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ABSTRACT
Stress is one of the factors considerably contributing to older adult’s
decreasing overall health. Detecting stress in real-time could aid
family members to intervene more timely and keep older adults
healthier. However, many stress detection systems are not detect-
ing in real-time, depend on multiple devices, capture a plethora of
inconveniently sampled data, or use data from younger adults. In
this paper, we built a real-time stress detection system for older
adults using only heart beats per minute (BPM), which can be easily
obtained with most single, comfortable devices. We collected data
from people over 60 (N=15), evaluating the Mannheim Multicom-
ponent Stress Test (MMST) for older adults, then built a machine
learning model with a classification performance of 76% (AUC)
on BPM alone and tested it in real-time in another experiment,
comparing the model’s effectiveness with four different heart rate
devices. Detection performance decreased considerably (51%) when
using the model in another experiment and could not be used suc-
cessfully with other devices, while a reduced MMST induced stress
comparable to the full test suite.

CCS CONCEPTS
• Human-centered computing → User studies; • Applied com-
puting → Health care information systems.
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1 INTRODUCTION
The proportion of adults over 60 within the world’s population is
rising globally and is expected to reach 22% by 2050, an increase
from 12% in 20151. A majority of older people prefer ageing in
place, a term used to describe the ability to grow old within the
community and with more independence than is generally pos-
sible in a residential care home [38]. Further, with an increasing
older population, care homes would need a significant increase in
government funding to provide enough places and support2. The
prevalence of health conditions increases with older age [28], which
can in turn increase the stress level of older adults [11]. This risk
is heightened for elderly in situations with low social support [4]
such as when they live alone [8], which one in three older adults
do [13]. Stress has been shown to increase cognitive decline [25],
starting a cycle of decreasing health. If these stressful situations
could be identified in real-time, a family member or carer could
intervene, breaking this cycle and helping to keep the older adult
more healthy, potentially increase their life span.

Technology could significantly improve stress detection and aid
carers to intervene earlier, and stress detection systems have been
researched in the past [11, 20, 26, 39]. However, stress detection in
previous research often depended on collecting several physiologi-
cal signals to detect stress, such as electromyography, galvanic skin
response (electrodermal activity) [11, 26], or respiration [20]. Re-
lying on these many different input modalities often increases the
accuracy of the model, but often needs a complicated or bulky setup
to collect or weeks of training data for a specific individual [36].
Especially older adults are often reluctant to use technology that
inconveniences them [27] and such an extensive setup could lead
to low adaption in this population group. Heart rate data alone
is more easily available and many different kinds of devices can
collect it in some form, with research so far mostly relying on heart
rate variability (HRV) data [5, 7, 9, 34]. However, often beats per
minute (BPM) are the only readily available data, especially on
devices which would be convenient enough for long time use and
with options for real time access, as devices capable of collecting
HRV data can usually not be accessed by developers outside of pro-
prietary software and/or not in real-time, which is both essential
1https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed
27/01/2023)
2https://www.gov.uk/government/publications/care-homes-market-study-summary-
of-final-report/care-homes-market-study-summary-of-final-report (Report from 2017,
accessed 27/01/2023)
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for the presented research in this paper. For successful long-term
use in the population of older adults, it is also essential that the
devices are easy to use and can be removed easily without assis-
tance, such as wrist-worn or in-ear devices. Therefore, a trade-off
between a less accurate machine learning model, but easy available
and convenient hardware might have to be struck for older adults.
Additionally, these systems often offer no real-time stress detection
and build the machine learning models on data collected from a dif-
ferent population group, such as young people [26] or older adults
with cognitive impairments [11]. These population groups could
show differences in how they react physiologically to stress and a
model trained on healthy older adults could work better for them.

We have conducted two studies to build a real-time stress detec-
tion tool, using only easily available heart rate beats per minute
(BPM) data and calibrated on older adults. The first study collected
labelled heart rate data of older adults during induced stress, on
which a machine learning model was trained to detect stress in
real-time. The Mannheim Multicomponent Stress Test (MMST) [22]
was used to induce stress safely, exploring its usefulness for older
adults. A second experiment then tested the trained machine learn-
ing model in real-time, while stress was induced with an adapted
MMST. In this experiment, heart rate was collected with four de-
vices to compare the effect of a heart rate monitor on the data and
the performance of the model.

We found that the adapted MMST was sufficient to induce stress
in older adults, though in both experiments some participants were
not triggered by the stressors chosen. The machine learning model
built on heart rate data could detect stress with 76% accuracy in
terms of AUC (area under curve) after the first experiment, but
dropped significantly in the second to 51%. This is likely due to
the variation in collected heart rate data in the follow-up study,
which differed significantly from the first study. The comparison of
the devices also showed differences in reliability of the heart rate
collection. The heart rate sensors used in this research do not seem
to collect similar enough data to make sure that one model could
be used by several devices.
The results can help inform future research on agitation detection to
create intervention measures for older adults and highlight possible
pitfalls when building a real-time stress detection system.

2 RELATEDWORK
Stress detection systems are built on physiological data (such as
heart rate, electrodermal activity or brain activity) or behavioural
data (such as speech, task evaluation or questionnaires) [6].
Physiological data for stress detection has to be collected during
clearly labelled stressed and non-stressed time frames and inducing
stress can be achieved with physical or psychological stressors.
Physical stressors involve external environmental or internal phys-
iological conditions of the body. Typically hot or cold temperatures
or noise are used to induce stress physically. Psychological stressors
can involve cognitive stressors, such as time and work pressure or
isolation, which affect thought processes, or emotional stressors,
such as fear- and anxiety-inducing threats or financial problems,
which affect feeling responses [3].

Heart rate (HR) is often used to determine stress, typically through
electrocardiograms (ECG), which can provide information on heart

rate variability (HRV) and interbeat intervals (IBI) in addition to
beats per minute (BPM), and can be used in the time- and the
frequency- domain [5, 7, 9, 34]. HR data is often combined with
additional data, such as electrodermal activity (EDA), also called
galvanic skin response (GSR), skin temperature and/or respiration,
to increase accuracy of the model [2, 20, 29, 37]. These studies usu-
ally involve the use of several devices to collect the data. We will
focus our literature discussion on work that either relies on heart
rate data alone, investigates short- or real-time aspects of stress
detection or include device comparisons.

