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PLCPrint: Fingerprinting Memory Attacks in
Programmable Logic Controllers
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Abstract—Programmable Logic Controllers (PLCs) constitute

the functioning basis of Industrial Control Systems (ICS) and

hence are often a focal point for attackers to exploit. Previous

attacks have seen PLC memory maliciously altered in order to

disrupt the underlying physical process. Different types of mem-

ory attack can cause a similar impact on the PLC’s operation and

result in indistinguishable physical manifestations. Consequently,

delays in triaging attacks through digital forensic practices can

induce significant financial loss, physical damage to the infras-

tructure, and degradation of safety. In this work, we propose

PLCPrint, a novel vendor-independent fingerprinting approach

that utilises PLC memory artefacts to perform detection and

classification of memory attacks. PLCPrint uses PLC memory

register mapping, a novel method exploiting the relationship

between PLC registers and memory artefacts including the PLC

application code. Through this, registers are assigned a Mapping

Condition (MC) to indicate how they exist within the PLC mem-

ory artefacts. We evaluate the performance of PLCPrint over

realistic emulations conducted at a real testbed emulating water

filtration and distribution. Through PLCPrint we depict how MC

deviations are utilised within supervised learning schemes such as

to adequately classify PLC memory attacks with high accuracy

performance. In general, we demonstrate that PLCPrint fills the

gap in the context of attack technique triaging since this has been

a missing element within current ICS forensics schemes.

Index Terms—Anomaly Classification, Anomaly Detection,

Cyber-Security, Digital Forensics, Industrial Control Systems,

Machine Learning, Programmable Logic Controllers

I. INTRODUCTION

C
ONTROLLING and monitoring automated physical pro-
cesses through Industrial Control Systems (ICS) is funda-

mental to the daily operation of many Critical National Infras-
tructure (CNI) services. These include but are not limited to
water treatment, electrical generation, manufacturing facilities,
and transportation. Moreover, ICS are becoming increasingly
targeted in cyber attack campaigns executed by advanced ad-
versaries, which could have devastating consequences [1]. ICS
have become more interconnected with enterprise Information
Technology (IT) systems that use Internet-facing gateways
and cloud technologies, further augmenting the cyber threat
[2]. Previous attacks have resulted in extreme financial reper-
cussions, the loss of critical utilities, and physical damages
through degrading safety controls [3].

Specialised industrial computers, known as Programmable
Logic Controllers (PLCs), play a critical role in ICS through
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electrically controlling actuators and sensors that are part of an
underlying physical process. PLCs have become increasingly
targeted by numerous real-world ICS attacks, primarily due
to their importance within an ICS. A recent attack targeting
Israeli water treatment facilities in 2020 and sophisticated mal-
ware known as Pipedream developed by the Chernovite threat
group are indicative of the continuous effort to maliciously
target PLCs in ICS attack campaigns [3] [4].

The threat against PLCs is augmented by the lack of security
controls inherent to PLCs. Previous studies have proposed
fingerprinting approaches for detecting attacks targeting PLC
operations to mitigate the threat [5]–[11]. While many of
these studies provide promising results, they are limited to
the detection of an attack primarily through modelling normal
and anomalous network communication data. As stealth is
often a key objective of contemporary cyber adversaries, many
PLC attack vectors can be missed by strictly focusing on
network traffic as a detection feature set [12]. Consequently,
attacks would go unnoticed, delaying the triaging and recovery
process resulting in further disruption and damage [13].

In this paper, we introduce PLCPrint, a fingerprinting frame-
work for PLCs that enables attack detection and classifica-
tion using real-time composition of PLC memory fingerprints
through correlating the static and dynamic behaviour of PLC
registers. PLC registers are individual variables linked to
specific register areas, such as inputs or outputs, and often
change while the PLC is running. Registers are then mapped
against PLC memory artefacts including run-time memory
snapshots and the PLC application code, often referred to
as Ladder Logic, to determine each register’s dynamic and
static status, respectively. We refer to this approach as PLC
memory register mapping. PLCPrint is successfully evaluated
over a representative water treatment testbed using two PLC
models from different vendors, Siemens and Allen-Bradley,
highlighting the generalisability of the methodology. To the
best of our knowledge, the approach discussed is novel and
exclusive to the PLCPrint framework.

