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A B S T R A C T 

Gra vitational wa ve observations of the inspiral of stellar-mass compact objects into massive black holes (MBHs), extreme mass 
ratio inspirals (EMRIs), enable precision measurements of parameters such as the MBH mass and spin. The Laser Interferometer 
Space Antenna is expected to detect sufficient EMRIs to probe the underlying source population, testing theories of the formation 

and evolution of MBHs and their environments. Population studies are subject to selection effects that vary across the EMRI 
parameter space, which bias inference results if unaccounted for. This bias can be corrected, but e v aluating the detectability 

of many EMRI signals is computationally e xpensiv e. We mitigate this cost by (i) constructing a rapid and accurate neural 
network interpolator capable of predicting the signal-to-noise ratio of an EMRI from its parameters, and (ii) further accelerating 

detectability estimation with a neural network that learns the selection function, leveraging our first neural network for data 
generation. The resulting framework rapidly estimates the selection function, enabling a full treatment of EMRI detectability in 

population inference analyses. We apply our method to an astrophysically moti v ated EMRI population model, demonstrating 

the potential selection biases and subsequently correcting for them. Accounting for selection effects, we predict that with 116 

EMRI detections LISA will measure the MBH mass function slope to a precision of 8.8 per cent, the CO mass function slope to 

a precision of 4.6 per cent, the width of the MBH spin magnitude distribution to a precision of 10 per cent, and the event rate 
to a precision of 12 per cent with EMRIs at redshifts below z = 6. 

Key w ords: gravitational w aves – methods: statistical – software: data analysis – stars: black holes – black hole mergers. 
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 I N T RO D U C T I O N  

he Laser Interferometer Space Antenna ( LISA ; Amaro-Seoane et al. 
017 ) is a planned space-based observatory capable of observing 
ra vitational wa ves (GWs) with frequencies ∼10 −5 –10 −1 Hz. 
romising sources of GWs in this band are extreme mass ratio 

nspiral (EMRI) systems, comprising a compact object (CO) orbiting, 
nd gradually inspiralling towards, a massive black hole (MBH; 
maro-Seoane et al. 2007 , 2023 ). EMRI systems typically complete 
10 4 –10 5 orbital cycles in the LISA band and generate GWs with an

ntricate frequency e volution. Relati vistic ef fects, including Lense–
hirring precession and pericentre precession, generate many distinct 
ideband modes in the signal spectrum (Barack & Cutler 2004 ; 
ughes et al. 2021 ). The amplitude and phase evolution of these
odes is strongly dependent on the parameters of the MBH–CO 

ystem, enabling precise measurements of these parameters (Babak 
t al. 2017 ). In particular, the (redshifted) MBH and CO masses,
BH spin, and orbital eccentricity may be determined to accuracies 

f ∼ 10 −3 per cent , and the sources localized in space to better than 10
er cent relative precision (Amaro-Seoane et al. 2007 ; Berry et al.
019 ). This level of measurement precision for MBHs surpasses 
oth existing electromagnetic techniques (Daly 2011 ) and LISA 

bservations of MBH binaries (Klein et al. 2016 ). 
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The number of EMRIs that will be detected is uncertain, largely
ue to poorly constrained astrophysical parameters in current for- 
ation channel theories, but the detection rate is likely to be of

rder 10 1 –10 3 yr −1 (Babak et al. 2017 ; Pan, Lyu & Yang 2021 ;
 ́azquez-Aceves et al. 2022 ; Amaro-Seoane et al. 2023 ). During
ISA ’s proposed 4 yr mission, we therefore expect to attain a
ufficiently large catalogue of EMRIs (each of which providing 
xcellent measurements of their parameters) to probe and resolve 
eatures of the MBH mass and spin populations. F or e xample, we
xpect to match the precision of current observational estimates 
f an MBH mass power-law spectral inde x, ev en for pessimistic
MRI detection rate predictions (Gair, Tang & Volonteri 2010 ). 
uch a catalogue also enables the testing of the wide array of EMRI
ormation channel theories. Several EMRI formation channels have 
een suggested, including loss-cone scattering of COs into inspiral 
rbits (Alexander 2017 ), radial migration of COs by dynamical 
nteraction with an accretion disc (Pan et al. 2021 ), capture via
he Kozai–Lidov mechanism due to the presence of a binary MBH
ystem (Naoz et al. 2022 ), and the tidal disruption of main-sequence
r helium stars on highly eccentric orbital trajectories around MBHs 
Bortolas & Mapelli 2019 ). For a given formation channel, the rate of
MRI production depends on astrophysical parameters (e.g. Broggi 
t al. 2022 , for loss-cone or TDE channels) that are poorly constrained
y existing observations. Determining the relative contributions of 
he formation channels to the o v erall EMRI rate therefore places
onstraints on these parameters; this could be estimated from a cata-
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ogue of EMRI observations in a similar manner to how ground-based
W observations are used to constrain their source astrophysics (e.g.
evin et al. 2021 ). 
Extracting information about the astrophysical population requires

 hierarchical inference where the parameters of each EMRI in
he catalogue (and their associated uncertainties) are collectively
sed to constrain the parameters of a chosen population model.
o we ver, the catalogue only contains sources loud enough to cross a
etection threshold, and these are generally not representative of
he underlying population: if these selection effects are ignored,
he inferred population parameters will be biased. EMRIs that are
ntrinsically fainter (depending on their masses, spins, or orbital
arameters) and more distant are less likely to be detected than
heir nearer and louder counterparts. In practice, one may correct for
his by determining the fraction of the proposed population that is
etectable, and re-weighting the population likelihood accordingly
Mandel, Farr & Gair 2019 ; Alsing et al. 2023 ). 

In the absence of a standard EMRI detection pipeline, the de-
ectability of a given EMRI is typically assessed with respect to the
ignal-to-noise ratio (SNR) of the EMRI waveform (Gair et al. 2004 ,
010 ; Babak et al. 2017 ). The detectable fraction of a proposed
opulation (the selection function) may therefore be estimated by
andomly dra wing EMRI ev ents from the population and computing
heir SNRs to determine the fraction of these samples that are
etectable. These selection function estimates may then be used to
e-weight the population likelihood and obtain unbiased inferences
f the population parameters. 
The function that maps EMRI parameters to the waveform SNR

s complicated, so bias correction is computationally e xpensiv e.
his high cost comes from both the generation of complex long-
uration waveforms and the manipulation of these large data sets.
v en e xploiting graphics processing unit (GPU) acceleration and
ectorization, each SNR takes of order 1 s to compute for a 4 yr
ata-stream duration. Using conserv ati v e estimates, if one dra ws 10 5 

MRIs for each candidate population, and a population inference
ampling run consists of 10 5 candidate populations, full selection
ias correction would require 10 10 GPU s. This is too costly for
nalyses including selection bias correction in this manner to be
onducted in a reasonable amount of time. 

Previous studies have addressed the issue of computational cost
y indirectly approximating the behaviour of the selection function
ia: proxy distance thresholds (Laghi et al. 2021 ); a reduction in
MRI parameter space complexity, for instance by neglecting the
ependence of eccentricity or inclination on detectability (Gair et al.
010 ); a reduction of waveform complexity by only computing a
mall number of sideband modes with faster, less accurate waveform
odels (Chua & Cutler 2022 ). These approaches permit the rapid

omputation of the selection function, but do not account for
ore complex correlations between EMRI parameters and may

ntroduce systematic biases due to the approximations made. For
nstance, the evolution of orbital eccentricity and inclination during
n inspiral is correlated with mass ratio, and the mode amplitudes
and therefore the o v erall SNR of the waveform) are correlated
ith both eccentricity and inclination e volution. Therefore, e ven for
arameters not directly of interest to a given population study, the
orrelations between these parameters and event detectability must
till be taken into account to a v oid biases in the results obtained. 