Boonnithi and Phongsuphap [5] investigated several heart rate
variability features in time and frequency domain to model stress
and found that mean heart rate in combination with other features
such as normalised low frequency and the differences of normalised
low and high frequency were useful to identify stress. The authors
presented data of six subjects, but they never gave any information
on them or how the stress had been induced, measured or labelled.
Investigating several features of HRV, both in time and frequency
domain, in addition to morphological variability of the ECG signal,
Costin et al. [9] confirmed the features identified by Boonnithi and
Phongsuphap as effective for stress detection. They could increase
the accuracy of the stress detection model from 80% to 90% by com-
bining HRV features with morphological variability features. They
used an online database of heart rate data collected of (not further
specified) drivers in several driving situations with different stress
levels due to different traffic conditions.
Hovsepian et al. [20] built a system called cStress, using heart rate
data and respiration to detect stress in real-time (every 5s). Their
setup included a breast strap and Android phone, and the stress
was induced in the lab using cognitive, physical, and social stres-
sors. They captured and evaluated data in a lab setting and then
employed the system in the wild, validated by self-reported stress
values. The authors used several lab studies to collect training and
testing data individually, but did not discuss any specifics on the
participant pool, such as age. Their model accuracy was 89% during
lab testing and went down to 72% in the wild. They found that the
model detected stress with a lower accuracy in the training phase
when using heart rate data alone (78%), compared to also using
respiration data (96%).
Castaldo et al. [7] investigated the usefulness of HRV analysis for a
ultra short time frames (2min) to detect stress. They used the Stroop
Colour Word Test (SWICT) and a fast paced video game on young
adults (20s) to induce stress for development of an automated stress
detection system, which was built on real-life stress events. Their
model reached an accuracy of over 60%, less than previous research,
and the authors argue that this discrepancy could be either due to
the shorter time frame (previous research typically looked at 5min
of heart rate) or the lab-based stress induction.
However, Egilmez et al. [14] found lab-studies effective for the col-
lection of labelled heart rate data. They compared a breast-worn
heart rate monitor with a wrist-worn device for stress detection of
college students. The authors compared an Android smartwatch, a
customised smartwatch with EDA sensor, a finger-based commer-
cial EDA sensor and a chest-based heart rate monitor. The heart rate
data was collected from 9 participants in a lab setting with several
stress-inducing activities, including the ice bucket, the SWICT, a
math test, a scary game and singing as psychological stressors. They
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found that chest- and wrist-worn devices could detect stress equally
effectively and their minute-based classification model (88.8%) out-
performed their event-based model (78.8%). Singing was found to
be the best stress-inducing activity in their experiment. They did
not test their model in a user study after building it.

Research in this area very often focuses on building the machine
learning model for stress detection, not giving much information on
how and from whom the heart rate data was collected and labelled.
If participant data is included, it often shows that the heart rate
data was collected from young people. They also mostly do not
involve a real-time application or practical evaluation of the model
in another user study.

3 EXPERIMENT 1
This first experiment was conducted to test the usability of the
Mannheim Multicomponent Stress Test (MMST) to induce stress in
the specific population group of older adults and to collect labelled
heart rate data to build the machine learning model (described in
Section 4). The heart rate data was collected with an in-ear heart
rate sensor, which was chosen as the aesthetics are comparable to
hearing aides, which older adults are often familiar with, and as
they can be removed and applied easily wothout assistance.

3.1 Experimental Setup
The Mannheim Multicomponent Stress Test (MMST) is a standard-
ised and extensively used tool to induce stress safely [3, 22]. Heart
rate was recorded 5min before and while participants executed the
MMST. The MMST consisted of three variable stressors and two
constant stressors, which will be described in detail. As the MMST
offers these different ways of stress induction, we obtained more
varied data points on stress levels.

Between the conditions, participants rated their current, subjec-
tive stress level on a 100-point Likert scale (0 = not stressed at all,
100 = very stressed) and subsequently rested for 5min. Participants
were debriefed on all the deceptions at the end of the study. The
study lasted approximately 1h and participants were compensated
with €10, independent of how they performed during the tasks.

Variable Stressor 1: The Paced Auditory Serial Addition Task
(PASAT). The computerised version PASAT-C [12] presented a num-
ber between 0 and 20 in the middle of the screen. On the left and
right of the screen, rows of 0-10 and 11-20 were depicted, respec-
tively, see Figure 1(a). The participants had to add the last two
displayed numbers together and click the corresponding value on
the side of the screen. This task induces a high working memory
load as the sum of the number is supposed to be “forgotten” in-
stantly, and the last shown number needs to be added to the next
number. After a 5min test phase, the first 2min of the full test de-
picted numbers with a latency of 3s, the next 2min with a latency
of 2s, and the last minute with a latency of 1s. The order of the
next number was random. Shortening the display duration twice
created a sensation of lack of control.

Variable Stressor 2: StroopColourWord Interference Test (SCWIT).
During the SCWIT [32], a word was displayed in the middle of
the screen, where the colour of the word randomly matched or
mismatched the meaning of the word, e.g. green, see Figure 1(b).
Initially, the participant had a time window of 1.9s to classify the

(a) PASAT test interface. (b) SWICT test interface.

Figure 1: PASAT and SWICT test interface.

colour of the word by saying it out loud, before the next combi-
nation was presented. Then, the presentation time was shortened
up to 0.9s at the end of the test after 5min. A total of 300 colour-
word combinations were presented in each condition. Similar to
the PASAT-C test, a sensation of lack of control was created.

Variable Stressor 3: Affective Images (AffIm). We used images
from the Geneva Affective PicturE Database (GAPED) [10], the
DIsgust-RelaTed-Images (DIRTI) database [18], and Military Af-
fective Pictures System (MAPS) [17]) as visual emotional stimuli.
Four specific negative contents were included from these databases:
spiders, snakes, and scenes that induce emotions related to the
violation of moral and legal norms (human rights violation or an-
imal mistreatment). Positive pictures were also included, mainly
human and animal babies and nature scenes. Neutral pictures were
excluded, as positive pictures provided a better contrast to the neg-
ative pictures. After a block of five negative images, one positive
image was presented to avoid habituation. The negative images
were presented for 5s and the positive pictures for 3s (10 positive and
50 negative pictures). None of the images was repeated, however,
to avoid lack of concentration, the participants were told otherwise
and were instructed to verbally say if a picture was presented twice.

Constant Stressor 1: Acoustic Stressor : white noise3. White noise
was presented to the participants via headphones with slowly in-
creasing volume (78dB(A) –93dB(A)). The increase in volume shall
avoid any habituation during the stress induction phases and the
noise would induce stress physically.