We summarise the contributions of this paper as follows:

1) PLC Memory Register Mapping: We present an en-
tirely novel vendor-independent method that assesses
the relationship between different properties of PLC
registers, specifically determining how registers are used
in PLC memory in relation to PLC memory artefacts.

2) Synthesised PLC Memory Artefacts: We propose a
synthesised data set comprising different PLC memory
artefacts, including the PLC application code, which has
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TABLE I: Comparison of PLCPrint and Existing ICS Fingerprinting Approaches for Attack Detection and Classification. Key:

l= Coverage, w= Limited Coverage, m= No Coverage. For PLC Focus this denotes Multiple PLCs, Single PLC, No PLC. For
Testbed Evaluation this denotes Representative Physical Setup, Standalone Device, No Testbed Evaluation, respectively.
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Gonzalez & Hinton (2014) [5] m l m w m m m m l

Peng et al. (2015) [6] m l m w w m m l m

Formby et al. (2016) [7] m l m m w m m l l

Yau & Chow (2017) [14] w l m w m l m m m

Ahmed et al. (2018) [15] m l m w l m m m l

Shen et al. (2018) [16] m l m m m m m l m

Chan et al. (2019) [9] m l m w m l m m m

Ghazo & Kumar (2019) [17] m m m l l m m l m

Stockman et al. (2019) [10] m l m w m m m m l

Ahmed et al. (2020) [18] m l m w l m m m l

Yang et al. (2020) [11] m l m l w l m m m

Yimer et al. (2020) [19] m l m m m m m l m

Ahmed et al. (2021) [20] m l m l l m m m l

PLCPrint l l l l l l l m m

not been explored in previous studies within the context
of PLC anomaly detection and classification.

3) PLC Memory Attack Vector Model: To evaluate
PLCPrint, we propose a threat model targeting different
areas of PLC memory. We developed several attack
scenarios that use this threat model to target PLCs
controlling a representative ICS testbed. We expand on
previous work by categorising types of attacks through
the MITRE ATT&CK Framework.

4) Memory Attack Type and Technique Classification:

Through the memory register mapping approach, we
demonstrate high performance for PLC attack type and
technique classifications by comparing multiple machine
learning algorithms to rapidly enable the initial stages of
ICS digital forensics.

The remainder of this paper is structured as follows. Sec-
tion II discusses the literature related to PLC fingerprinting
approaches. Section III introduces the PLCPrint fingerprinting
model and methodology. Section IV discusses the threat model
and attack scenarios that target PLC memory. Our evaluation
of PLCPrint is provided in section V. Finally, section VI
concludes this paper.

II. BACKGROUND AND RELATED WORK

Fingerprinting is a technique often used in security that uses
a set of correlated data points to define the behaviour of an
application, device, or system. Table I presents a comparison
of the key features from previous ICS fingerprinting studies
with the PLCPrint model that our paper presents to emphasise
where the key novelty lies. We separate features into three
categories; i) approach objective, ii) approach evaluations, and
iii) data artefacts used.

A. Objectives of ICS Fingerprinters

The majority of existing fingerprinting approaches for ICS
provide functionality for anomaly detection [5]–[7], [9]–[11],
[14]–[16], [18]–[20]. There is an insubstantial number of
studies that have explored the crossover between anomaly
detection and forensic response, with only one study being
identified to have limited forensic applications through times-
tamps associated with state changes [14]. However, this is a
passive form of forensic analysis and only provides a benefit
to post-incident analysis. To the best of our knowledge, the use
of PLC fingerprinting for automated real-time attack detection
and classification using PLC memory artefacts has not been
explored in the literature at the time of writing. A novel
approach proposed in [21] demonstrates how comprehensive
images of PLC memory can be acquired remotely and during
run-time. Although this approach does not provide utility for
anomaly detection or attack classification, it emphasises that
the contents of PLC memory provides crucial artefacts for
post-incident understanding of attack provenance.