In this work, we propose an alternative approach that leverages the
peed of the recently developed GPU-accelerated EMRI waveform
ackage F astEMRIWav eforms (FEW; Katz et al. 2021 ) and machine-
earning techniques to interpolate the EMRI SNR function, directly
orrecting for an SNR-based selection bias without the need for
NRAS 522, 6043–6054 (2023) 
ajor systematic approximations or simplifications. In Section 2 , we
utline the Bayesian population inference framework employed, in-
luding the correction for selection biases. In Section 3 , we introduce
ur approach for estimating the selection bias with machine learning,
hich we achieve by replacing the bottleneck in the selection
ias calculation (the EMRI SNR function) with a neural network
nterpolator. The ef fecti veness of our frame work is demonstrated
n Section 4 for a typical EMRI population, presenting clearly the
anifestation of the selection bias in the obtained results and how this

s corrected for in practice; the corrected results provide an unbiased
stimate for the precision to which LISA observations could constrain
he astrophysical EMRI population. Finally, in Section 5 , we perform
 global posterior consistency check to verify the analysis. 

The method we describe in this paper is implemented in our open-
ource code package POPLAR (Chapman-Bird 2023 ), which we plan
o use for (and develop alongside) future EMRI population studies. 

 H I E R A R C H I C A L  BAYESI AN  I NFERENCE  

R A M E WO R K  

ur goal is to infer the properties of an EMRI population model
sing a catalogue of many EMRI observations. 
For each EMRI in the catalogue, information about its parameters

i is encoded in the data, d , where the subscript i ∈ [1, N obs ] identifies
he particular EMRI in the catalogue of N obs detections. The posterior
istribution for θ i given the data is 

( θ i | d ) = 

π ( θ i ) L ( d | θ i ) 

Z( d ) 
, (1) 

here π ( θ i ) is the prior distribution on θ i , L ( d | θ i ) is the likelihood
f observing the data given a set of source parameters, and Z( d ) is
he evidence (marginalized likelihood). We estimate the parameters
f the EMRI by stochastically sampling the posterior distribution,
btaining a set of posterior samples { k θ i } (Christensen & Meyer
022 ), where the superscript k ∈ [1, S i ] denotes each posterior sample
or a given event. The posterior p( θ i | d ) provides information about
 single EMRI source; by combining together the properties of the
atalogue of sources, we can constrain a population model. 

The population model p pop ( θ | λ) describes the astrophysical dis-
ribution of EMRI source parameters. It is described by a set of
yperparameters λ that determine the shape of the population, and a
oissonian mean event rate R that parametrizes how often EMRIs
ccur. We use the hyper prefix to differentiate these population-level
hyper)parameters from the e vent-le vel EMRI parameters. By esti-
ating the hyperparameters, we constrain the relative probabilities

f different population shapes and event rates in accordance with the
ontents of the catalogue. We perform this hyperparameter estimation
n a hierarchical Bayesian inference framework (Mandel et al. 2019 ).

To obtain an estimate of λ and R , we sample the hyperparameter
osterior distribution 

( λ, R |{ θ} ) = 

π ( λ) π ( R ) L ( { θ}| λ) L ( { θ}| R ) 

Z( { θ} ) , (2) 

here π ( λ) and π ( R ) are hyperprior distributions, and Z( { θ} ) is the
 yperevidence. The h yperparameter likelihood L ( { θ}| λ) is defined
s 

 ( { θ}| λ) = 

N obs ∏ 

i= 1 

1 

S i α( λ) 

S i ∑ 

j= 1 

p pop ( j θ i | λ) 

π ( θ i ) 
, (3) 

here, in general, the population probability of each posterior sample
ust be re-weighted by the prior used in the EMRI parameter

stimation step (Mandel et al. 2019 ). In our case, we adopt uniform
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Table 1. The functions, free parameters, and limits of the sub-population 
distributions p x ( x| λx ), the product of which is the EMRI population chosen. 
The hyperparameters λx are estimated via population inference. The upper 
limit for t plunge is reduced to 2 yr for our validation analysis (Section 5 ). 

x p x ( x| λx ) λx [ x min , x max ] 

M Power law λM 

, M min , M max [ M min , M max ] 
μ Power law λμ, μmin , μmax [ μmin , μmax ] 
a Trunc. Normal μa , σ

2 
a [0.001, 0.999] 

e 0 Uniform — [0.1, 0.5] 
cos ι0 Uniform — [0, π /3] 
sin θS Uniform — [0, π ] 
sin θK Uniform — [0, π ] 
�φ Uniform — [0, 2 π ] 
t plunge Uniform — [0, (2, 10)] yr 
z p z ( z) — [0, 6] 
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riors on all EMRI parameters and this re-weighting simplifies to a 
roportionality constant. The rate likelihood L ( { θ}| R ) is 

 ( { θ}| R ) = exp [ −R α( λ) ] [ R α( λ) ] N obs . (4) 

ere, the selection function α( λ) is a corrective factor applied to
ccount for the presence of selection bias on the observations: of the
unknown) number of events that occurred, only a subset N obs were 
etected. It may be written as 

( λ) = 

∫ 
p det ( θ ) p pop ( θ | λ) d θ, (5) 

or some detection probability p det ( θ ), and represents the fraction of
 population (described by a particular set of hyperparameters λ) that 
s detectable. Performing an inference including the selection effects 
hould produce results unbiased by detectability (Mandel et al. 2019 ). 

To use this inference framework, one must specify: 

(i) A method for obtaining { θ} ; 
(ii) The form of p pop ( θ | λ); 
(iii) The selection effects for the observations. 

Once these three ingredients have been formally defined, we can 
onstruct (and ultimately, sample) the hyperposterior, equation ( 2 ). 
e introduce the approach we use to obtain posterior samples for

ach detected EMRI in Section 2.1 ; we detail the form of our
opulation model in Section 2.2 , and we outline our treatment of
etectability and the modelling of selection effects in Section 2.3 . 

.1 EMRI parameter estimation 

espite recent reductions in EMRI waveform computation time to 
he sub-second level (Katz et al. 2021 ), standard Bayesian parameter 
stimation techniques are too costly for the event posteriors to be 
ampled directly en-masse as is required in population studies. We 
nstead opt to approximate the EMRI likelihood (and by extension, 
osterior) with a Fisher matrix approach, operating under the linear 
ignal approximation (LSA; Cutler & Flanagan 1994 ), in which the 
ikelihood is approximated by a multi v ariate normal distribution, 

( d| θ) ≈ N 

(
θ , � 

−1 
)
, (6) 

here the covariance matrix of the distribution is the inverse of the
isher information matrix (FIM) � of the EMRI waveform. The 
SA is only valid in the high-SNR limit (which may lie far abo v e

he detection threshold), which should be verified before it is used to
pproximate likelihoods (Vallisneri 2008 ). The FIM is given by 

 �m 

= 〈 ∂ � h | ∂ m 

h 〉 , (7) 

here ∂ � h refers to the deri v ati ve of the waveform strain h ( t ) with
espect to the � -th parameter of θ , e v aluated at θ . The noise-weighted
nner product is defined as 

 x | y 〉 = 4 R 

[∫ ∞ 

0 

˜ x ∗( f ) ̃  y ( f ) 