Constant Stressor 2: Motivational Stressor: loss of money. The
participants were informed that the amount of money they will
receive at the end of the study would depend on the number of
correctly executed cognitive tasks. They were told they will receive
€10 for 100% of correctly executed tasks, inducing stress emotionally.
The participants received the full amount of €10 at the end of the
experiment, independent of the number of correct answers.

3.2 Apparatus
The lab was equipped with a standard desktop machine on which
the MMST ran. The MMST was displayed on a 28-inch Dell monitor.
All participants sat on a padded chair, adjusted to their comfort.
Throughout the study, participants wore a Cosinuss Two in-ear
sensor 4 (see Figure 2(b) in Experiment 2, second from left), which
recorded their heart rate (HR) [21] and was connected to the com-
puter via Bluetooth. The heart rate data collected via in-ear sensor
has been shown to be comparable to ECG heart rate data [1] and
was logged on the computer.

3Pure Noise 1 from https//mc2method.org/white-noise (accessed 28/01/2020)
4https://store.cosinuss.com/products/cosinuss-two?variant=32175832924242 (accessed
19/07/2022)

https://mc2method.org/white-noise
https://store.cosinuss.com/products/cosinuss-two?variant=32175832924242
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3.3 Participants
15 healthy older adults over 60 (mean: 63.2, STDV: 2,83; 7 females,
8 males) were recruited for this study through flyers in an op-
tometrist’s practice. Participants were excluded from participation
in the study if they reported having visual impairments (not in-
cluding wearing glasses or contact lenses), auditory impairments,
personality disorder, suffering from post-traumatic stress disorder,
brain trauma, etc; heart disease or epilepsy; neurological, neuroen-
docrinological, or dermatological problems, consumption of caffeine
beverages 2 hours prior to experiment or engagement in intensive
physical exercise 2 hours prior to experiment.

3.4 Experimental Protocol
When participants first arrived, they received an information sheet
explaining the experiment. After giving their consent, the heart rate
sensor was attached and participants were asked to relax for 5min.
This acclimatisation phase accustomised the participants to the
device and alleviated any stress that participants might have been
experiencing due to the setup. Afterwards, participants underwent
a screening via the State-Trait Anxiety Inventory Questionnaire
(STAIQ) [31]. If they scored higher than the cut-off threshold for
older adults of 54/55 [24], they were excluded from participating in
the study, as further inducing stress in already stressed adults was
deemed unsafe. They then completed a demographics questionnaire
capturing age and gender. Finally, participants were asked to rate
their current, subjective stress level on a 100-point Likert scale (0
= not stressed at all, 100 = very stressed). Participants underwent
all three conditions in counterbalanced order, using a Latin square.
Each condition consisted of both constant stressors and one variable
stressor. Our college’s Ethics Committee approved the study design.

3.5 Results
The aim of this experiment was to test if stress was induced by the
MMST, which we captured with the self-reported stress ratings,
and to collect heart rate data for the machine learning model. We
will discuss the stress ratings, descriptive heart rate data and study
observations in this section and the data analysis and preparation
for the machine learning model will be described in Section 4. We
will not discuss participant’s errors during the stress tests itself.

3.5.1 Stress Ratings. Participants rated their stress level before and
after each stress test on a Likert scale with a single value between 0
and 100. The differences between the pre- and post-test ratings can
be seen in Table 1. The two pre-test ratings for participant P01 for
the SWICT and the AffIm were unfortunately not logged properly.
As can be seen in Table 1, the Affective Image (mean: 18.53, STDV:
10.34) test only once led to a stress rating over 14, several values
were even negative, showing less stress after the test than before.
The math and the colour test both resulted in stressed and non-
stressed states, with the PASAT (mean: 28.29, STDV: 27.34) being
more effective in producing stress events than the SWICT (mean:
24.54, STDV: 18.93), both in terms of how many stress events were
logged and how high the stress was rated. We defined a stress event
as being above 25, corresponding to the rounded mean value of the
SWICT (as the lower one between the two more effective tests) and
16 stress events were logged in this experiment.

PartID PASAT SWICT AFFIM
Stress HR (STDV) Stress HR (STDV) Stress HR (STDV)

P01 68 69.70 (6.50) N/A 66.92 (7.28) N/A 65.22 (5.30)
P02 1 68.79 (2.22) 0 66.95 (2.31) 0 N/A
P03 45 75.25 (6.42) 5 75.75 (8.19) -5 67.23 (12.09)
P04 32 67.99 (5.85) 56 65.54 (6.69) 0 65.30 (8.13)
P05 62 63.17 (3.59) 43 60.84 (5.32) 13 61.25 (3.89)
P06 13 85.78 (14.75) 37 97.14 (6.16) -3 89.92 (6.66)
P07 36 68.79 (6.61) 28 64.40 (8.22) 0 70.02 (4.03)
P08 28 65.13 (3.80) 6 67.17 (3.37) 2 61.81 (3.41)
P09 16 71.84 (5.89) 31 73.23 (6.62) -12 73.18 (4.02)
P10 26 57.43 (6.24) 4 63.08 (8.76) 14 66.13 (8.73)
P11 5 75.55 (3.77) 26 74.84 (6.84) -10 72.43 (3.06)
P12 77 77.94 (6.54) 53 74.19 (4.70) 26 70.33 (3.88)
P13 3 N/A 18 71.24 (3.71) 3 69.42 (3.10)
P14 -16 77.80 (5.64) 12 68.93 (8.11) -2 71.64 (7.72)

Table 1: Stress Rating and Heart Rate Data of Exp. 1: showing
the differences between the Likert rating (0-100) before and
after each test; differences of more than 25 were defined as
stress event (used for machine learning model) and the mean
heart rate and standard deviation for each stress test; stress
events are being shown in bold.

3.5.2 Descriptive Heart Rate Data. An overview of the mean and
standard deviation of the heart rate for each participant can be seen
in Table 1, where the heart rate during tests with a stress rating
difference higher than 25 (see Table 1) are shown in bold font. The
heart rate was not properly logged during two tests, the AffIm
of P02 and PASAT of P13. Mean and standard deviation during
stressful tests do not seem to follow any obvious pattern when
compared to non-stressful test events.

