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Abstract— This paper considers an Internet of Things (IoT)
blockchain wireless network consisting of a leader node and vari-
ous follower nodes which together implement the RAFT consensus
protocol to verify a blockchain transaction, as requested by a
blockchain client. Further, two kinds of active attacks, i.e., jamming
and impersonation, are considered on the IoT blockchain network
due to the presence of multiple active malicious nodes in the close
vicinity. When the IoT network is under a jamming attack, we utilize
the stochastic geometry tool to derive the closed-form expressions
for the coverage probabilities for both uplink and downlink IoT
transmissions (which eventually translate to blockchain transaction
success rate). On the other hand, when the IoT network is under an
impersonation attack, we propose a novel method that enables a receive IoT node to exploit the pathloss of a transmit
IoT node as its fingerprint to implement a binary hypothesis test for transmit node identification. To this end, we also
provide the closed-form expressions for the probabilities of false alarm, missed detection, and miss-classification. Finally,
we present detailed simulation results that indicate the following: i) the coverage probability (and hence blockchain
transaction success rate) improves as the jammers’ locations move away from the IoT network, ii) the three error
probabilities decrease (i.e., chances of corruption of the blockchain ledger data due to false data injection by malicious
node decrease) as a function of the quality of the link between the transmit and receive IoT node.

Index Terms— Authentication, Blockchain, Coverage Probability, Downlink, Uplink, IoT Blockchain Wireless Networks,
Impersonation, Jamming, Pathloss, RAFT consensus, Security, Stochastic Geometry.

I. INTRODUCTION

Blockchain technology consists of a decentralized, dis-
tributed ledger that allows multiple parties to securely and
transparently record and verify transactions. It uses a series
of cryptographic algorithms to create a tamper-proof and
immutable record of every transaction in the network. Each
block in the chain contains a timestamp, a unique crypto-
graphic hash, and a reference to the previous block, creating
a chain of interconnected blocks. Once a block is added to
the chain, it cannot be altered or deleted without changing
all subsequent blocks, making the blockchain an extremely
secure and transparent system for storing and sharing data.
Blockchain technology has numerous potential applications,
including cryptocurrency, supply chain management, health-
care, voting systems, and more [1].

One pivotal component of blockchain technology are the
consensus techniques that establish trust among blockchain
entities, and enable updates in the distributed ledger’s states.
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The blockchain consensus methods could be broadly cate-
gorized into two classes [2]. The first class of methods is
based on pure computation that asks the participating nodes
to solve a mathematical puzzle in order to prove that they
are eligible for mining work, e.g., proof-of-work (PoW) [3]
and proof-of-stakes (PoS) [4]. The second class of methods
relies on pure communications between joining nodes whereby
the successful voting by a majority of nodes through the
communication channel leads to the achievement of consensus,
i.e. Byzantine fault tolerant (BFT) method [5], Paxos [6], and
RAFT [7]. Private blockchains use second class of consensus
methods due to their low-complexity, high throughput and
small confirmation delay [8]. Among them, RAFT method has
become ubiquitous as it reduces the degree of non-determinism
by decomposing the nodes into two types of roles: there is one
leader node while others are follower nodes.

Having introduced the essentials of blockchain technology
in detail, we discuss next the recent research interest to inves-
tigate potential integration of blockchain with wireless net-
works. Recently, there has been growing interest in utilization
of blockchain technology in next-generation wireless networks
for various system configurations, and for a multitude of prob-
lems [9]. The potential integration of blockchain technology
with the next-generation wireless networks is anticipated to
help wireless networks provide support for processing at the
edge, automation, and distributed trust [10]. Thus, research
which study various aspects of a wireless blockchain network
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have started to emerge. As an example, [11] studies the
impact of optimal node deployment on blockchain transaction
throughput. Authors in [12] maximize the blockchain transac-
tion rate (and thus the revenue of miners) using the Stackelberg
game approach. [13] provides a closed-form expression of
the signal to interference plus noise ratio, throughput and
transmission successful probability for a wireless blockchain
network. [14] investigates the potential of blockchain for doing
resource management in 6G cellular networks, for the follow-
ing use-case scenarios: device-to-device, IoT, and network-
slicing. Dynamic spectrum sharing is studied in [15], where
reinforcement learning is utilized to analyze the resource-
sharing structure and spectrum-sharing process in a blockchain
system combined with 6G hybrid cloud. Authors in [16] study
the dynamics of block propagation and provide a closed-
form expression for block propagation time, in blockchain-
based vehicular ad-hoc networks. The work [17] minimizes
the latency in storing data by intelligent transaction migration
policy by exploiting the Markov process and deep determinis-
tic policy gradient. The authors in [18] focus on blockchain-
based wireless local area networks and provide a new medium
access control protocol known as block access control. Finally,
the authors in [19] propose Blockchain Enabled Radio Access
Network whereby they provide a security framework for
mutual authentication based on digital signatures/secret keys.
They also provide design guidelines for switching, routing,
and quality of service management.