S n ( f ) 
d f 

]
, (8) 

here ˜ x ( f ) is the Fourier transform of a time-domain strain x ( t ), R
efers to the real part and S n ( f ) is the one-sided power spectral density
PSD) of the detector (Maggiore 2008 ). We adopt the analytic fit to
he LISA PSD derived in Robson, Cornish & Liu ( 2019 ). Using the
IM, we can rapidly produce posterior distributions for a catalogue 
f EMRIs. 
Specifics of our EMRI event catalogue simulation pipeline, includ- 

ng both waveform generation and FIM computation, are discussed 
n Appendix A . 
.2 Population model 

or simplicity, we choose a population model that is a product of
ndependent uni v ariate subpopulations, such that 

 pop ( θ | λ) = 

∏ 

x∈ θ
p x ( x| λx ) , (9) 

here x denote EMRI parameters and λx the corresponding hy- 
erparameters that describe the shape of the subpopulation. The 
athematical form of these subpopulations is summarized in Table 1 ,

nd in detail: 

(i) Mass functions for both MBHs and stellar-mass black holes are 
ell approximated by power laws, albeit with additional substructure 
resent when examined in detail (Shankar 2013 ; Abbott et al. 2023 ).
e therefore model the MBH and CO mass distributions p M 

( M | λM 

,
 min , M max ) and p μ( μ| λμ, μmin , μmax ) as power laws, with index λx 

nd limits [ x min , x max ], which have the form 

 x ( x| λx , x min , x max ) = 

1 + λx 

x 
1 + λx 
max − x 

1 + λx 
min 

x λx . (10) 

(ii) The form of the MBH spin magnitude distribution p a ( a | μa ,
a ) is dependent on a number of astrophysical processes during the

ormation and evolution of MBHs and their host galaxies (Volonteri 
010 ; Sesana et al. 2014 ). Incorporating these into our population
odel and characterizing their impact on inference results is beyond 

he scope of this study . For simplicity , we instead choose a truncated
ormal distribution with mean μa and variance σ 2 

a as has been done 
n previous analyses of the stellar-mass binary black hole (BBH) 
ergers (Roulet & Zaldarriaga 2019 ; Miller, Callister & Farr 2020 ).
his is written as 

 x ( x| μx , σx ) = 

1 

σ

ψ [ ( x − μx ) / σx ] 

� [ ( B − μx ) / σx ] − � [ ( A − μx ) / σx ] 
, (11) 

here ψ( x ) and �( x ) are the probability density and cumulative
istribution functions (CDF) of the standard normal distribution, 
espectively. The limits [ A , B ] are chosen to be [0.001, 0.999] as
aveform generation is unstable at extremal spins beyond these 

imits. 
(iii) High initial orbital eccentricities ( > 0.99) are expected for 

MRIs formed by relaxation mechanisms, but significant orbital 
ccentricity will be lost before the GW emission of the system
nters the LISA band (Peters & Mathews 1963 ), broadening the
istribution and shifting it to lower eccentricities (Amaro-Seoane 
020 ). To reflect this behaviour, we choose a uniform eccentricity
istribution e 0 ∈ [0.1, 0.5], with upper limit chosen to reflect that
he waveform model is a series expansion in eccentricity and should
MNRAS 522, 6043–6054 (2023) 
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herefore not be trusted for high eccentricities (Fujita & Shibata 2020 ;
soyama et al. 2022 ). The waveform model also consists of a system
f ordinary differential equations (ODEs) that must be solved (Katz
t al. 2021 ). The lower limit of the eccentricity distribution is chosen
ue to increasing stiffness in this ODE system at lower eccentricities
eading to high computational cost (Burden & Faires 1993 ). We do
ot anticipate the validity of our approach to be affected by this lower
ccentricity cut-off. 

(iv) Orbital inclination ι0 is similarly truncated due to ODE
tiffness issues, but is otherwise distributed uniformly on the unit
phere along with other angular parameters. 

(v) We choose a redshift distribution that is uniform in comoving
olume and in comoving time (Hogg 1999 ); this has the form 

 z ( z) ∝ 

1 

(1 + z) E( z) 

(∫ z 

0 

d z ′ 

E( z ′ ) 

)2 

, (12) 

here 

( z) = 

√ 

�M 

(1 + z) 3 + �� 

, (13) 

nd we assume a standard cosmology with �M 

= 0.3 and �� 

=
 − �M 

= 0 . 7. The upper redshift limit for this distribution is chosen
o be z = 6 such that the detectable region of parameter space is not
ignificantly truncated (otherwise, selection effects will be artificially
uppressed). Increasing the redshift limit leads to high computational
osts as the event rate R must also be increased accordingly, as the
vent rate density has remained constant but the comoving volume
 v er which we are distributing events has grown. 

The chosen form of these subpopulations is moti v ated primarily
y computational simplicity. Ho we ver, our approach is flexible and
an be applied to the hierarchical inference of any population model.

.3 Selection effects 

n the absence of a specific EMRI search pipeline, we model the
etection probability as a binary SNR threshold, as is typical for
MRI studies (Gair et al. 2010 ; Babak et al. 2017 ; Bonetti & Sesana
020 ). This may be written as 

 det ( θ) = H( ρn − ρt ) , (14) 

here ρn is a (noise-realized) SNR, H( x) is the Heaviside step
unction, and ρ t is a chosen threshold SNR. We obtain ρ2 

n by drawing
 sample from a non-central χ2 distribution with two degrees of
reedom and non-centrality parameter ρ2 

opt (Maggiore 2008 ), 

 

(
ρ2 

n 

∣∣∣ρ2 
opt 

)
= 

1 

2 
exp 

( 

−ρ2 
n + ρ2 

opt 

2 

) 

I 0 
(
ρn ρopt 

)
, (15) 

here I 0 ( x ) is a modified Bessel function of the first kind
Abramowitz & Stegun 1964 ), and ρ2 

opt is the square of the optimal
atched-filter SNR 

2 
opt = 〈 h | h 〉 . (16) 

e assume that ρn is the positive square root of ρ2 
n ; while noise

uctuations can lead to ne gativ e values, this is not expected for
arge values around our detection threshold. One may analytically
ompute the mean detection probability in equation ( 14 ) o v er all
oise realizations by directly computing the non-central χ2 CDF
( ρ2 

n > ρ2 
t | ρ2 

opt ), such that 

 det ( θ) = 1 − p 

(
ρ2 

n > ρ2 
t 

∣∣∣ρ2 
opt 

)
, (17) 

here an o v erline denotes the mean. 
NRAS 522, 6043–6054 (2023) 
We approximate the selection function equation ( 5 ) by e v aluating
he Monte Carlo sum 

( λ) ≈ 1 

N t 

N t ∑ 

k= 0 

p det ( θ k ) , (18) 

here { θ k } are sampled from p pop ( θ | λ). As the variance on this
pproximation scales inversely with N t , one must compute p det ( θ )
and therefore ρopt ) of the order of 10 5 times for each computation of
( λ) to achieve per cent-lev el accurac y; ev en with parallelization, this
ould be prohibitively expensive with typical computing resources

taking of the order of minutes) for use in a typical sampling run,
n which α( λ) must be computed once per hyperlikelihood call. We
ddress this problem by replacing the SNR function with an accurate
nd rapid interpolator, allowing for equation ( 18 ) to be evaluated in
arallel at a sufficiently low computational cost to be practical for
se in inference problems. 