B. Evaluating ICS Fingerprinters

The comparison in table I separates evaluation into two
elements. Firstly, PLC focus examines the generalisability of
the proposed fingerprinting approach and whether it has been
tested on one or more different PLC model or vendor. Very
few studies perform evaluations on multiple PLC models,
with most only evaluating one model, resulting in challenges
regarding generalisation of the methodology. Secondly, fin-
gerprinting approaches have been evaluated on representative
ICS testbeds [22] or, more commonly, using publicly available
existing datasets [15], [17], [18], [20].
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Fig. 1: PLCPrint high-level architecture.

C. Fingerprinting Data Artefacts

A range of different data artefacts have been used as
properties of ICS fingerprinting approaches. Several previous
studies have used characteristics of ICS network data in
fingerprinting methods for anomaly detection [6], [7], [16],
[17], [19]. As ICS network traffic is primarily deterministic,
models of normal system behaviour are able to be accurately
generated in comparison to generic IT systems, where there
would typically be a greater amount of noise in the network
data [23]. Other studies used the dynamic states of device
input/output (I/O) registers to fingerprint ICS processes [9],
[11], [14]. None of the studies in Table I have looked to use
PLC application code as an artefact for device fingerprinting.
In addition, few approaches have used multiple data sources
for the fingerprinting approach [7], and no identified studies
have examined a hybrid data model using PLC registers and
application code in synergy. A selection of works conducted by
Ahmed et al in 2018 [15], 2020 [18] and 2021 [20] present
fingerprinting approaches that use side-channel data sources
to identify unique patterns governing the underlying industrial
process such as power and electromagnetic waves.

III. METHODOLOGY

As presented in section II, there are a number of research
limitations with existing ICS fingerprinting approaches, partic-
ularly regarding their utility to digital forensics applications.
In this section, we introduce PLCPrint, an attack detection and
classification framework for PLCs. The high-level architecture
of PLCPrint comprising five modules is presented in Fig. 1.

A. PLC Memory Artefacts

PLCs are used in a variety of industrial applications where
they are physically connected to different sensors and actuators
either directly into the PLC’s Input/Output (I/O) modules or
through a remote I/O interface. These physical entities are
accessed and manipulated through the PLC’s programmable
logic. PLC memory artefacts have previously been key targets
in a variety of real-world and proof-of-concept PLC malware
and wider ICS attacks [3], [12].

1) PLC Operation States: A PLC has a finite set of defined
states S that it can be in, which are dependent upon how
the PLC has been programmed and the physical process it
controls. We define a set of states as; S{s1, s2, . . . , sn} where
n 2 N and dependent on the physical process. For example, a
PLC controlling only one light will have a smaller number of
states than one controlling a water treatment process, where
each state involves the manipulation of physical sensors and
actuators, such as pressure sensors, valves, and pumps. At a
given point in time, the physical process under control can be
in a particular state (sn). A state has a physical manifestation
S
ph comprising a set of active (ac) and inactive (in) sensors

(X) and actuators (Y ) connected to the PLC:

S
ph{X

ac

Xin
}+ {Y

ac

Y in
}. (1)

2) PLC Registers: In addition, each PLC state also has
a logical manifestation S

lo that represents a unique set of
registers (R) within the PLC’s memory; Slo = {r1, r2, . . . , rk}.
Therefore:

S
lo{r1, r2, rk} ⇢ S

lox
ac

xin
+

y
ac

yin
(2)

PLCs use different register areas to generate dynamic vari-
ables that can change during the operation of the physical pro-
cess under control. We defined R as the super-set of registers
that a PLC uses from the five common register areas that are
used for basic PLC operations: Inputs I , Outputs Q, Holdings
H , Timers P and Counters C; R{I,Q,H, P,C}. Each register
area has a predefined finite number of registers assigned to it,
which is determined primarily by the PLC model. We define
each register area as: I{i1, i2, . . . , iv}, Q{q1, q2, . . . , qw},
H{h1, h2, . . . , hx}, P{p1, p2, . . . , py}, C{c1, c2, . . . , cz}. All
register sets I,Q,H, P,C have a set of active (ac) and inactive
(in) registers, for example:

I{Iac_I
in}, Q{Qac_

Q
in} . . . (3)