3.5.3 Observations. During the experiment, it could be observed
that participants reacted very differently to the different tests. This
difference was later commented on by some participants. The affec-
tive picture task only led to one stress event, on which the partici-
pant later commented that it was triggered by a picture reminding
them of a traumatic childhood event. Reactions to the PASAT of
some participants depended on their enjoyment of mathematics in
general. Participants who enjoyed mathematics would get invested
in the results and upset when they made a mistake, while others
would not get invested, rather take a break after a mistake was
made and try again when they felt ready.
Regarding the constant stressors: participants commented on how
they did not care about the monetary compensation, several were
even reluctant to take it at all.
The collection of heart rate data with the Cosinuss Two device
relied heavily on the correct positioning within the ear and was
unstable in two cases, resulting in the data loss for two stress tests.

3.6 Discussion
The Mannheim Multicomponent Stress Test was used for this ex-
periment with older adults, using the PASAT, a mathematical test,
the SCWIT, a colour word interference test, and affective pictures
as the variable stressors. The tests were not equally effective in
triggering stress events in our participants. The affective pictures
only led to a single stress event, suggesting that this test was not
suitable for stress inducement in older adults. The effectiveness of
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the PASAT and SCWIT varied between individuals, but in most
cases at least one of the two tests would lead to a stress event. Par-
ticipants reported that they were not interested in receiving money,
rendering the monetary incentive as constant stressor ineffective.
We, therefore, suggest that the use of the PASAT and the SCWIT in
combination with the increasing white noise should be enough to
induce stress in older adults. As the Cosinuss Two was not always
reliable in its data collection, we plan to test several heart rate
monitors in the future.

4 DATA ANALYSIS FOR MACHINE LEARNING
MODEL AFTER STUDY 1

In this section, we will discuss the procedure of data processing and
generation of target variable and features, then explain methods
used for reducing feature dimension, handling class imbalance and
performing classification, and finally present and discuss the results.

4.1 Data Processing and Feature Extraction
4.1.1 Data Preparation. Experiment 1 collected data from 14 par-
ticipants under three variable stressors, leading to 42 samples. How-
ever, due to the missing of self-rated stress level (2) and/or physio-
logical data (2), only 38 samples could be used for analysis. Each
sample included HR information over a period of 5min. Considering
the goal of this study was to detect stress in real time, we used a
shorter duration of 1min by selecting data from 30s to 90s before
the end of the experiment. The choice was made since according to
the peak-end rule, the way people judge an experience are heavily
weighted by how they felt at the peak moments and at the end [15].
In addition, it avoided using unrepresentative data arising from
situations such as the experimenter recorded the end of experiment
later than the actual end, or the participant sensed the end of the
experiment based on the action of the experimenter.

4.1.2 Stress Data Processing and Stress Definition. The target vari-
able was created by converting the continuous stress level into
binary classes, stressed (S) or non-stressed (NS). Recall that a higher
value on the Likert scale indicated that a subject was more stressed.
Accordingly, we defined the class based on the difference in self-
reported stress level before and after the test, i.e., stress (after) −
stress (before). If the difference was larger than a threshold, the
sample was classified as stressed (see Table 1 bold); otherwise it
was classified as non-stressed. The threshold was chosen as 25 in
this study, which corresponds to the rounded mean value of the
SWICT. After the conversion, 16 samples belong to the stressed
class and 22 samples belong to the non-stressed class.

4.1.3 Feature Extraction. A number of studies have identified heart
rate variability (HRV) as a stress indicator and define HRV variables
from both time-domain and frequency-domain [33]. For example,
the standard deviation of the normal-to-normal intervals (SDNN)
reflects physiological resilience against stress and it increases when
HRV is large and irregular; the low-frequency (LF) band and the
high-frequency (HF) band reflect the activity of sympathetic ner-
vous system and parasympathetic nervous system respectively, and
an increase in the LF/HF ratio is significantly associated with psy-
chological stress. However, since the Cosinuss Two in-ear sensor,
as many easily available heart rate sensors, does not collect the

blood volume pulse signal, the aforementioned statistics cannot be
computed precisely, as calculation of HRV from bpm would only
result in an average rather than the detailed data expected from
HRV. Therefore, in this analysis, we extracted features solely from
heart rate (beats per minute). 10 summary statistics were calculated
and a brief description of these statistics is listed in Table 2. After

Feature name Definition Rank

Mean Mean value of HR 7
Std Standard deviation of HR 1
Range_99 99% percentile of HR − 1% percentile of HR; 2

note that outliers are removed before
calculation following the 3-IQR rule [35]

Mean_absdiff Mean value of lag-1 absolute difference 6
(i.e., the absolute value of the
difference between consecutive HRs)

Std_absdiff Standard deviation of lag-1 absolute difference 3
Max_absdiff Maximum of lag-1 absolute difference 5
Q75_absdiff 75% percentile of lag-1 absolute difference 4

Table 2: Description of HR features used in the first analysis
and their ranks in predicting stress.

extracting these features, we computed the variance inflation factor
to check for multi-collinearity and found that Median, Max and Min
were highly correlated with other features. These three features
were removed as they could be derived from the remaining features,
leading to 7 features for further analysis. Finally, all features were
standardised to have zero mean and unit variance.

4.2 Methods
4.2.1 Feature Selection. The small sample size in this study im-
posed a constraint on the model complexity, and therefore, it was
crucial to reduce the feature dimension by applying either dimen-
sion reduction methods or feature selection methods. We chose the
latter approach since it provided better interpretability.

More specifically, feature selection means selecting a subset of
features which are most informative in predicting the class. To mea-
sure feature importance, we adopted univariate ANOVA F-test sta-
tistics [23]. The F-statistic calculates the ratio of the between-group
variance to the within-group variance; a higher value indicates the
feature was more important in separating the class.

In this analysis, we simulated training data 1,000 times, ranked
the feature importance in each round according to the F-statistic,
summed the rank values over these rounds, and finally re-ordered
the features in the descending order of importance. The obtained
feature ranks are listed in Table 2.

4.2.2 Machine Learning Models. Five machine learning (ML) mod-
els were considered in this analysis, with different characteristics in
terms of accuracy, interpretability and computational complexity.

Logistic Regression (LR) and Ridge LR: LR is a classical classifi-
cation model which returns both the predicted class and the pre-
dicted probability. Considering the feature-to-sample ratio was
relatively high in this data set, we also tested Ridge LR, which adds
𝐿2-penalisation to the LR classifier.
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Decision Trees (DT) and Random Forest (RF): DT is one of the
most interpretable methods as it generates a set of simple rules
for classifying a sample. However, the method generally has high
variance and thus RF (effectively an ensemble of DTs) is often used.