 I NTERPOLATI NG  OV ER  SNR  

he principal requirements for our SNR interpolator are that it
ust be accurate and unbiased across the EMRI parameter space:

naccuracies may bias the results of our population inference. It must
lso be sufficiently fast as to not bottleneck the sampling process,
apable of estimating SNRs for 10 5 sets of EMRI parameters in < 1 s.
hese constraints are particularly challenging to meet due to the
igh dimensionality of the EMRI parameter space (13 dimensions,
s defined in Appendix A ). 

Fortunately, we can reduce the number of parameters that we
eed to interpolate o v er by considering how the SNR of an EMRI
aveform depends on each parameter. We can ignore the orbital
hase parameters ( � r , � θ , � φ) due to their negligible correlation
ith SNR, as the initial phase becomes relatively unimportant for

n inspiral with ∼10 4 orbital cycles. Additionally, as SNR scales
nversely with luminosity distance d L , we may further reduce the
imensionality of the parameter space by fixing d L in training data
nd applying this scaling post-interpolation: we use d L = 1 Gpc for
onvenience. 

Despite eliminating four dimensions of the EMRI parameter space,
e are still in a regime where standard interpolation schemes are inef-

ective. As a representative example, we consider spline interpolation
chemes with piecewise polynomials of zeroth, first, and third order:
hese are more commonly known as nearest neighbour , linear , and
ubic spline interpolation, respectively (Piegl & Tiller 1987 ). Our
equirement for a fast interpolator prevents us from interpolating
 v er points randomly distributed in the parameter space, as the
omplexity of the algorithms used for this scales quadratically with
he number of basis points (Barber, Dobkin & Huhdanpaa 2013 ) and
he computational cost of these methods quickly becomes imprac-
ical. Instead, we may use grid-based versions of these techniques.
o we ver, these methods suf fer from the curse of dimensionality:

he Euclidean distances between neighbouring grid verticies grows
s the dimensionality of the space increases, which leads to poor
nterpolation accuracy. 

To demonstrate the unsuitability of linear interpolation in practice,
e generate ρopt on a regular grid with 10 6 total grid points and

onstruct the aforementioned spline interpolators with this grid as a
asis. We then compute a testing set of 10 6 SNRs from randomly
ampled sets of EMRI parameters and compare the interpolator
utput at these points by calculating the discrepancies between the
rue and predicted SNRs, denoted ρ true and ρpred , respectively. The
umulative distribution of the (i) absolute and (ii) relative differences
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Figure 1. Cumulative distribution functions for the (left) absolute and (right) fractional differences between the SNR predictions of (linear, nearest neighbour, 
cubic spline, and neural network) interpolation methods and the true values. The former three grid-based interpolation methods perform poorly, with at least 47 
per cent of SNRs inaccurate by at least 10, and at least 75 per cent predicted to less than 10 per cent accurac y. Conv ersely, the latter method precisely estimates 
SNRs: 95.3 per cent of SNRs are determined to within 1, and 89.6 per cent within 10 per cent of the true values. 
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etween prediction and truth for the three spline interpolation 
chemes we consider are shown in Fig. 1 . As expected, the grid-
ased interpolator performance is poor regardless of the order of 
he piecewise polynomial used. While linear or spline interpolation 
ffers marginal impro v ement o v er nearest neighbour interpolation, 
he low spatial resolution of the grid limits the impro v ements.
he majority of the interpolated SNRs are inaccurate by at least 
0 per cent, with absolute errors typically exceeding 10 (or even 
s high as 100 in extreme cases). As we will demonstrate in
ection 5 , this performance is inadequate for unbiased population 

nference. 

.1 Interpolation with neural networks 

eural networks are highly flexible mathematical tools that are ca- 
able of learning complex relationships in high-dimensional spaces 
Goodfellow, Bengio & Courville 2016 ). For our purposes, we 
eed a neural network that takes a vector as an input (the EMRI
arameters) and produces a scalar output (the SNR estimate). We opt 
or the multilayer perceptron (MLP) algorithm (Hastie, Tibshirani & 

riedman 2001 ) as it fits this specification. MLPs are fast and
apable of high accuracy, satisfying our requirements well. The 
esign and training of this MLP are discussed in Appendix B . The
rained network achieves two orders of magnitude of impro v ement 
n accuracy compared to other interpolation approaches, as shown 
n Fig. 1 ; the majority of the test data are predicted to per cent-level
ccuracy. This network is capable of producing 10 5 SNR estimates 
n < 0.1 s, which is six orders of magnitude faster than calculating
he SNR directly. 

As the MLP was trained with an L1 loss function, which minimizes
he absolute difference between the prediction and truth (Goodfellow 

t al. 2016 ), it does not perform as well in terms of fractional error
or ρopt � 1. This manifests as a larger upper tail in the relative CDF.
o we ver, this does not translate to a reduction in performance, as

hese signals are too weak to be detectable across the majority of the
uminosity distance distribution. If adequate performance across all 
NR scales is required, this may be achieved with the appropriate 
hoice of loss function, for instance by training on the log of the
NR. By choosing not to train on log SNRs, we prioritize the regions
f parameter space corresponding to larger SNRs in the data set
at the fiducial luminosity distance of 1 Gpc). As these SNRs will
e pushed towards the detection threshold at larger distances, and 
he majority of our luminosity distance distribution is abo v e 1 Gpc,
stimating these larger SNRs well has the greatest impact on accurate
etectability estimates. 

.2 Inter polating o v er the selection function 

sing our trained interpolator network to produce SNR estimates, 
e are now able to approximate α( λ) via equation ( 18 ) with the

nterpolated SNR as an input. Ho we ver, two issues still remain that
ust be addressed before this may be applied in practice. First,

his set-up still requires that the parameter set { θ} is drawn from
 pop ( θ | λ) for each hyperlikelihood call; this is a slow operation,
ven for the relatively simple population models in Table 1 . It
s also inefficient, because α( λ) will typically not vary signifi-
antly across the high-probability region of the posterior, where 
he majority of samples are drawn. Second, the stochastic nature 
f the Monte Carlo selection function estimates itself presents 
hallenges in sampling: the hyperlikelihood surface becomes noisy, 
hich can be problematic for the reliable convergence of sampling 

lgorithms. These issues prohibit the use of our stochastic selec- 
ion function estimates in hyperposterior sampling and must be 
olved. 

To address these problems and further accelerate our bias- 
orrected likelihood, we extend the idea of interpolating o v er high-
imensional spaces with MLPs further. A second MLP trained prior 
o sampling can be used to interpolate directly o v er α( λ). The
rchitecture and training settings for this MLP are discussed in 
ppendix B . Using this second MLP step greatly reduces the time
er likelihood call, achieving a further order of magnitude of speedup
ith respect to stochastic estimation of the selection function. For 
ur chosen population model, the resulting computational cost of 
he numerator and denominator in equation ( 2 ) become roughly
qui v alent. Further speedup is achieved with vectorized e v aluation
f the hyperlikelihood, as the selection function MLP is capable of
andling many sets of hyperparameters at no additional cost provided 
hat sufficient GPU memory is available. This vectorization would 
ot be practical if one were to estimate the selection function values
ith the stochastic approach. With the main limitations of our method 
MNRAS 522, 6043–6054 (2023) 

art/stad1397_f1.eps


6048 C. E. A. Chapman-Bird et al. 

M

a  

u

4
R

W  

n  

p  

T  

p  

s

 

m  

f  

e  

R  

a  

r  

t  

o  

r  

o  

p  

m  

s  

e  

s  

t  

i  

e  

o
 

s  

t  

r  

f  

d  

o  

s  

f  

t  

i
 

t  

1  

y  

w  

m  

E  

(  

E  

2

 

c
 

s  

o  

a  

a  

t  

Figure 2. Reco v ered hyperposteriors for our e xample scenario with selection 
effects corrected for (solid) or ignored (dashed). The true values of each 
hyperparameter are indicated by the cross-hairs. Significant bias is present in 
the reco v ery of λμ, with minor bias also visible in the reco v ery of λM 

. The rate 
R is accurately reco v ered with the inclusion of selection effect correction. 