Though blockchain technology is a promising solution for
wireless IoT networks, nevertheless wireless IoT blockchain
networks are vulnerable to different attacks (due to broad-
cast nature of wireless medium) [20]. Such attacks on IoT
blockchain networks lead to the failure of the consensus
process that is responsible for integrity of the transactions
in the blockchain. For example, in a RAFT-based blockchain
network, RAFT consensus protocol will fail if several follower
nodes do not cast their votes due to communication failure, or
if dishonest votes are cast by malicious actors [21].

Contributions. This work considers a RAFT-based IoT
blockchain network that comprises a leader node and many
follower nodes which together verify a blockchain transaction
upon request from a blockchain client. To the best of the
authors’ knowledge, this work is the first that considers the
two most prominent kinds of active attacks (jamming and
impersonation) on the IoT blockchain networks. Specifically,
two main contributions of this paper are as follows:

• When the IoT blockchain network is under jamming at-
tack, we utilize the stochastic geometry tool to derive the
coverage probabilities for both uplink and downlink IoT
transmissions (which eventually translate to blockchain
transaction success rate). In simulations, we thoroughly
study the impact of important system parameters, e.g.,
transmit power of legitimate and jamming nodes, inten-
sity and relative geometry of the jamming nodes, etc. on
the coverage performance.

• When the IoT blockchain network is under impersonation
attack, we propose a novel counter-method that enables
a receive IoT node to exploit the pathloss of a transmit
IoT node as its fingerprint to construct a two-step testing

approach (i.e. maximum likelihood test followed by the
binary hypothesis test). Further, we provide closed-form
expressions for the three error probabilities, i.e., false
alarm, missed detection and miss-classification. Note
that the probability of missed detection translates to the
probability of corruption of the blockchain ledger data
due to false data injection by malicious node.

Outline. Section II describes the selected related work.
Section III provides a detailed description of the considered
system model. Section IV considers the scenario of a jamming
attack on the IoT blockchain network. Section V considers the
scenario of an impersonation attack on the IoT blockchain net-
work. Section VI provides selected numerical results. Finally,
Section VII concludes the paper.

Notations. Unless specified otherwise, |.| and ∥.∥ denote the
modulus and the 2-norm respectively, E(.) is the expectation
operator, boldface letters such as X represents a vector and
CN means complex normal.

Fig. 1. System Model

II. RELATED WORK

The literature on blockchain-assisted wireless networks as
well as blockchain systems with wireless IoT verifier nodes is
continuously expanding. Thus, due to space constraints, only
selected related work is discussed below. The interested reader
is referred to the relevant survey papers [22], [23], [24] for a
more detailed overview of the recent progress in the field.
Specifically, the survey article [22] summarizes the works that
have been proposed by the researchers to realize secure IoT
networks by using machine learning and blockchain tools.
The second survey article [23] summarizes works that utilize
blockchain for various configurations of wireless cellular net-
works, e.g., THz networks, mm-wave networks, D2D commu-
nication, HetNets, full-duplex networks, aerial networks etc.
Finally, the third survey article [24] provides a comprehensive
discussion of the existing blockchain consensus protocols, and
their sub-types, e.g., proof of work, proof of stakes, proof of
elapsed time, proof of activity, Paxos, RAFT, and many more.

There have been quite a few works which do analytical
performance analysis of the blockchain networks under various
system configurations and assumptions. For example, [25]
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does performance analysis of a wireless blockchain network
using stochastic geometry tool. Specifically, they utilize the
stochastic geometry tool find the optimal deployment of the
full/leader node in order to maximize the coverage perfor-
mance of the wireless blockchain system. [26] focuses on
RAFT consensus protocol and utilizes tools from probabil-
ity theory in order to do reliability analysis of the RAFT
consensus protocol. For example, they derive the probability
density function of the logarithmic consensus failure rate.
[27] proposes a machine learning aided scheme where authors
begin with proof of work consensus protocol and propose to
split a blockchain into multiple sub-chains in order to reduce
the mining time of the blockchain transaction. The splitted
sub-transactions are later merged together.

