION

In this paper, we identify the unified weights-sharing model
optimization technique in distributed devices through data
aggregation on undefined nodes using a FedAvg privacy-
preserving methodology. We presented a novel framework of
data aggregation that integrates FL and K-Dumbs Average
weights without sharing clients’ data, or labels, as evidenced
by findings on a number of model architectures: a multi-
layer perceptron (mlp), convolutional neural network (CNN).
K-Dumbs FedAvg provides many practical privacy benefits,
giving robust guarantees through weight sharing, reducing
computational load, and energy efficiency. Our proposed K-
Dumbs FedAvg algorithm improves accuracy over traditional
FL methods with a one-shot Inference technique. During
the sharing process, the proposed AI-enabled ML algorithms
efficiently reduce the communication rounds and achieve de-
sirable knowledge aggregation performance without sacrific-
ing data privacy. The key responsibility of the k-Dumb in
robotics is to minimize the communication rounds to offload

the computational complexity and share efficient knowledge.
Future work to optimize the current model to automate the
knowledge sharing with multiple training node selections to
further enhance communication efficiency.
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