Aqueous solutions of super reduced polyoxotungstates as electron storage systems

Zhao, T., Bell, N. L. , Chisholm, G. , Kandasamy, B., Long, D.-L. and Cronin, L. (2023) Aqueous solutions of super reduced polyoxotungstates as electron storage systems. Energy and Environmental Science, 16(6), pp. 2603-2610. (doi: 10.1039/D3EE00569K) (PMID:37323468) (PMCID:PMC10265398)

[img] Text
298199.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Due to the increasing energy density demands of battery technology, it is vital to develop electrolytes with high electron storage capacity. Polyoxometalate (POM) clusters can act as electron sponges, storing and releasing multiple electrons and have potential as electron storage electrolytes for flow batteries. Despite this rational design of clusters for high storage ability can not yet be achieved as little is known about the features influencing storage ability. Here we report that the large POM clusters, {P5W30} and {P8W48}, can store up to 23 e− and 28 e− per cluster in acidic aqueous solution, respectively. Our investigations reveal key structural and speciation factors influencing the improved behaviour of these POMs over those previously reported (P2W18). We show, using NMR and MS, that for these polyoxotungstates hydrolysis equilibria for the different tungstate salts is key to explaining unexpected storage trends while the performance limit for {P5W30} and {P8W48}, can be attributed to unavoidable hydrogen generation, evidenced by GC. NMR spectroscopy, in combination with the MS analysis, provided experimental evidence for a cation/proton exchange process during the reduction/reoxidation process of {P5W30} which likely occurs due to this hydrogen generation. Our study offers a deeper understanding of the factors affecting the electron storage ability of POMs and provides insights allowing for further development of these materials for energy storage.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Long, Dr Deliang and Chisholm, Dr Greig and Zhao, Dr Tingting and Kandasamy, Dr Balamurugan and Bell, Dr Nicola and Cronin, Professor Lee
Authors: Zhao, T., Bell, N. L., Chisholm, G., Kandasamy, B., Long, D.-L., and Cronin, L.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Energy and Environmental Science
Publisher:Royal Society of Chemistry
ISSN:1754-5692
ISSN (Online):1754-5706
Published Online:21 April 2023
Copyright Holders:Copyright © 2023 The Royal Society of Chemistry
First Published:First published in Energy and Environmental Science 16(6):2603-2610
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
166449Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/J015156/1Chemistry
190796Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L023652/1Chemistry
166779Innovative Manufacturing Research Centre for Continuous Manufacturing and Crystallisation (CMAC)Leroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/I033459/1Chemistry
166449Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/J015156/1Chemistry
167864Energy and the Physical Sciences: Hydrogen Production using a Proton Electron BufferLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/K023004/1Chemistry
190796Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L023652/1Chemistry
172151SMARTPOM: Artificial-Intelligence Driven Discovery and Synthesis of Polyoxometalate ClustersLeroy CroninEuropean Research Council (ERC)670467Chemistry