Another direction of research is to investigate novel and ef-
ficient blockchain consensus protocols. For example, [28] pro-
poses a new variant of the classical RAFT protocol whereby
the leader node is re-elected every once in a while. More
precisely, the IoT node with better computational capability is
more likely to be elected as the new leader. [29] also proposes
a new blockchain consensus protocol whereby the participating
IoT nodes are ranked in a hierarchical manner for their
reputation according to a novel methodology that the authors
develop. [30] utilizes blockchain to store and trade information
between the IoT nodes of an air to ground IoT network.
Specifically, authors propose a novel consensus method to
achieve a required quality of service. To this end, authors also
utilize the mathematical tool of stochastic geometry in order
to systematically figure out number of ground IoT nodes in
order to provide a required coverage.

There have been quite a few works which discuss attacks
as well as undesired scenarios a wireless IoT blockchain
network could run into. For example, [31] propose a solution
to the forking problem, an undesired phenomenon in a wireless
blockchain system. Here, due to wireless channel fading,
occasionally there is a large transmission delay and sometime
transmission failure occurs. When this happens, it results in
an inconsistency in the blockchain ledger where few nodes
start to work on new blockchain transaction while the other
(with communication failure) keep working on old transaction.
[32] considers interferers which transmit undesired signals
to harm the ongoing communication within a wireless IoT
blockchain network, and studies the impact of density of
number of interfering nodes on the blockchain transaction
rate. [33] considers jamming attacks on a wireless blockchain
system that is being used for record keeping of medical health
records. Here, the authors propose frequency-hopping spread
spectrum (FHSS) as anti-jamming solution where the IoT
nodes switch to a new channel at a different frequency as
soon as a jamming attack is detected. Finally, the work [21]
considers a RAFT-based wireless blockchain network when a
single jammer is present nearby, and derives the probability
of achieving a successful blockchain transaction.

At the same time, the parallel domain of physical layer
security has evolved rapidly whereby physical layer authen-
tication has emerged as a promising method for countering
impersonation attacks [34]. Specifically, to counter the im-
personation attacks at the physical layer, researchers have

proposed various channel and hardware-based features, e.g.,
[35], [36], [37] propose distance, angle of arrival and position,
[38] and [39] propose channel impulse response, and [40] and
[41] exploits the lack of hardware reciprocity, [42] exploits
carrier frequency offset as features or device fingerprints to
carry out authentication. Inline with the previous work, this
work counters impersonation attacks by exploiting the pathloss
of the transmit IoT nodes as features for authentication.

III. SYSTEM MODEL & BACKGROUND

A. System Model
The RAFT-based IoT blockchain network comprises two

parts, a wireless consensus network, and IoT clients, as shown
in Fig. 1. The two parts may or may not be geographically iso-
lated. Fig. 1 illustrates the communication network topology
and the IoT nodes’ roles interchangeably for different business
models. Any IoT node in the network can play a client’s
role that sends out transaction-requests or a leader/follower
in the consensus process. The followers and malicious nodes’
locations in a 2-dimensional free space are modeled as Poisson
point process (PPP), while the leader (full node) is fixed at the
geo-center of consensus network.

Adversary capabilities and behavior modeling. We con-
sider that malicious nodes are active malicious nodes who are
capable of launching jamming and impersonation attacks. We
assume that malicious nodes either launch jamming attacks
or impersonation attacks in a given time. In jamming mode,
malicious nodes continuously transmit noise/jamming signals
in the available spectrum of communication for both uplink
and downlink transmissions in order to destroy the voting
process in IoT wireless blockchain networks. Thus, it is
critically important to explore the blockchain transactions
success rate in the form of coverage probability in the presence
of radio jamming [21]. On the other hand, in impersonation
mode, the malicious nodes aim to represent themselves as
legitimate nodes and cast votes to select a leader. Therefore,
it is important to counter impersonation attacks by using a
physical layer authentication mechanism.

B. RAFT Consensus Protocol
RAFT consensus algorithm begins by first electing a leader.

It is the leader node who receives log entries/transaction-
details from the blockchain client. The leader node is assumed
to have higher computational capability as well as higher
reliability, and is responsible to manage the new log entries
and makes sure that the blockchain ledger stays consistent.
In contrast, followers are passive nodes that only respond
to the request of the leader. It is only the leader who can
insert the transaction-details into the blockchain ledger. The
RAFT consensus mechanism is triggered as follows. Firstly,
the leader receives the transaction information from a client
and performs some necessary actions to form a block. Sec-
ondly, the leader will communicate with follower nodes via a
downlink (DL) broadcasting channel to request to verify and
approve the block. When followers successfully receive the
leader’s message, they verify the block and send their voting
message on the multi-access uplink (UL) channel to the leader.
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Lastly, the leader will count the votes, and consensus is said
to be achieved if the leader gains the majority (i.e., more than
50% followers verify/approve the block).