Support Vector Machines (SVM): SVM is particularly useful for
classifying non-linearly separated data owing to the use of kernel
functions, using the radial basis function (RBF) kernel here.

Apart from the LR classifier, all methods include some hyperpa-
rameters. For Ridge LR, we fixed the cost of the 𝐿2 penalty to be
10. Hyperparameters in other methods were set to be default as in
Python sklearn library. Another hyperparameter is the number
of features used to train the model. This value was determined by
employing 10-fold cross-validation on the training data.

When applying the above methods to our data set, one issue
needed to be addressed – class imbalance. Our data set contained
more samples from the non-stressed class than from the stressed
class, meaning that the classifier trained on it may be biased. In the
worst case, it would always predict the majority class. To this end,
we followed the idea of cost-sensitive learning to assign unequal
costs on misclassified samples [19]. In other words, the classifier
will be penalised more when classifying a stressed sample as non-
stressed than classifying a non-stressed sample as stressed.

4.3 Results
4.3.1 Performance Metrics. Due to the existence of imbalanced
classes, instead of accuracy, we chose to use AUC (Area Under the
receiver operating characteristic Curve) as the evaluation metric.
AUC ranges between zero and one and a larger value indicates
better classification performance. In addition, we report sensitivity
and specificity to understand how well the method predicts each
class. The higher the sensitivity (specificity, resp.), the better the
stress (non-stress, resp.) class is classified.

We randomly sampled 80% of the data to form a training set and
used the remaining 20% as the test set. This was repeated 100 times
and the average test AUC, sensitivity and specificity were reported.

4.3.2 Performance of Machine Learning Methods. Table 3 lists the
AUC score, sensitivity and specificity of different methods on test
data, as well as the number of features used to build the model.
LR classifier, though simple, achieved the highest AUC of 0.758 on
this data set. Its sensitivity is slightly lower than the specificity,
indicating the tendency towards predicting the majority class. In
this optimal model, three features were selected, namely Std (the
standard deviation of HR), Range_99 (the range of HR after re-
moving outliers), and Std_absdiff (the standard deviation of lag-1
absolute difference). In addition, Table 3 reports the performance of
a random classifier, which corresponds to the LR classifier trained
on the same set of features but with random labels. The large gap
in the AUC, sensitivity and specificity between the LR classifier
and the random classifier demonstrated the predictive capability of
the selected features.

4.3.3 Discussion. This analysis investigated the use of MLmethods
on HR data for detecting stress in real-time. Results suggest that we
could achieve a relatively good detection performance solely based
on HR of a short duration of oneminute. Note that the data collected
from the unobtrusive, comfortable sensor of Cosinuss is only HR

Method #Feat. AUC Sensitivity Specificity

LR 3 0.758 (0.144) 0.698 (0.258) 0.818 (0.170)
Ridge 2 0.749 (0.153) 0.656 (0.269) 0.842 (0.175)
DT 6 0.629 (0.181) 0.546 (0.311) 0.713 (0.216)
RF 6 0.645 (0.156) 0.547 (0.277) 0.742 (0.199)
SVM 3 0.647 (0.152) 0.530 (0.285) 0.765 (0.185)
Random 3 0.497 (0.226) 0.472 (0.326) 0.523 (0.305)

Table 3: Classification performance of ML methods. Mean
AUC, sensitivity and specificity averaged over 100 iterations
are reported with their standard deviation in brackets.

(a) Experimental Setup. (b) Heart rate monitors.

Figure 2: Experimental Setup and Devices of Experiment 2.
Heart RateMonitors: SamsungGalaxyWatch4, Cosinuss One,
Polar OH1, Polar H10 (from left to right)

(beats per minute), rather than more informative signals such as
blood volume pulse, making it much harder to build an accurate
classification model. Moreover, the data quality was a concern as
participants may not wear the sensor appropriately during the
entire test. We removed some samples with unreasonable heart
rates based on visual inspection, however, the remaining samples
analysed in this study may still be imprecise and contain noise.

Another major challenge in this analysis was the small sam-
ple size. The selected model was relatively simple, using very few
features. However, adding more features and/or employing more
advanced models, such as introducing non-linear kernels and en-
sembles, can cause severe overfitting. The small sample size also
posed a difficulty for choosing the optimal set of hyperparameters.

5 EXPERIMENT 2
The second experiment was based on experiment 1, but with some
minor changes in order to investigate performance of the machine
learning model with different participants and devices in real-time.
The changes include number of stress test components and the used
devices and are detailed in each relevant subsection.

5.1 Experimental Setup
This experiment (see experimental setup in Figure 2(a)) only utilised
two variable stressors of the MMST to induce stress, the PASAT
and the SCWIT tests, and one constant stressor, the increasing
white noise. These stressors were the most effective in experiment
1 and there were concerns that the negative images only seemed to
trigger a response if participants had a traumatic event in relation
to the picture. The monetary incentive was also reported to have
no effect on the recruited age group.
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5.2 Apparatus
The tests were conducted on a similar set-up to the previous ex-
periment: a standard laptop with an Asus screen, a mouse for the
participants to use for the PASAT. As well as the Cosinuss One5 in-
ear sensor (the predecessor of the Cosinuss Two), the participants
wore a Samsung Galaxy Watch4 smartwatch6, a Polar OH1+7 arm
strap heart rate monitor and a Polar H108 chest strap heart rate
monitor (see Figure 2(b)). Conductive gel was used for the Polar H10,
which was introduced to the study despite its more elaborate setup,
compared to the other devices, to establish the ground truth for the
heart rate data, as the performance of its single-lead ECG states was
found to be comparable to multiple-lead ECG data [16, 30]. Smart-
watch, Cosinuss and Polar OH1 used Optical Heart Rate Sensors.
A pair of over-ear headphones were used to present the white noise
stressor, ensuring comfortable fitting over potential hearing aids
and the Cosinuss device. All devices but the smartwatch used Blue-
tooth to directly send the heart rate to the computer where it was
logged in real-time. The smartwatch used a self-developed app that
sent heart rate to the computer via WiFi (connected via mobile
hotspot), which was also logged on the computer.

5.3 Participants
16 older adults (60+) were newly recruited for this experiment (10
female, 6 male). The participants were between 63 and 84 years
(mean: 70.19, STDV: 7.12) and all but one right handed. The group
were healthy with the same limitations as experiment 1, except
allowing participants with hearing impairments with hearing aids,
as long as they were only worn in a way that allowed for the
Cosinuss device to be worn efficiently as well (2). Participants all
used the right hand to interact with the computer mouse.