Therefore, we define the logical manifestation of each PLC
state (sn) at time point t as:

s
l
n
o =

I
_
Q

_
H

_
P

_
C

t
(4)

3) PLC Application Code: PLC application code is the
main user-defined program that PLCs cyclically execute to
control physical processes and perform related functions. It is
programmed using a standardised PLC programming language
according to the international standard ISO/IEC61131-3, such
as Ladder Logic, or Structured Text [24]. PLCs interface
with sensors and actuators by assigning them to registers
though this programmable logic. PLC application code is
programmed by combining registers with program objects,
which determine how the corresponding register is used and
how the proceeding logic should be executed. Hence, we can
examine PLC application code at a low-level to identify which
registers are used within the code itself. We define an image
of PLC application code as B. Each image Bi contains a set
of static instances F = {f1, f2, . . . , fm} where m = total
number of functions in the application code. Therefore:

8r 2 R 9r 2 fm (5)
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B. PLCPrint Enumeration
1) Automated PLC Identification: The initial stage of

PLCPrint involves lightweight automated asset discovery to
identify the vendor and models of the PLCs that are ac-
cessible over the ICS network. To do this, we use and
extend the functionality of an existing Python-based network
reconnaissance tool called PLCScan1. Originally, PLCScan
only reveals PLCs using the Siemens S7comm protocols or
Modbus-TCP, however we extend the tool to also identify
PLCs using the Common Industrial Protocol (CIP), specifically
EtherNet/IP often used by Allen-Bradley PLCs. Identifying the
PLC vendor and model is an important first step in PLCPrint
as although our general methodology is vendor-independent,
different software scripts have been developed to access the
memory artefacts from specific PLC models.

2) Defining PLC Master Register List (MRL): Once a
PLC is identified, PLCPrint defines the accessible registers,
referred to as the Master Register List (MRL) within five
memory register areas defined in section III-A, I,Q,H, P,C

from the PLC, as illustrated at stage 1 in Fig. 2. We have
implemented a hybrid approach to this where PLCPrint can
either automatically populate the MRL from a predefined
range based on the model identified, or the user can manually
enter the number of registers to capture. For our evaluations,
we opted for the manual approach as it provided greater
control when performing experiments on the ICS testbed.

C. PLC Data Artefact Acquisition
1) Register State Snapshot: Fig 2 depicts the PLC memory

register mapping process which fingerprints the changes in
PLC memory artefacts while the PLC is in operation. Subse-
quent to defining the MRL, a register snapshot is acquired,
which defines whether each individual register in the MRL is
currently active or inactive at that point in time. Each register
is assigned 0 if inactive and 1 if active in PLC memory at
the time we acquire the register state snapshot. I , Q and H

registers are naively in discrete format, however P and C

registers are not as they generate analog data signals such
as time elapsed and counter values. Hence, to process a P

or C register, the register’s current value is compared to its
value in the previous dynamic register snapshot. If the value
has changed, then the state of the timer or counter object is set
to be True for that specific snapshot. As an example, a binary
vector representing eight I registers [1, 0, 0, 1, 0, 0, 0, 0] is read
as registers I0 and I3 being active, and all other I registers
inactive during a specific dynamic register snapshot.

2) PLC Application Code: An image of the application
code is acquired from the PLC using over-the-network data
acquisition techniques, which have been seen in previous
research as a viable method for acquiring data from PLCs
[25]. Specifically, we utilise the Snap7 communications library
that enabled data acquisition from Siemens PLCs running the
S7Comm protocol2. For the Allen-Bradley PLCs, we used an
approach implemented in our previous research that extended
the PyLogix3 library supporting the EtherNet/IP protocol [26].

1https://github.com/meeas/plcscan
2http://snap7.sourceforge.net/
3https://github.com/dmroeder/pylogix

Fig. 2: PLC Memory Register Map (PMRM) generation illus-
trating process of defining dynamic and static status for each
register in the Master Register List (MRL).

Fig. 3: PLCPrint PLC Memory Register Mapping (PMRM)
Analysis Process. The fingerprint creator supplies the finB

baseline and the finT test fingerprints into the analyser.