This paper focuses on communication inside the RAFT
consensus network, on both DL and UL.

IV. JAMMING ATTACK ON IOT BLOCKCHAIN NETWORK

In the RAFT consensus algorithm, a client transmits trans-
action requests to the leader node to make consent with the fol-
lowers by considering that all follower nodes are honest. This
section finds success/coverage probability defined as receiving
Signal to Interference and Noise Ratio (SINR) is greater
than its predefined threshold between a leader and associated
follower. All followers operate in the same frequency band, so
they cause increased interference that ultimately degrades the
received SINR and lowers the success probability. Different
protocols were employed in the private blockchain networks
to avoid interference and collision among the follower nodes,
such as centralized radio resource allocation and Carrier Sense
Multiple Access (CSMA) or transmission interval made large
enough so that collision is negligible.

A. Coverage Probability for Downlink IoT Transmissions
When the leader transmits, then a typical follower receives

the following baseband signal:

y =
√
PHs+

∑
j∈ϕJ

√
PjHjs+ n, (1)

where P (Pj) is the transmit power of the leader (j-th
jammer) node, s is the transmitted symbol, H = h/

√
Rα

(Hj = hj/
√

Rα
j ) represents the wireless propagation from

the leader (jammer) to the follower, and R (Rj) is the
random distance between the leader (jammer) and the follower
node. Further, for the leader-follower link, R−α is the large-
scale fading/pathloss component, α is the pathloss exponent,
h ∼ CN (0, 1) is the small-scale fading component. More-
over,

√
IJ =

∑
j∈ϕJ

√
PjHjs is the aggregate interference

amplitude due to multiple jammers where ϕJ indicates that
the jammers are distributed in a 2-dimensional free-space as
PPP. Finally, n ∼ CN (0, σ2) is the additive white Gaussian
noise with power σ2.

We consider an interference-limited scenario (i.e., the in-
terference is much larger than the noise). This allows us to
consider the signal-to-interference ratio (SIR) as the perfor-
mance metric. The SIR of a typical follower associated with
the leader node is given as:

SIRDL =
P |h|2R−α

IJ
, (2)

where IJ =
∑

j∈ϕJ
Pj |hj |2∥Xj∥−α is the aggregate in-

terference power, hj ∼ CN (0, 1) is the small-scale fading
component on the jammer-follower channel, and Xj is the
random location of j-th jammer or Poisson point (note that
∥Xj∥ = Rj).

The IoT transmission from the leader to any given follower
node on the DL will be considered successful only when the
received SIR is greater than a pre-specified threshold βD [43].

Thus, the transmission success probability, or, the coverage
probability for the DL (PDL

c ) is defined as follows:

PDL
c (α, βD) = P

[
SIRDL > βD

]
= P

[
P |h|2R−α

IJ
> βD

]
.

(3)
Now, we assume that a typical follower is at distance r from

the leader, then the coverage probability can be expressed as:

PDL
c (α, βD) = ER

[
P
[
SIRDL > βD | R = r

]]
, (4)

=

∫ ∞

r>0

P
[
SIRDL > βD | r

]
fR(r)dr,

where fR(r) is the probability density function (PDF) of R,
and is given as [44] 1:

fR(r) = 2πρr exp(−ρπr2), (5)

where ρ is the intensity/density of the IoT nodes. We now need
to compute P

[
SIRDL > βD | r

]
which can be expressed as:

P
[
SIRDL > βD | r

]
= P

[
|h|2 >

rαβD

P
IJ

]
. (6)

As |h|2 ∼ exp(1), we can write:

P
[
|h|2 >

rαβD

P
IJ

]
= EIJ

[
exp(−rαβD

P
IJ)

]
= LIJ (

rαβD

P
),

(7)
where LIJ (s) denotes the Laplace transform of the aggregate
interference IJ which is computed in Appendix (with variable

s =
rαβD

P
).

Putting back the result of Appendix to Eq. 4 we get the
following final expression of coverage probability for DL:

PDL
c (α, βD) = 2πρr≥0 exp

(
πρJγjβDrα

(α/2)− 1

[
z
(2−α)
2

2F1(1, 1−
2

α
, 2− 2

α
,−γJβD(

r

z2
)α)− z

(2−α)
1

2F1(1, 1−
2

α
, 2− 2

α
,−γJβD(

r

z1
)α)

]
−ρπr2

)
rdr.