5.4 Experimental Protocol
The participants were provided with the information sheet for
this experiment and a consent form. Upon completion, they filled
out the STAIQ as in experiment 1. Participants who were suitable
for the experiment then trialled the stress tests in the same order
they would experience them to ensure they knew the test process.
Participants were then equipped with heart rate sensors. The watch
was placed on the wrist of the hand not using the mouse (left) to
limit motion in case it affected the heart rate reading. The Cosinuss
was placed in the opposite ear to the watch unless the participant
required it in the other ear (for instance hearing aid being present).
This switch was necessary for two participants (P02 and P08), one
of which wore the Cosinuss in the same ear as the hearing aid. The
participants were allowed to fit the chest strap themselves with
fitting assistance from the experimenter when required. When the
sensors were placed, the participants underwent a 5min biophysical
data recording phase to collect a baseline measurement. Afterwards,
the first of the two stress tests began, in counterbalanced order. The
participants filled in a 100-point Likert scale rating their stress
before the stress test began. After the test another stress rating

5https://www.cosinuss.com/en/products/in-ear-sensors/one/ (accessed 27/01/2023)
6https://www.samsung.com/global/galaxy/galaxy-watch4/specs/ (accessed 27/01/2023)
7https://www.polar.com/en/sensors/oh1-optical-heart-rate-sensor/ (accessed
27/01/2023)
8https://www.polar.com/en/sensors/h10-heart-rate-sensor (accessed 27/01/2023)

PartID P01 P02 P03 P04 P05 P06 P07 P08

PASAT 10 24 -21 8 51 0 -9 65
SWICT 8 45 -1 43 25 0 0 38

PartID P09 P10 P11 P12 P13 P14 P15 P16

PASAT 41 43 0 -5 28 6 10 35
SWICT 43 29 14 1 13 21 8 20

Table 4: Stress Rating of Exp. 2, showing the differences be-
tween the Likert rating (0-100) before and after each test;
rating differences of more than 25 are being shown in bold.

was collected and participants then started a 5min calming phase.
The participants could then take a further break or move on to the
next test with the same set-up. During the stress tests, the machine
learning algorithm was extracting and analysing the previous 1min
of heart rate data, presenting a real-time stress detection every 10s
to the experimenter by presenting a 1 when stress was detected
and 0 otherwise. The 10s calculation was chosen to present usable
continuous feedback without overloading the system, but could be
adjusted to fit other time frames. Our college’s Ethics Committee
approved the study design.

5.5 Results
We will again describe the collected data, such as stress rating and
descriptive heart rate data, in this section and include the evaluation
of the accuracy of the original stress model on the new data from
all devices. As the errors participants made in the stress test were
not relevant for us, we did not evaluate these.

5.5.1 Stress Ratings. The stress ratings are presented in Table 4
showing the differences between the subjective stress rating before
and after the stress test on 100-point Likert scales. 12 reported stress
events (bold values in Table 4) occurred in this experiment, defined
as having a difference of at least 25 between pre- and post-ratings.
There were again slightly more stress events for the PASAT (mean:
17.88, STDV: 24.04) than the SWICT (mean: 19.19, STDV: 16.49). 8
participants did not show any stress events during the experiment.

5.5.2 Descriptive Heart Rate Data. The heart rate data for each
participant during the different stress tests can be seen for all de-
vices in Table 5. While the Polar H10 worked well throughout the
experiment, there were difficulties with the other devices. The Polar
OH1 worked well for all but one participant (P14), where the data
differed considerably from the other devices, showing on average
almost half the heart rate (labelled (V) in Table 5). The Samsung
Galaxy Watch4 stopped recording for some participants, leading
to missing watch data for eight stress tests over five participants.
The Cosinuss data had several instances of 0 loggings over several
minutes (marked with (E) in Table 5), combined with considerably
different heart rate means in some cases (labelled (V) in Table 5).
The heart rate data collected from the different sensors was fairly
consistent in some instances, see P02 in Figure 3(a), but also showed
some inconsistent data over devices, as P03 in Figure 3(b). The most
variability was seen for the Cosinuss sensor (blue line), which, apart
from showing some very different heart rates for some time frames,

https://www.cosinuss.com/en/products/in-ear-sensors/one/
https://www.samsung.com/global/galaxy/galaxy-watch4/specs/
https://www.polar.com/en/sensors/oh1-optical-heart-rate-sensor/
https://www.polar.com/en/sensors/h10-heart-rate-sensor


PETRA ’23, July 5–7, 2023, Corfu, Greece Di Campli San Vito et al.

ID PASAT
Cosinuss Polar OH1 Polar H10 Watch

P01 91.65 (9.11) 93.49 (8.40) 94.25 (7.99) 93.75 (7.35)
P02 73.02 (1.62) 73.57 (1.49) 73.52 (1.30) 73.10 (1.40)
P03 110.90 (2.92) 111.67 (2.80) 111.88 (3.11) 112.11 (2.99)
P04 72.05 (1.15) 72.51 (0.83) 72.51 (0.81) N/A
P05 79.72 (1.25) 80.62(1.34) 80.71 (1.23)
P06 53.33 (3.42) 58.12 (2.17) 58.59 (1.94) 58.80 (2.34)
P07 67.51 (4.56) 71.07 (1.68) 71.02 (1.43) 71.56 (1.99)
P08 74.38 (2.38) 74.89 (2.24) 75.16 (2.18) N/A
P09 89.28 (2.07) 90.22 (2.40) 90.20 (2.44) 90.69 (2.51)
P10 81.96 (3.19) 82.45 (3.39) 83.62 (3.30) 82.33 (3.49)
P11 77.66 (6.17) 78.16 (6.11) 78.25 (6.12) 78.65 (6.27)
P12 80.70 (1.97) 82.22 (1.61) 82.20 (1.41) 82.61 (1.69)
P13 82.91 (2.04) 84.06 (2.16) 84.20 (1.98) 85.19 (2.74)
P14 76.22 (4.92) (E) 42.23 (2.46) (V) 80.57 (4.90) N/A
P15 70.24 (3.28) 70.90 (3.29) 70.98 (3.10) N/A
P16 77.12 (1.13) 78.02 (1.23) 77.78 (1.27) 78.99 (1.76)
ID SWICT