M  

s  

r  

h  

h  

i  

t  

p  

c
 

o  

i  

F  

a
t  

g  

p  

e  

f  

u
 

h  

W  

i  

t  

M  

σ  

p  

w  

a  

t  

t  

a

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/4/6043/7159736 by U
niversity of G

lasgow
 user on 20 July 2023
ddressed, we are now able to produce selection function estimates
sable in sampling at low computational cost. 

 UNBIASED  POPULATION  INFERENCE  

E SULTS  

ith our strategy for selection bias correction formulated, we are
ow properly equipped to tackle an EMRI population inference
roblem. We begin by simulating a catalogue of EMRI observations.
o estimate how well LISA will resolve the shape of the EMRI
opulation in a realistic scenario, we choose hyperparameter values
upported by recent black hole population studies: 

(i) While constraints have been placed on the slope of the MBH
ass function by current observations (Shankar 2013 ), the mass

unction for MBHs hosting EMRIs is subject to additional selection
ffects that are poorly understood at present (Babak et al. 2017 ).
ecent work has estimated that the spectral index of this power law
fter the inclusion of selection effects is λM 

≈ −1.43 in the mass
ange [ M min , M max ] = [10 5 , 10 7 ] M � (Babak et al. 2017 ). We assume
hat the slope of the CO mass function is equal to the median value
bserved in stellar-mass BBH mergers of λμ ≈ −3.50 in the mass
ange [3, 90] M � (Abbott et al. 2023 ), assuming that the progenitors
f these mergers are representative of the universal stellar-mass BH
opulation. The selection effects that translate this into the EMRI CO
ass function are poorly understood and would require a dedicated

et of N -body simulations of stellar cusps to properly quantify (Babak
t al. 2017 ; Broggi et al. 2022 ), so we do not consider them in this
tudy. Despite this caveat, the slope observed via BBH mergers is
he strongest constraint placed on the mass function for black holes
n this mass range available and is a reasonable starting point for
stimating LISA ’s ability to resolve the CO mass function with EMRI
bservations. 
(ii) The MBH spin magnitude distribution is also poorly con-

trained by observational data. Current measurements are limited
o MBHs in active galactic nuclei (Daly 2011 ), which may not be
epresentative of the full MBH spin magnitude population as dif-
erent formation channels will yield different MBH spin magnitude
istributions (Amaro-Seoane et al. 2023 ). Self-consistent simulations
f MBH growth with cosmic evolution predict that most MBHs have
pins greater than 0.9 in the MBH mass range quoted abo v e, with a
airly narrow spread below 10 7 M � (Sesana et al. 2014 ). We include
his characteristic shape of a narrow spin distribution abo v e a = 0.9
n our population by choosing [ μa , σ a ] = [0.93, 0.06]. 

(iii) The time that each EMRI plunges with respect to the start of
he observational data t plunge is randomly distributed in the range [0,
0] yr. In line with the planned LISA mission duration, we assume a 4-
r observational window (Amaro-Seoane et al. 2017 ): some EMRIs
ill not plunge until after the end of our observational data, but
ay still be detectable if they are bright enough. We assume that
MRIs occur at a rate of R = 700 yr −1 , which is conserv ati ve

considering our redshift cut-off of z = 6) when compared with
MRI rate estimates from astrophysical modelling (Babak et al.
017 ; Broggi et al. 2022 ; V ́azquez-Aceves et al. 2022 ). 

After discarding the signals too faint to be detected, we obtain a
atalogue of 116 EMRIs. 

To demonstrate the selection biases present, we perform two
ampling runs: one in which selection biases are corrected for with
ur interpolation scheme, and another in which selection effects
re not accounted for, i.e. replacing α( λ) with 1 in equation ( 3 )
nd equation ( 4 ). We sample the hyperposterior equation ( 2 ) with
he nessai nested sampler (Williams 2021 ; Williams, Veitch &
NRAS 522, 6043–6054 (2023) 
essenger 2021 ), using default settings. The convergence of all
ampling runs with these settings was verified by examining the
esults of internal consistency checks built into nessai . The
yperposteriors obtained from these sampling runs for a subset of
yperparameters are shown in Fig. 2 . The full hyperposterior is shown
n Appendix C , which demonstrates minor discrepancies between the
wo hyperposteriors for the other hyperparameters, with marginal
osteriors that are too narrow (o v erconstrained) but otherwise fairly
onsistent with the set hyperparameter values. 

The bias that results from ignoring selection effects on the
bservations is visible here as a discrepancy between the credible
nterval contours of the two hyperposteriors at the 99 per cent level.
or λM 

, the uncorrected posterior is inconsistent with the true value
t the 99 per cent credible level; the marginal posteriors for λμ

hat include or exclude selection bias correction disagree to an even
reater extent. There is also a clear difference between the marginal
osteriors on R : this is symptomatic of the presence of selection
ffects, as it indicates that predicting the o v erall ev ent rate solely
rom the size of the detection catalogue will result in a significant
nderestimate of the actual event rate. 
After accounting for selection effects, our results serve to probe

ow well LISA can resolve the form of this EMRI population.
e estimate (quoting the median and the 90 per cent credible

nterval) that λM 

= −1 . 39 + 0 . 12 
−0 . 12 and λμ = −3 . 58 + 0 . 16 

−0 . 17 , corresponding
o precisions of 8.8 per cent and 4.6 per cent, respectively. The

BH spin distribution is well reco v ered, with μa = 0 . 924 + 0 . 008 
−0 . 007 and

a = 0 . 054 + 0 . 006 
−0 . 005 ; these hyperparameters are reco v ered to within 0.87

er cent and 10 per cent, respectively. The EMRI rate is estimated
ith 12 per cent precision to be R = 678 + 88 

−75 yr −1 . The precision
chie v able by LISA will roughly scale with the square root of the
rue event rate, which we have assumed a conserv ati ve v alue for in
his study: for the most optimistic scenarios, this could impro v e by
s much as an order of magnitude (Babak et al. 2017 ). 
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Table 2. Hyperprior distributions chosen for all sampling runs. As the range 
of plunge times is reduced by a factor of 5 for our probability–probability 
plot analysis (Section 5 ), our prior bounds on the EMRI rate are adjusted 
accordingly: this is indicated by ( ∗). 