(8)

B. Coverage Probability for Uplink IoT Transmissions

To achieve the consensus, followers send the voting mes-
sage on the multi-access UL channel for confirmation after
receiving a DL message. Consensus will be achieved if more
than 50% from the followers successfully verify the transaction
on the UL channel. So, we need to compute the success
probability on the UL channel. We assume that CSMA is
the medium access technique adopted by the followers and
transmission on UL is available all the time (i.e., no idle
channel). Then the coverage probability for a typical follower
node on the UL is given as [43]:

PUL
c (α, βU ) = P

[
SIRUL > βU

]
= P

[
|hU |2 >

Rα
UβU

PF
IUJ

]
,

(9)

1We consider the elected leader node at the origin of considered space.
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where βU is a predefined threshold for UL, hU is the channel
gain, RU is the distance from a typical follower to the leader
on UL, PF is the transmit power of a typical follower, and IUJ
is the aggregated interference to the leader. CSMA makes sure
that there is no interference from the other follower nodes on
the UL, thus, the interference/jamming is due to the jammers
only. This makes the coverage probability formulation the
same as we do for DL. We compute UL success probability
using the same procedure as above, and we get:

PUL
c (α, βU ) = 2πρr≥0 exp

(
πρJγ

U
j βUr

α
U

(α/2)− 1

[
z
(2−α)
2

2F1(1, 1−
2

α
, 2− 2

α
,−γU

j βU (
rU
z2

)α)− z
(2−α)
1

2F1(1, 1−
2

α
, 2− 2

α
,−γU

j βU (
rU
z1

)α)

]
−ρπr2U

)
rUdrU ,

(10)

where ρJ is the intensity of jammer nodes and γU
j = Pj/PF .

C. Overall Coverage Probability
Consensus is achieved when followers successfully receive

the leader’s request to verify the transaction-detail over the DL
channel and respond to the leader over the UL channel. So,
we derive the joint coverage probability in an IoT blockchain
network as follows [45]2:

Pc = P[SIRUL > βU ].P[SIRDL > βD] (11)

V. IMPERSONATION ATTACK ON IOT BLOCKCHAIN
NETWORK

In the RAFT consensus algorithm, due to the broadcast
nature of wireless communication, the consensus algorithm
may fail due to the impersonation attacks launched by nearby
malicious/illegitimate node(s) (so-called Eve(s)). In imperson-
ation attacks, malicious nodes try to claim themselves as
legitimate nodes/followers by utilizing a forged character in
order to destroy the consensus mechanism.

In this work, we provide a physical layer authentication
mechanism to counter impersonation by illegitimate nodes.
We, in this work, exploit the pathloss of the transmitter node as
a device fingerprint to counter the impersonation. We assume a
realization3 of PPP, specifically, M follower (legitimate) nodes
{Fi}Mi=1 and N Eve (malicious/illegitimate) nodes {Ej}Nj=1

are considered in a 2-Dimensional space, and a leader is placed
at the center of the considered region. We assume that the
transmitter nodes transmit with a fixed transmit power so that
the leader can compute the pathloss. We also assume that the
malicious nodes are transmitting with the same transmit power
in order to stay stealth in the region 4. The pathloss Ψ in dB

2Note that coverage probability analysis is only a performance monitor
amid the jamming attack. One potential anti-jamming method is frequency
hopping spread spectrum, but this is outside the scope of this work.

3Typically, in physical layer authentication, one needs to know the exact
number of transmitting nodes in order to evaluate its performance. Therefore,
in this part, we take a single realization of PPP in order to fix the total number
of nodes (both, malicious and legitimate).

4High power transmission will easily identify the transmitter as a malicious
node. To get success in impersonating the legitimated nodes, malicious nodes
transmit with the same power as legitimate nodes do.

of a transmitter at the distance d from the receiver is given as:
Ψ[dB] = 10α log10(d), where α is the pathloss exponent.

A. The Proposed Authentication Method

We assume that CSMA is the approach used by the fol-
lowers and malicious nodes to cast their votes. We assume
that malicious node Ej could cast a vote, pretending to be
a legitimate follower node when the channel is completely
idle by the followers and hence, no collision. The leader
is supposed to authenticate each received casting vote and
correctly achieved the consensus. Furthermore, we assume that
the leader already has the ground truths of legitimate nodes
which he gets via prior training on a secure channel. The
ground truth vector can be denoted by Ψ = {Ψ1, ...,ΨM}T .
As discussed earlier, we will authenticate the transmitter based
on the pathloss feature. So the noisy measurement of pathloss
z = Ψ + n at a given time-slot is obtained, where Ψ is the
pathloss and n ∼ N (0, σ2) is the noise/estimation error. To
counter the impersonation by malicious nodes, we first do a
maximum likelihood (ML) test as follows:

i∗ = max
i

f(z | Ψi), (12)

where f(z | Ψi) is the likelihood function or conditional PDF.
Equivalently, we can write 12 as:

(TS∗, i∗) = min
i

|z −Ψi|, (13)

where TS∗ is the minimum value of test statistics and i∗

returns the index of the transmitter node which is decided
through ML. Next, we decide on impersonation through binary
hypothesis testing as follows:

H0(no impersonation) : TS∗ = min
i
|z(t)−Ψi| < ϵ

H1(impersonation) : TS∗ = min
i
|z(t)−Ψi| > ϵ

,

(14)
where ϵ is a small test threshold and is a design parameter
that decides whether a vote from a follower node is accepted
or not. Then: TS∗ ≷H1

H0
ϵ.