Cosinuss Polar OH1 Polar H10 Watch

P01 58.44 (4.47) (E) 84.57 (4.22) 84.61 (4.05) 84.73 (4.07)
P02 79.38 (1.91) 80.10 (2.12) 80.08 (2.06) 78.98 (1.78)
P03 73.85 (21.43) (V) 114.34 (2.97) 114.30 (4.93) 115.05 (3.58)
P04 73.86 (1.00) 74.25 (1.02) 74.26 (0.87) 74.58 (0.98)
P05 78.45 (1.80) 79.28 (1.88) 79.34 (1.76) 78.88 (2.24)
P06 58.50 (5.46) 59.91 (1.78) 59.91 (1.51) 60.31 (1.72)
P07 56.35 (4.15) (E) 68.46 (1.19) 68.41 (1.05) N/A
P08 78.13 (1.23) 79.02 (1.04) 79.20 (0.83) N/A
P09 83.47 (1.80) 84.47 (1.62) 84.46 (1.61) 84.91 (1.65)
P10 74.97 (9.86) 82.78 (2.00) 83.18 (2.60) 82.79 (2.05)
P11 71.73 (2.88) 72.52 (2.73) 72.56 (2.58) 73.02 (0.82)
P12 87.88 (2.86) 88.98 (2.79) 89.01 (2.80) 89.39 (2.81)
P13 78.54 (2.14) 79.40 (2.20) 79.63 (2.62) 82.94 (3.83)
P14 N/A 42.25 (0.84) (V) 84.57 (2.55) N/A
P15 69.53 (4.57) 70.72 (4.68) 70.73 (4.40) N/A
P16 80.93 (3.92) 81.93 (4.01) 81.89 (4.02) 82.62 (4.25)

Table 5: Heart Rate Data of Exp. 2, showing the mean heart
rate and standard deviation (in brackets) for each stress test
and device; (E) is added if there were errors in the heart rate
collection, i.e. 0 was logged during the test; (V) is added if a
heart rate varied considerably from the other sensors; values
with a stress rating of over 25 are being shown in bold font.

as seen in Figure 3(b), could also show considerably higher variation
during the whole data collection, see P06 in Figure 3(c).

5.5.3 Observations. Six participants had to wear the Samsung
Galaxy Watch4 with the watch face on the wrist for the heart
rate to be picked up (P01, P02, P04, P08, P11, P13) and the heart
rate was not logged for some of these participants (see Table 5).
This could be due to the watch accidentally closing the app when
the arm was moved, but that was, unfortunately, not checked and
watch data for some other participants was also missing, so there
might have been another issue, which we cannot recreate.
Some participants showed and reported problems with distinguish-
ing the colours yellow, orange and red during the SWICT test, even
though they were introduced to all the colours before. As we have
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Figure 3: Heart rate signals from four sensors. PASAT and
SWICT experiments are indicated by solid and dashed lines,
respectively. Blue: Cosinus, orange Polar OH1, Green: Polar
H10, Red: Samsung Galaxy Watch

not evaluated the test results, we do not expect this to have an
influence on our results, but it could potentially have increased the
stress of these participants during the experiment. One participant
mentioned that the presence of the experimenter was experienced
as a calming influence and another participant mentioned that the
white noise was calming rather than stressful.

5.5.4 Performance of Pre-trained Model for Stress Detection. The
purpose of this analysis was to evaluate the effectiveness of the
model learned from the first experiment in detecting stress for new
participants and with different devices.
Heart rate data and stress rating from experiment 2 were processed
in the same way as in the experiment 1, with details explained in
Sections 4.1.1 and 4.1.2. After removing the erroneous measurement
from participant 14, there were 30 samples available for analysis on
Cosinuss, Polar OH1 and H10. Among them, 12 samples belonged
to the stressed and 18 samples belonged to the non-stressed class.
For Watch data, there were more missing data as shown in Table 5
and only 24 samples could be used for analysis, with 10 and 14 sam-
ples from the stressed and non-stressed class, respectively. Feature
extraction followed the methods described in 4.1.3.

The classification results of applying the pre-trained LR classifier,
i.e. the classifier trained on data from the experiment 1, to data
from the second experiment showed reduced performance. Recall
that in the first analysis, the model achieved an AUC of 0.758.
However, in this analysis, the performance on Cosinuss data was
only 0.514 (sensitivity: 0.250, specificity: 0.778). The low sensitivity
suggested that themajority of stressed samplesweremisclassified as
non-stressed. When applying the model to Polar OH1 (AUC: 0.597,
sensitivity: 0.250, specificity: 0.944) and Polar H10 (AUC: 0.569,
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sensitivity: 0.250, specificity: 0.889 data, the results were slightly
better, but still close to 0.5 (a random classifier). The performance on
Watch data is even worse (AUC: 0.407, sensitivity: 0.100, specificity:
0.714). Note that the result on Watch is not directly comparable
with those from Cosinuss, Polar OH1 and Polar H10 as there are
less samples in the Watch data set.

5.5.5 Discussion. The adapted Mannheim Multicomponent Stress
Test with only one constant stressor and two variable stressor led to
12 stress events in 16 participants, only slightly less than in the first
experiment. Both tests did not seem to induce stress in some par-
ticipants. Previous research suggested that singing without music
was a very effective task to induce stress and could be adapted for
further experiments, if a more effective stress induction is needed.
Additionally, the white noise was described as calming rather than
stressful, so it might be more stressful to use different kind of noise
such as heavy construction noise.

The heart rate data showed considerable differences between the
devices. Some devices did not reliably collect the data during the
experiment, especially the watch and the Cosinuss were unstable.
The Cosinuss showed overall more variability in the heart rate data
than the other three devices. As the previous study also used a
Cosinuss device (albeit a different version), this could have heavily
influenced the stress detection.

The analysis investigating the applicability of classification mod-
els across participants and sensors and evaluating the effectiveness
of different sensors for stress detection suggested that the model
learned from one cohort of participants did not generalise to an-
other cohort of participants. In fact, this finding should not come
as a surprise given the large discrepancy in the variability of heart
rates between the two experiments as shown in Tables 1 and 5 and
that variability was the key predictor of stress.

Results also suggested that devices have a large impact on stress
detection. Again, due to the discrepancy in data characteristics be-
tween sensors, both pre-trained and re-trained models on Cosinuss
data failed to generalise to the other three data sets. A possible
reason for this could be that models trained on Cosinuss and Watch
took advantage of noise or artificial variability in the data sets.