D. Fingerprint Creator

The fingerprint creator module uses the acquired PLC
memory artefacts to determine how the registers in the PLC
MRL are related to these artefacts. We define each register as
having a dynamic and a static status, which are determined
by the registers existence in the register state snapshot and the
PLC application code, respectively. The calculation of these
status are then combined to determine the MC of a register,
resulting in a PLC Memory Register Map (PMRM).

1) Register Dynamic Status: As already mentioned, the
initial stage of PLCPrint produces the MRL containing a list
of registers in each of the five register areas. Every register has
a dynamic nature allowing it to change during the operation
of the PLC and so we refer to this as the register’s dynamic
status. The changing of register dynamic statuses is often
correlated with the operation of the physical process and
execution of the PLC application code. Thus, the dynamic
status of a given register is likely to change while the PLC
controls the physical process, however transitions would be
expected to be deterministic based on the execution of the
PLC application code. For instance, the dynamic status of a
register may be 0 at time tk but change to 1 at tk+1. Hence,
PLCPrint accumulates multiple PMRMs over a period of time,
which is user defined, by continuously monitoring the value
of a register and determine whether it is active or inactive.
These values are then collectively compiled into the PMRMs
to generate a fingerprint dataset.
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2) Register Static Status: Each register also has a static
status, which is dictated by the register’s relationship to the
PLC’s application code. The application code comprises one
or more function blocks, herein referred to as static instances,
that contain instructions written in one of the standardised PLC
programming languages. Each static instance is then analysed
to determine whether a PLC register exists within the static in-
stance, which determines the register’s static status. Separating
the application code into individual static instances facilitates a
greater level of granularity when performing forensic analysis
in subsequent attack response stages discussed later.

3) Register Mapping Conditions (MC): Once a value has
been assigned to a given register’s dynamic status and static
status, we determine the register’s final Mapping Condition
(MC), which is based on a truth table with four conditions.
The dynamic and static statuses are cross-referenced resulting
in the register being assigned one of four MC, which are
introduced below.

• MC 1 - Registers that do not exist within a specific
static instance of the PLC application code and are not
currently active: rn /2 fm ^ rn /2 R

ac

• MC 2 - Registers that do exist within a specific static
instance of the PLC application code but are not currently
activate: rn 2 fm ^ rn /2 R

ac

• MC 3 - Registers that do not exist within a specific static
instance of the PLC application code but are currently
active: rn /2 fm ^ rn 2 R

ac

• MC 4 - Registers that do exist within a specific static
instance of the PLC application code and are currently
active: rn 2 fm ^ rn 2 R

ac

E. Memory Fingerprint Generation
Subsequent to assigning an MC to every memory register

in the PLC’s MRL, PLCPrint groups all static instances under
one timestamp (i.e., stage 4 in Fig. 2), and outputs this as
a single PMRM shown in stage 5. The size of a PMRM
is dependent on the number of static instances derived from
the PLC application code, since different static instances are
very likely to include contrasting register instantiations within
the underlying control logic. The timestamp is calculated at
the start of stage 2 in the mapping process and is used in
subsequent stages of analysis and digital forensics. As a PLC
typically has more than one possible state, multiple PMRMs
are required to build a PLCPrint fingerprint. The process is
repeated from stage 2 to 5 for n times, where n represents the
number of PMRMs to be generated. The value of n should
include the number of PMRMs required to map every PLC
state change that is possible in the current system in relation
to the physical process, and can either be set as a predefined
fixed value or left unassigned. A multiset of n PMRMs are
then grouped into a single dataset to form a PLCPrint memory
fingerprint for a particular PLC device. Once the fingerprint
has been created, it is stored in the PLCPrint fingerprint store
(database). The baseline fingerprint for a given PLC is shown
as finBp where p represents the PLC.

F. Attack Detector
The attack detection component of PLCPrint instigates the

continuous generation of test fingerprint samples, referred to

as finT , which are produced at time intervals of t duration in
minutes. The attack detector comprises a data pre-processing
module, which accesses the fingerprint store and retrieves
the active finB dataset containing all of the PMRMs for a
particular PLC. finB and finT are used by a novelty detector
as training and test datasets, respectively. If the detector
identifies anomalous behaviour through the contents of the
finT , it flags the data and passes the finT to the fingerprint
analyser module.