The hypothesis H0 inferred that the legitimate node trans-
mits the vote. Alternatively, the hypothesis H1 implies that an
illegitimate node transmits a vote. Further, we present closed-
form expressions for the error probabilities. We have three
types of errors resulting from the above tests. These errors
are: false alarm, missed detection, and miss-classification.
The probability of false alarm (Pfa) is the probability that a
legitimate follower casts a vote, but the leader identifies it as
a malicious node. The probability of missed detection (Pmd)
is the probability that a malicious node casts a vote, but the
leader identifies it as a vote of a legitimate node. Last, the
probability of miss-classification (Pmc) is the probability that
when no impersonation is detected but a wrong transmitter
node is decided among the legitimate transmitters.

We, in this work, follow the Neyman-Pearson lemma [46]
where a small test threshold ϵ for a pre-defined false alarm rate



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

Pfa is chosen such that missed detection probability Pmd is
minimized. First, the probability of false alarm is given as:

Pfa = P(H1|H0) =

M∑
i=1

P(TS∗ > ϵ|Fi)π(i)

=

M∑
i=1

2Q(
ϵ

σ
)π(i) = 2Q(

ϵ

σ
)

M∑
i=1

π(i) = 2Q(
ϵ

σ
)

(15)

where π(i) is the prior probability of legal node Fi (we con-
sider equal priors in our work), and Q(x) = 1√

2π

∫∞
x

e
−t2

2 dt
is the complementary CDF of a standard normal distribution
Thus, the threshold ϵ is computed as follows: ϵ = σQ−1(

Pfa

2 ).

B. The Performance of the Proposed Method
The probability of missed detection Pmd is computed as:

Pmd = P(H0|H1) = P(TS∗ < ϵ|Ej)

=

N∑
j=1

M∑
i=1

[
Q(

Ψi −Ψj − ϵ

σ
)−Q(

Ψi −Ψj + ϵ

σ
)

]
π(j)

M

(16)

where π(j) is the prior probability of impersonator node Ej .
Since the probability of missed detection is a random

variable, so the expected value P̄md := E(PMD) is as follows:

P̄md =

N∑
j=1

1

∆
π(j).(Ψmax

Ψmin

∑M
i=1 Q(

Ψi−Ψ
(E)
j −ϵ

σ )−Q(
Ψi−Ψ

(E)
j +ϵ

σ )dΨ
(E)
j

)
=

N∑
j=1

1

∆
π(j).(Ψmax

Ψmin

∑M
i=1 Q(Ψi−Ψ(E)−ϵ

σ )−Q(Ψi−Ψ(E)+ϵ
σ )dΨ(E)

)
(17)

where we have assumed that the unknown pathloss Ψj ∼
U(Ψmin,Ψmax) ∀j, and ∆ = Ψmax −Ψmin.

Now, we investigate the authentication of the casted vote
by identifying the transmitter identity using the ML-based
approach. The error probability of miss-classified node Pmc

resulting from Eq. 13 is given as:

Pmc =

M∑
i=1

Pmc|i.π(i) (18)

where Pmc|i is the probability that the leader notice that the
vote is cast by follower Fj but the vote is actually cast by
follower Fi where i ̸= j. For the hypothesis test above, Pmc|i
is given as:

Pmc|i = 1−
(
Q(

Ψ̃l,i − Ψ̃i

σ
)−Q(

Ψ̃u,i − Ψ̃i

σ
)

)
(19)

where Ψ̃l,i = Ψ̃i−1+Ψ̃i

2 , Ψ̃u,i = Ψ̃i+Ψ̃i+1

2 . Additionally,
Ψ̃ = {Ψ̃1, ..., Ψ̃M} = sort(Ψ) where sort operation (.) sorts
a vector in an increasing order. For the boundary cases, e.g.,

i = 1, i = M , Ψ̃l,1 = Ψmin, Ψ̃l,M = Ψmax respectively.
Note that the proposed mechanism will be executed at the
leader node, which becomes uplink transmission according to
the discussion of Section IV. For the downlink, the mechanism
will be executed at followers having a single ground truth
of the leader node. In this case, we will have two error
probabilities (i.e., false alarm and missed detection) with a
kind of similar error expressions given above (i.e., except
summation for N legitimate nodes). We omit the discussion
of it for the sake of brevity.