Parameter Distribution Limits 

λM 

Uniform [ −4, −1] 
M min Uniform [5, 50] × 10 4 M �
M max Uniform [5, 50] × 10 6 M �
λμ Uniform [ −4, 1] 
μmin Uniform [1, 5] M �
μmax Uniform [80, 100] M �
μa Uniform [0.05, 0.95] 
σ a Uniform [10 −3 , 2] 
R Log-uniform [350, 1050] ([75, 150] ∗) yr −1 
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The number of detected events depends on the underlying popula- 
ion. F or e xample, if the number of events is skewed to high redshift
ith respect to our assumed distribution of uniform in comoving 
olume and comoving time, then the number of detected events will 
ecrease accordingly. Our choice of redshift distribution is equi v alent 
o assuming that the probability of an EMRI occurring for a given

BH is constant across cosmic time. In reality, we expect that the
hysics of EMRI formation, such as cusp erosion (Babak et al. 2017 ),
ill lead to deviations away from this. Similarly, we expect that the
istributions of MBH and CO masses will differ in reality from
ur assumptions. Hence, the results presented here should only be 
onsidered illustrati ve. A comprehensi ve study of how population 
nference results vary with the underlying population (which would 
equire a computationally efficient method, such as ours) is necessary 
o fully map out how well LISA could measure the EMRI source
opulation. 

 VERIFYING  T H E  A  C C U R A  C Y  O F  RESULTS  

n the previous section, we demonstrated the capability of our 
pproach for a single example. Ho we ver, this is not sufficient to
nsure that the selection function estimates output by our MLP are 
ufficiently accurate and unbiased that population inference will 
eturn hyperposteriors that are consistent with the truth across the 
yperparameter space. 

To assess whether this is the case, we opt for the probability–
robability (P–P) plot test (Cook, Gelman & Rubin 2006 ). First,
e draw N sets of hyperparameters from the hyperpriors described 

n Table 2 , and generate the corresponding population catalogues. 
e then perform hyperposterior sampling runs to produce estimates 

f the hyperparameters in each case, and determine the confidence 
nterval q λ of the true hyperparameters with respect to the posterior
btained. Last, we plot the CDF of q λ. When the trial sets of
yperparameters are drawn from the hyperprior, we expect that the 
rue value of a hyperparameter will fall within the x per cent credible 
nterval in x per cent of realizations (i.e. a plot of q λ against its CDF
ill be diagonal) if our hyperposteriors are consistent with the true 
alues in all cases. We test the accuracy of our inference framework
y comparing the calculated CDF with the expected diagonal trend. 
Some variation of each CDF from the diagonal due to small-

umber statistics is e xpected. F or the P–P plot to be meaningful
 needs to be large, so we modify our population to reduce the
omputational cost of waveform generation by reducing the length 
f the observ ational windo w from 4 to 2 yr and the range of EMRI
lunge times from [0, 10] to [0, 2] yr. To further reduce the cost
f generating each population, we lower the o v erall ev ent rate by
imiting our population to a maximum redshift of z = 1. Adjusting
he event rate to account for these reductions in both duration and
ensitive volume, the number of expected EMRIs for each population 
ecreases by a factor of 35. The simulation and analysis configura-
ion remains otherwise unchanged from the analysis described in 
ection 4 . We perform three analyses to compare their results: first,
e exclude selection effect correction; second, we include selection 

ffect correction by means of a linear interpolation scheme, and 
ast, we include selection effect correction with our neural network 
nterpolation scheme. The P–P plots obtained from these analyses 
re shown in Fig. 3 , broken down by hyperparameter and compared
o the expected 68 per cent , 90 per cent , and 99 per cent deviations
or the N = 208 sets of drawn hyperparameters (Ibe 2013 ). 

We first examine the P–P plot for the hyperposteriors obtained 
hen selection effects are excluded, setting α( λ) = 1, as shown in

he top panel of Fig. 3 . The resulting posteriors exhibit strong biases
ith respect to the true values, and the P–P test fails; the majority of

he hyperparameter CDFs deviate beyond the 99 per cent confidence 
nterval. 

The P–P plot is a useful diagnostic for how the posterior deviates
rom what is expected on a dimension-by-dimension basis. We can 
dentify that λμ, m min , μmin , and μa are typically o v erestimated when
election effects are ignored, and conversely that μmax and λM 

are 
nderestimated. This can be understood by considering how the SNR 

f an EMRI waveform is correlated with the parameters associated 
ith these hyperparameters. The SNR is positively correlated with 
, so the power-law slope is flattened off by the suppression of low
O mass events; similarly, SNR is higher for larger MBH spins,

o the mean of the truncated Gaussian shifts to the right due to
he suppression of the lower spin ev ents. F or λM 

, the opposite is
rue: the number of detectable higher MBH mass EMRIs (which 
re at lower frequencies) is suppressed due to the shape of the
ISA sensitivity curve and so the observ ed power-la w steepens. The
arameters that pass the P–P test, M max and σ a , are not strongly
nfluenced by selection bias. The mean of the MBH spin truncated
aussian may shift, but the change in the width of the distribution
ill be proportionally smaller, and is therefore less sensitive to 

his selection ef fect. Like wise, as the high MBH mass EMRIs are
ypically unobserved and occupy a small fraction of the o v erall
MRI population, small changes to the maximum MBH mass do 
ot strongly affect the detectable fraction of the population. This is
ot the case for the CO mass distribution: the high mass events in
he upper end of the power law are also the brightest events in the
opulation, so adjusting the upper limit of the power law leads to
arger changes in the fraction of ev ents e xpected to be detectable. As
he observed deviations from consistent hyperposteriors align with 
ur expectations, we are confident they are the result of selection
ffects. 

To demonstrate the impact of the low interpolation accuracy seen 
n Fig. 1 , on the resulting selection function estimates, we repeat this
nalysis with an MLP selection function trained on SNR estimates 
roduced by the linear interpolator described in Section 3 . The
esulting P–P plot, shown in the middle panel of Fig. 3 , demonstrates
hat although modest correction is achieved in this case, it is still far
oo biased and inaccurate to result in consistent hyperposteriors. 
n the case of λμ, this even results in an o v ercorrection of the
election bias when compared to the uncorrected case. The danger of
 v ercorrection implies that it is not sufficient to include a selection
unction term in the population likelihood: the selection function 
ust also be accurately calculated to obtain good results. 
Finally, we present the P–P plot obtained for this analysis with our
LP selection function estimator in the bottom panel of Fig. 3 . In
MNRAS 522, 6043–6054 (2023) 
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Figure 3. Probability–probability plots showing the fraction of hyperparam- 
eters within a given credible interval (CI) for N = 208 hyperprior draws. 
Leaving selection biases uncorrected, setting α( λ) = 1, demonstrates the 
presence of significant selection biases in the population inference (top). 
These biases are successfully rectified with our approach (bottom), whereas 
standard interpolation techniques fail to produce unbiased results (middle). 
The expected 68 per cent, 90 per cent, and 99 per cent confidence intervals 
are shown in grey. 
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tark contrast to the previous two plots, the hyperparameter CDFs
re fully consistent with the expected confidence intervals. This con-
lusion is supported by the results of Kolmogoro v–Smirno v (Dodge
008 ) tests for each hyperparameter. Combining the p -values from
ach test with Fisher’s method (Mosteller & Fisher 1948 ) returned
 combined p -value of 0.3. This indicates that all hyperparameters
including the EMRI rate R ) are consistently reco v ered: the MLP is
apable of producing selection function estimates that are sufficiently
ccurate for consistent posteriors to be obtained. This result verifies
he application of our method in the treatment of selection biases in
opulation inference. 