6 OVERALL DISCUSSION
In this section we will discuss both experiments and the stress
detection models. We will start of with discussing the limitations
of the research and then move to the MMST, followed by the stress
detection system and heart rate devices.

6.1 Limitations
This research investigated the usefulness of heart beats per minute
for stress detection of older adults. We collected heart rate data from
older adults in several stress inducing tests. These tests have been
chosen according to previous research, but different tests worked
better on different individuals and they did not induce stress in
all adults. Because of the specific participant health requirements,
many interested older adults could not take part in the studies,
decreasing further the already hard to recruit target group of older
adults and the number of participants can have an influence on the
machine learning model accuracy. Still, participant numbers in our
experiments were higher than in some of the prior research [5, 14].

In addition, the heart rate devices did not always collect data reliably,
decreasing the available data for model training. The data was
collected while participants were sitting, so the results would have
to be adjusted to fit situations in which users would be moving
around, as this would have an influence on the heart rate that has
not been considered in this research. Applications like tele-working
or within an office setting would be potential suitable use cases
for the research presented in this paper. We collected self-reported
stress ratings to determine the stress level of the participants and
used these as basis for our stress detection model. These ratings
could be biased and not correspond with the bodily reaction, as
humans might interpret stress differently and, therefore, rate it
differently. We chose to use the 1min heart rate data from just
before the end of the stress tests to built our model, arguing that this
would be the time in which participants would the most stressed,
without having any external influence changing the heart rate. We
cannot be sure that this is the time in which participants experience
the most stress and the data might not be optimal.

6.2 Mannheim Multicomponent Stress Test
The Multicomponent Stress Test (MMST) has been used in this
research to induce stress safely in older adults. The original MMST
used three variable stressors and two constant stressors to induce
stress. The two constant stressors used in the first experiment were
noise and loss of money for mistakes. We found that the older adults
in the first experiment did not care about the monetary incentive at
all, some even refusing to receive any money for their participation.
We, therefore, decided not to use this test in the second experiment.
Further, we found the affective images (AffIm) to be less effective
with this specific population group. Only one stress event was trig-
gered by AffIm, and the participant later commented on this having
been due to childhood trauma related to the triggering picture,
which could have a longer-lasting effect than intended by these
kinds of tests. In the second experiment we, therefore, only used
the more effective stress inducing tests: the Stroop Colour Word
Interference Test (SCWIT) and the Paced Auditory Serial Addition
Test (PASAT). One of these tests induced stress in most adults in
the first experiment. Only two adults did not report stress, defined
as a difference of at least 25 between 100-point Likert scale rat-
ings before and after the test. In the second experiment, half of the
participants did not rate any test as stressful within our definition.
The two experiments were conducted in different countries and
cities and participants were recruited differently: the first exper-
iment was conducted in a small city with no university close by
and participants were recruited from that smaller, local community,
while the second experiment was conducted in a large city with
several universities and participants were also contacted through
email lists of already more research experienced groups of older
adults. This could have an impact on how they reacted to the tests,
as the testing situation itself, as well as the use of technology, could
potentially increase stress in people with no prior experience. Re-
searchers depending on inducing stress in older adults should skip
the use of affective images and focus on finding alternative sources
of potential stress inducting activities. Singing has been named as
an effective stress induction test [14]; this could be tested on older
adults in future work to see if stress could be induced more equally.
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6.3 Stress Detection and Heart Rate Devices
After the first experiment using the Cosinuss Two heart rate sensor,
we built a machine learning model to use logged heart beats per
minute to detect stress in real-time, based on the self-reported stress
ratings collected before and after each stress test. Ourmodel showed
a promising classification performance of 76%, evaluating beats per
minute over one minute of heart rate data. We then applied this
detection model in real-time, with stress values being presented
every 10s, during a second experiment, in which we collected heart
rate data with four different devices: the Cosinuss One (predecessor
of the Cosinuss Two used in the first experiment), the Samsung
Galaxy Watch4 (running a self-developed app), and the chest-worn
Polar H10 and arm-worn Polar OH1.
The performance of the model dropped to 51% for the same device
and between 60% and 41% for the other devices using the same
model. This may be a consequence of less variability in the heart
rate data in the second experiment than in the first experiment, and
additionally all other three devices collected less variable heart rate
data thanCosinuss did. As the Cosinuss data is the only one showing
high variation in the data, it is possible that an unstable element in
the device’s heart rate sensor rather than the actual heart rate led to
those variations and resulted in better classification performance.
In summary, current analyses showed that a model built on data
from one devicemay be ineffective for data collected from a different
device. Heart beats per minute alone seem to be insufficient to
provide enough information for reliable stress detection in older
adults. However, it is unclear whether a model trained on more
data can generalise well to different cohorts of participants and/or
devices, and thus more research with more participants is needed to
verify this.Previous research has often discussed successful machine
learning models based on a low number of participants, but as our
testing a similar promising model in a second experiment showed:
the high accuracy does not necessarily translate to newly acquired
data and without a similar evaluation study these discrepancies
would not have been found.

7 CONCLUSIONS
We collected heart rate data from older adults to build a real-time
stress detection model on heart beats per minute, as this data can
be easily obtained with a plethora of single devices. Older adults
are apt to turn from technology use if the technology becomes
inconvenient, so wewanted to explore the effectiveness of using one
of the most easily available physiological measures. We evaluated
how well the Mannheim Multicomponent Stress Test can be used
with older adults and found that some of the classical stressors used
in the test did not induce stress with this cohort. A reduced stress
test did still induce stress, but not in all participants. Different types
of stressors need to be investigated to ensure stress induction in
older adults. The stress detection model built on the data of the
first experiment showed promising classification performance of
76% (AUC), but when used in the second experiment this dropped
to 51% (AUC). This evaluation step of machine learning models in
a second experiment has often been omitted in previous research,
but our findings show that high calculated accuracy on one set of
data does not necessarily translate well. Other devices have been
tested in the same experiment, and their prediction performance

was comparably low. All but one device had some inaccuracy or data
loss during the heart rate collection and the three additional devices
used in the second study differed in variability from the device used
in both experiments, leading to low prediction performance. This
would lead to the conclusion that heart beats per minute alone
might not be enough to build a successful stress detection model in
this form and that models for specific devices might not easily be
used with other heart rate sensors. These findings show the need to
find alternative, easily obtainable physiological data which could be
used in addition to heart rate used to detect stress in older adults.
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