The proposed feature-based authentication method to
counter impersonation attacks is summarized as follows:

1) Training phase: The receive IoT learns the ground truth,
i.e., the pathloss feature for all the transmit IoT nodes on a
secure channel.

2) Testing phase: The receive IoT measures the pathloss for
every incoming data packet and compares it against the ground
truth by means of hypothesis testing in order to systematically
accept/reject a received data packet.

VI. RESULTS AND DISCUSSIONS

We use MATLAB 2019a for simulations. The important
simulation parameters for generated figures are mentioned in
TABLE I, unless otherwise stated.

Parameters Configuration
PL, PF , Pj 30 dBm, 20 dBm, 10 dBm
Pathloss exponent α 3
ρF 15/π(500)2

Area π(500m)2

M , N 5, 5

TABLE I
IMPORTANT SIMULATION PARAMETERS

A. Coverage probability performance of the IoT
blockchain network under jamming attack

For the jamming attack, Monte-Carlo simulations are done
whereby both legitimate and malicious nodes are deployed
according to the PPP with ρF intensity for legitimate nodes,
and ρJ intensity for jammer/malicious nodes. The leader is
placed at the origin.

Fig. 2 presents the joint coverage probability for the differ-
ent SIR threshold values of β (in dB) and intensity of jammers
ρJ . We observe that the transaction success rate (i.e., Pc)
declines as the SIR threshold increases. Fig. 2 also reveals
that increasing the jammer intensity severely degrades the
transaction success rate.

Fig. 3 demonstrates the behavior of joint coverage prob-
ability against different radius values (i.e., effective area) of
distributed jammers. Specifically, we set ρ = ρJ , z1 = 0 and
vary z2 from 0 to 300 by step of 20. We observe that the
increase in the effective jamming area of jammers causes low
SIR values that lower the transaction success rate. We can also
see the degradation in the performance of success rate with an
increase in the intensity of jammers ρJ .

Fig. 4 presents the three computed coverage probabilities:
UL, DL, and joint coverage probabilities against the jamming
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Fig. 3. Blockchain transaction success probability vs. jamming area

distance (i.e., z1) from the origin or leader. We vary z1 from
0m to 300m and keep z2 = z1+50m. In the upper two plots,
the β varies from −30 dB to −20 dB from left to right, and
from −10 dB to 0 dB in the lower two plots. We notice that
the effective jamming area (or can be thought as jammers)
moves away from the leader, making the interference lower at
the leader and resulting in higher UL coverage probability.
Followers are deployed in π(500m)2 area, so moving of
jamming distance from the origin produces low DL coverage
probability as jammers are getting close to followers. On the
other hand, joint coverage probability first enhances and then
goes down. Note that we need coverage probabilities greater
than 0.5 to achieve the consensus.
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Fig. 4. Blockchain transaction success probability vs jamming distance

B. Authentication performance of the IoT blockchain
network under impersonation attack

For impersonation attack analysis, we pick one realization
of PPP for malicious and legitimate nodes where we have
M = N = 5 number of malicious and legitimate nodes.
We set the link quality as LQ = 1/σ2, which means that

more uncertainty in the estimation/noise implies poor link
quality and vice versa. We plot the error probabilities (false
alarm, missed detection, and miss classification) as functions
of LQ (in dB) in Fig. 5. We observe from this figure that
pathloss can be exploited to counter impersonation attacks
in wireless blockchain networks. The design parameter ϵ can
be set to achieve any desired level of security. We observe
that we can not minimize both errors for a given link quality
simultaneously. In other words, increasing ϵ improves false
alarm but degrades missed detection. The lower plot of Fig.
5 shows the miss classification error against link quality and
it demonstrates that it is not a function of ϵ, and that’s why a
single curve for all the three given choices of ϵ.
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Fig. 5. Error Probabilities against LQ. From top to bottom: Probability
of false alarm Pfa, probability of missed detection Pmd and probability
of misclassification Pmc.

Fig. 6 shows the Receiver Operating Characteristic (ROC)
curves comprises two error probabilities (Pd and Pfa). where
Pd = 1 − Pmd is the detection probability is defined as the
probability of correctly deciding malicious nodes. We sweep
Pfa from zero to one and find Pmd for different values of
1/σ2. As we can see improvements in link quality improves
Pd. These curves can be used to set the system to the desired
level of security where for a given link quality, one can find
a value of false alarm for a desired value of detection.