 C O N C L U S I O N S  

opulation inference with EMRIs has the potential to probe the
volution of both MBHs and their galactic neighbourhoods to
nprecedented precision. Ho we ver, the computational cost of com-
onents of this analysis is prohibitively high. Estimating selection
iases in EMRI populations is computationally e xpensiv e due to
 combination of the need for costly waveform models and the
esources required to perform SNR calculations for long-duration
ata. As the SNR calculation is the computational bottleneck, we
ubstitute it for an interpolation o v er pre-computed SNRs. We find
hat commonly employed interpolation schemes are not sufficiently
ast or accurate for this problem, so we instead use machine-
earning techniques. Using a neural network trained on a data set
f SNRs distributed uniformly in the EMRI parameter space, we
chieve a speedup of six orders of magnitude o v er direct SNR
 v aluation. We then replace the stochastic estimation of the selection
unction obtained via Monte Carlo integration with a second neural
etwork that is trained on these stochastic estimates distributed
niformly in the hyperparameter space. This further impro v es the
peed of hyperlikelihood e v aluation by an order of magnitude,
nd enables vectorized estimation of the selection function for
urther reductions in computational cost. To verify the robustness
f our approach against systematic biases, we globally e v aluate
yperposterior consistency by simulating 208 EMRI populations
nd checking the results of selection bias-corrected hyperparameter
stimation with a P–P test. This test confirmed that (i) the presence of
election effects significantly biased inferences that did not correct
or them appropriately, and (ii) our approach successfully corrected
or selection effects to produce unbiased results. 

We apply our method to the inference of an astrophysically
oti v ated EMRI population (assuming sources distributed uniformly

n comoving volume and time) to study LISA ’s ability to probe the
tructure of such populations. We estimate that λM 

= −1 . 39 + 0 . 12 
−0 . 12 (a

recision of 8.8 per cent) and that λμ = −3 . 58 + 0 . 16 
−0 . 17 (a precision of

.6 per cent). For the MBH spin magnitude distribution, we find
hat μa = 0 . 924 + 0 . 008 

−0 . 007 and that σa = 0 . 054 + 0 . 006 
−0 . 005 , resolving the width

f the MBH spin magnitude distribution to within 10 per cent. The
vent rate is estimated to be R = 678 + 88 

−75 yr −1 (a precision of 12.0
er cent). 

The capability of our approach for treating selection effects in the
ase of a simple population model, which excludes substructure or
orrelations due to astrophysical effects, paves the way for future
ork to investigate more complex EMRI population models. The
MRI population we expect to be present in reality is multifaceted

Babak et al. 2017 ), and by introducing these features systematically
o the population inference problem we can begin to characterize
heir measurability with space-based detectors such as LISA . As
opulation inference is intimately tied to other hierarchical inference
roblems, including cosmological inference (MacLeod & Hogan
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008 ; Laghi et al. 2021 ) and tests of general relativity (Chua
t al. 2018 ), proper treatment of selection effects for EMRIs has
irect implications for these analyses as well. Ultimately, a joint 
ierarchical inference o v er this problem space may be required, of
hich our approach can be an integral part. 
As our method is not predicated on a particular population 
odel, it is applicable to a wide variety of population inference 

roblems. Similarly, as an y wav eform model may be used, this
pproach is capable of accommodating future changes to EMRI 
aveform models with little tuning required. While our approach 

pecifically targets the EMRI population inference problem, it may 
e generalized to any problem with an SNR-threshold selection bias 
ue to this model-agnostic nature. The reduction in computational 
ost achieved by employing our method will be most pronounced in 
ases where the SNR function is e xpensiv e to compute and of high
imensionality, but the ability to form a vectorized SNR approximant 
ill still offer a notable speedup for waveform models that are not

asily parallelizable or vectorizable (e.g. due to memory constraints). 
Our code package POPLAR , containing the tools used in this paper,

as been released as an open-source package (Chapman-Bird 2023 ) 
or use in future population studies. 
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PPENDIX  A :  E M R I  PARAMETER  

STIMATION  A N D  C ATA L O G U E  G E N E R AT I O N  

he generation of a catalogue of EMRI observations is multifaceted.
e first describe the generation of EMRI waveforms, including our

reatment of initial conditions and our choices regarding waveform
odel and detector response, in Section A1 . In Section A2 , we outline

ur procedure for obtaining posterior samples for EMRIs that pass
he detection threshold, along with consistency checks we perform to
nsure the approximations made in this process are justifiable. These
wo steps are performed for each set of EMRI parameters drawn from
he population to construct a catalogue of EMRI detections and their
orresponding posterior samples. 

1 Parametric conventions and wa vef orm generation 

he EMRI parameter space is complicated, consisting of 18
arameters: 

(i) The intrinsic parameters of the EMRI describe the properties
f the two objects and their initial orbital configuration. The primary
BH is described by its mass M and spin vector a , and the secondary
O similarly by mass μ and spin vector a CO . As a CO is not predicted

o have a significant effect on EMRI detectability (Huerta & Gair
011 ), it is not currently included in state-of-the-art waveform
odels, including the model used in this study (Katz et al. 2021 ).
he inspiral orbit is described by the initial eccentricity e 0 , semilatus

ectum p 0 , and orbital inclination ι0 , along with three orbital phases
 r , � θ , and � φ (Fujita & Shibata 2020 ). 
(ii) The extrinsic parameters describe the orientation of the system

nd its location with respect to the detector. The position of the system
s described by the luminosity distance vector d L , the magnitude of
hich may be described by a redshift z via the relation 

 L = (1 + z ) 
c 

H 0 

∫ z 

0 

d z ′ 

E( z ′ ) 
, (A1) 

here H 0 is the Hubble constant (Hogg 1999 ). We separate out
ectors into their magnitudes and angular components, such that

d L = { d L , θS , φS } . Similarly, we decompose the primary spin mag-
itude vector a = { a, θK , φK } . The sets of angles describe the
rientation of the MBH spin-angular momentum vector and the sky
NRAS 522, 6043–6054 (2023) 
osition v ector, respectiv ely, with θ and φ referring to polar and
zimuthal angles, respectively. 

(iii) The plunge time of the system with respect to the start of
he observation is described by the parameter t plunge . Ho we ver, the
oncept of initial conditions on a population level is not well defined
nless a common reference point in the waveform is set. Therefore,
e adjust p 0 such that the EMRI waveform will plunge after 10
r (Stein & Warburton 2020 ). For our fiducial example outlined in
ection 4 , we assume a LISA observing window of 4yr in line with

he current mission proposal (Amaro-Seoane et al. 2017 ). Our choice
o allow for EMRI plunges to occur up to 10 yr after the beginning
f LISA observation is made to accommodate the presence of EMRIs
n the data that plunge after the end of the observation window.
e glecting these ev ents as being undetectable is not typically a

easonable approximation. In many cases, ρopt > ρ t even for t plunge =
0 yr, so some detectable events in the data are ignored despite this
xtension of EMRI plunge times to the post-window regime. By
 xcluding these ev ents that plunge after 10 yr, the results of our
opulation inference will be conserv ati ve. We include this effect
o demonstrate that our approach is capable of accommodating a
ost-window cut on t plunge , but acknowledge that the tuning of such
 cut-off point with respect to the detectability of the excluded
ignals is an issue that warrants further investigation in future 
ork. 

Waveform generation also includes some additional considera-
ions to transform from the source frame to the detector frame. Prior
o waveform generation, we convert source-frame masses to detector-
rame masses with the mapping M det = (1 + z) M (Krolak & Schutz
987 ). F or conv enience, we do not include a detector response in
ur EMRI waveform modelling and instead work in terms of the
aveform strain [as opposed to the TDI combinations that the LISA
etector outputs will be used to construct (Tinto & Dhurandhar
021 )]. This choice leads to a de generac y between φK and φS ,
hich we navigate by defining a new parameter �φ = φS − φK .
ur approach can incorporate a chosen LISA response by reverting
ack to the separate angles and including the response function in
aveform generation. As the addition of a response function does
ot significantly alter EMRI SNRs, we do not expect its exclusion to
ffect the validity of our approach. 