VII. CONCLUSION

This paper studied active (jamming and impersonation)
attacks on a RAFT-based IoT blockchain network. The impact
of the jamming attack on the IoT blockchain network was
evaluated via coverage probability analysis for both uplink
and downlink IoT transmissions. On the other hand, the
impersonation attack on the IoT blockchain network was
countered by means of a novel, physical-layer method that
exploited the pathloss of a transmit IoT node as its fin-
gerprint to construct a binary hypothesis test for transmit
node identification. To this end, closed-form expressions were
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Fig. 6. Receiver Operating Characteristic (ROC) curves: the probability
of detection Pd can be set to the desired level while compromising on
probability of false alarm Pfa

provided for the probabilities of false alarm, missed detection,
and miss-classification. Simulation results showed that for the
jamming attack, an increase in the threshold value reduces the
coverage probability and high intensity of jammers produces
low coverage probability, while for the impersonation attack,
pathloss can be used as device fingerprint and above 95% of
detection probability can be achieved with a minimum of 0.1
false alarm for a 10 dB link quality.

This work opens up many exciting directions for future
work. For example, when the structure of the jamming signal
is exactly known, it is possible to boost blockchain transaction
success probability further (for a given power of the jamming
signal) by doing partial recovery of the data using power-
domain non-orthogonal multiple access plus successive inter-
ference cancellation method [47]. Another promising direction
is to utilize frequency-hopping spread spectrum techniques to
dynamically switch between different frequency channels in
order to make wireless blockchain networks more resilient to
jamming attacks.

APPENDIX

The Laplace transform of interference IJ is defined as:

LIJ (s) = EIJ

[
exp(−sIJ)

]
, (20)

LIJ (s) = Eϕj ,{|hj |2}

[
exp

(
−s

∑
j∈ϕJ

Pj |hj |2∥Xj∥−α

)]
.

(21)

Next, we use the property of the exponential function that
the sum of exponential powers is the product of exponentials
and put the value of s back in the above expression to get:

LIJ (s) = Eϕj ,{|hj |2}

[ ∏
j∈ϕJ

exp

(
−|hj |2

(
Pj

P

)
βD∥Xj∥−αrα

)]
.

(22)

Let γj = Pj/P , as ϕj is independent with |hj |2 we can take
one expectation (i.e., E{|hj |2}) inside, which is given below:

LIJ (s) = Eϕj
[
∏
j∈ϕJ

E{|hj |2}[exp(−|hj |2γjβD(
∥Xj∥
r

)−α)]].

(23)

Indeed, Eq. 23 is the Probability Generating FunctionaL
(PGFL) of PPP, which can be expressed as:

LIJ (s) = (24)

exp

(
−ρJA1− E|h|2 [exp(−|h|2γjβD(

∥x∥
r

)−α)]dx

)
,

where ρJ is the intensity of jammer nodes, A is the effective
2D area where jammers signals are prominent or can affect
the transmissions. Now, converting x into polar form as x =
(rj , θ) (j subscript is used in order to differentiate it from the
earlier used r (distance of follower)), we have:

LIJ (s) = (25)

exp

(
−2πρJ

z2
z1

(
1− E|h|2 [exp(−|h|2γjβD(

rj
r
)−α)]

)
rjdrj

)
,

which can be written as:

LIJ (s) = exp

(
−2πρJ

z2
z1

(
1− 1

1 +

(
γjβD(

rj
r
)−α

))
rjdrj

)
,

(26)

which can be further simplified as

LIJ (s) = exp

(
−2πρJ

z2
z1

(
1

1 +

(
(γjβD)−1(

rj
r
)α
))

rjdrj

)
,

(27)

where z1 and z2 constitute the effective attacking area of the
jammers, s.t., z1 < z2, or the area from where jammers can
significantly affect the transmissions. To make the expression

elegant let u =

(
rj/r(γjβD)1/α

)2

, zl =

(
z1

r(γjβD)1/α

)2

and zu =

(
z2

r(γjβD)1/α

)2

, then the above expression can be

written as:

LIJ (s) = exp

(
−πρJr

2(γjβD)2/α
zu

zl

1

1 + (uα/2)
du

)
. (28)

Integral is computed via Gauss-hypergeometric approximation,
given as:

LIJ (s) =

exp

(
πρJγjβDrα

(α/2)− 1

(
z
(2−α)
2 2F1(1, 1−

2

α
, 2− 2

α
,−γjβD(

r

z2
)α)

− z
(2−α)
1 2F1(1, 1−

2

α
, 2− 2

α
,−γjβD(

r

z1
)α)

))
.

(29)
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