F or our wav eform model, we choose the fifth-order post-
ewtonian Augmented Analytic Kludge recently implemented in

he FEW package (Chua, Moore & Gair 2017 ; Katz et al. 2021 ). The
alidity of our population inference framework should not depend
trongly on this choice, as the EMRI SNR function should remain
ell behaved and smooth for any reasonable choice of waveform
odel, although the specific numerical results may vary for different
aveforms. 
To accommodate our choice of initial conditions, we generate 10

r EMRI waveforms in the time domain with a sampling rate of
.1Hz, and crop them according to their (randomly sampled) t plunge 

alues. We calculate the waveform’s ρopt value via equation ( 16 ) and
roduce a noise-realized SNR estimate ρn by drawing a sample from
quation ( 15 ). Detection is e v aluated via equation ( 14 ). 

2 Parameter estimation 

 or wav eforms that pass the detection threshold, we proceed to
raw samples from the posterior distribution on θ . Operating under
he LSA, we determine the FIM � from numerical waveform
eri v ati ves computed using the five-point stencil method (Sauer
012 ). Appropriate step sizes that produce accurate (and stable)
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umerical deri v ati ves were determined empirically by computing 
 ∂ � h | ∂ � h 〉 (the FIM diagonal terms) on a grid and identifying regions
f step-size space for which this converged. This stability was then 
erified across the EMRI parameter space. With � computed, we 
hen invert it to obtain the covariance matrix of the LSA likelihood.
IMs for EMRI waveforms typically have large condition numbers, 
hich can cause issues when performing matrix inversion; we 
itigate this by employing singular value decomposition (SVD) to 

ompute the pseudoinverse of � (Ben-Israel & Greville 2003 ). The 
umerical stability of this inversion can also be problematic, even 
or double precision; to alleviate this, we perform the SVD with 
00-point decimal precision using the MPMATH package (Johansson 
t al. 2013 ). We also perform some additional verification of the
alidity of the LSA likelihood as a substitute for the full likelihood
s recommended in Vallisneri ( 2008 ). This check is performed by
xamining the ratio between the LSA and full likelihood, which 
e denote r . By sampling the 1 standard deviation isoprobability 

ontour in the LSA likelihood and computing | log 10 r | for each of
hese samples, we can examine whether the high-probability regions 
f the LSA and the full likelihood are consistent. Following Vallisneri 
 2008 ), we accept the LSA likelihood as a suitable approximation
f and only if 90 per cent of the samples satisfy | log 10 r | < 0.1. We
ound that for waveforms with ρopt > 10 that this condition was 
atisfied in all cases, which is well below our chosen SNR threshold
f 20. 
Our goal is to obtain posterior samples via the LSA that are

epresentative of those that would be obtained from sampling the 
rue posterior. In the absence of noise, the likelihood will peak on
he true values provided there are no degeneracies in the parameter 
pace. For EMRIs, this is not generally true, but the degeneracies 
re non-local and therefore do not affect the morphology of the 
osterior near the true values (Chua & Cutler 2022 ). However, 
hen noise is included, the likelihood shifts in a random direction 

n parameter space such that the true values are no longer at the
aximum likelihood point. To simulate this measurement effect, we 

raw one sample from the posterior (which, assuming broad uniform 

riors, is equi v alent to the e vent likelihood) and recompute the FIM at
his new point (Stevenson, Berry & Mandel 2017 ). Finally, with our
econd FIM computed, we invert it and draw S = 10 4 samples from
he corresponding multi v ariate normal distribution. The posterior 
amples in d L are converted to samples in z assuming a standard
osmology, and detector-frame masses then converted back to the 
ource frame by dividing through by (1 + z) on a per-sample basis.
his modified set of posterior samples is the final product of the

ndividual EMRI event simulation. 

PPENDIX  B:  N E U R A L  N E T WO R K  D E S I G N  

N D  T R A I N I N G  

LPs are tuneable mappings between input and output vectors 
of specified lengths) that consist of a layered structure of matrix 
ultiplications which are passed through non-linear functions. The 

on-linearity between each layer, combined with a large number 
f tuneable parameters in each matrix multiplication, enables the 
esulting neural network to mimic complex mappings between 
igh-dimensional spaces (Goodfellow et al. 2016 ). This tuning is 
erformed in a process known as training, in which the performance 
f the neural network is maximized with respect to a pre-computed 
ata set. 
able B1. Architecture and training settings chosen for our two MLP neural
etworks introduced in Section 3 . 

etting SNR MLP α( λ) MLP 

umber of (hidden) layers 10 8 
eurons per layer 128 128 
cti v ation function SiLU SiLU 

escaling Unit normal Unit normal 

ptimizer Adam Adam 

earning rate 5 × 10 −4 5 × 10 −4 

atch size 10 4 10 5 

ax epochs 10 5 10 3 

oss function L1 L1 

The number of required neurons and layers (which describe the 
imensions of each matrix multiplication) in an MLP depends on 
he complexity of the function to be interpolated and the num-
er of interpolation dimensions. Due to the stochastic nature of 
raining neural networks, tuning of the learning rate, batch size, 
nd number of iterations employed during training is required to 
aximize performance. For complicated problems, optimization 

echniques may be employed to explore the space of network 
ettings and identify a sensible configuration (Feurer & Hutter 
019 ). In our case, the problem is sufficiently low-dimensional 
hat we were able to obtain ef fecti ve MLPs through the manual
uning of network settings. Network complexity was gradually 
ncreased through the addition of neurons or layers until o v erfit-
ing (Goodfellow et al. 2016 ) was observed. This is characterized 
y the performance of the network on testing data degrading 
espite continued impro v ement in performance on training data. 
t this point, training settings were adjusted to minimize this 
 v erfitting. The choice to rescale training data to that of a unit
ormal distribution, and to use the Adam optimization algorithm 

Kingma & Ba 2014 ), was made following current best practices
Goodfellow et al. 2016 ): use of other optimization or rescaling
unctions was not found to significantly affect network perfor- 
ance. 
The resulting network settings chosen for the SNR and selection 

unction MLPs, summarized in Table B1 , are almost identical. Two
xtra hidden layers are added for the SNR MLP, which is to be
 xpected giv en the higher dimensionality of the EMRI parameter
pace in comparison to the hyperparameter space. 

PPENDI X  C :  FULL  HYPERPOSTERI OR  

B TA I N E D  F RO M  4 - Y R  SCENARI O  

he full hyperposteriors from the population inference in Section 4 
re shown in Fig. C1 . By including the mass range parameters, we
an observe a more subtle consequence of the presence of selection
iases: o v erconstrained hyperposteriors. Ne glecting selection effects 
eads to an underestimation of the error on parameters: this is reflected 
n the P–P plot analysis of Section 5 , where it is demonstrated that
hese effects lead to globally inconsistent hyperposterior effects at a 
tatistically significant level. 
MNRAS 522, 6043–6054 (2023) 
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Figure C1. Full reco v ered hyperposteriors for our example scenario with selection effects corrected for (solid) or ignored (dashed). The true values of 
each hyperparameter are indicated by the cross-hairs. Significant bias is present for λμ, with more minor bias for λM 

. The rate R is accurately reco v ered 
with the inclusion of selection effect correction. For other hyperparameters, the dashed hyperposteriors are o v erconstrained when compared to the corrected 
hyperposteriors. 
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