G. Fingerprint Analyser
The fingerprint analyser module is presented in Fig. 3. The

module firstly examines both the baseline finB and test finT
to convert their respective PMRM multisets into sets so that
each element, in this case a unique PMRM, has a multiplicity
of 1. Thus, we identify all of the unique PMRMs in finB

and finT . Generating a set of unique PMRMs removes any
repetition within the finB and finT fingerprints, enabling us
to define a set of PMRM states that the underlying physical
process, controlled by the PLC, can be in. We denote finB

UP

and finT
UP as the identifiers for the unique set of PMRMs

in finB and finT , respectively. Identifying unique PMRMs
in both the baseline and test fingerprints also enables common
indexing when comparing the PMRMs in each file.

Once the sets of unique PMRM states have been created,
PLCPrint compares the MC of each register in finB

UP

PMRMs with the registers at the same index in the finT
UP

PMRMs. Any deviations between MCs of a register are
recorded. If a register’s MC has deviated in the test PMRM
from the baseline PMRM, PLPrint then examines which MC,
as presented previously, the register has deviated to.

Upon comparing the PMRMs in finB with finT , PLCPrint
calculates the total average deviation for each of the four
MCs that finT has generated from finB. An overall rolling
average deviation score is also calculated so that we can
identify significant deviation changes. The deviation is used
instead of a total count of each MC since, if we took only
the latter, then it would be possible to miss changes that have
occurred to individual registers. For example, if we found that
register I2 changed from MC 1 to 3 but register I3 changed
from 3 to 1, then the total count for MCs 1 and 3 in this
example would not change. Hence, a difference in the total
number of each MC would not be calculated. The fingerprint
analyser outputs deviations found between the PMRMs in the
finB

UP and finT
UP , which is referred to as DEV

finBUP

finTup .
This is the cumulative increase of deviations for each of the
four MCs, using the timestamps as markers to calculate the
seconds that have elapsed between the start and end of finT .

H. Attack Provenance
The final element of PLCPrint is responsible for performing

the attack classification using the outputs from the fingerprint
analyser module. Multi-class classification algorithms are used
with the contents of DEV

finBUP

finTup as the data input to classify
the attack type. To improve the forensic utility of PLCPrint, a
copy of the original finT data sample is also obtains, which is
then contained as evidence in the fingerprint store. A copy of
the PLC memory artefacts acquired to generate the finT are
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Fig. 4: PLC Memory Threat Model within context of GULP
testbed (Red lines indicate attacker path to PLC).

also contained to maintain the chain of evidence and enable
data provenance for subsequent forensic analysis.

IV. EXPERIMENTAL SETUP AND THREAT MODEL

A. Glasgow University Liquid Purification (GULP) Testbed
All of our data sets were generated through the Glasgow

University Liquid Purification (GULP) testbed. GULP is a
physical ICS testbed that emulates part of the water treat-
ment process, shown in Fig. 4, and features three stages: (i)
filtration, (ii) disinfection and (iii) distribution. GULP consists
of real physical sensors and actuators such as solenoid values
and water pumps to simulate the three water treatment stages.
B. PLC Attack Scenarios

Our threat model depicted in Fig. 4 assumes the position of
either an outsider who has gained remote access to the control
network through exploited credentials, as seen in previous real-
world ICS cyber attacks [3], or an insider who already has
physical access to the engineering workstations. The threat
model therefore makes the following assumptions:

• The attacker has no prior knowledge of the ICS physical
process, however they have performed reconnaissance to
target specific PLC models;

• The attacker can access the engineering workstation that
has a physical connection to the PLC network;

• The attacker has bypassed PLC password protection
controls, if enabled, either through brute-forcing or prior
knowledge of hard-coded credentials.

PLCPrint is designed to detect and analyse attacks that
target PLC memory artefacts. Therefore, we propose several
scenarios that exploit different areas of PLC memory using
the MITRE ICS ATT&CK framework as a guide for attack
techniques against PLCs [27]. Table II presents the MITRE
attack techniques that were identified to target PLC memory
artefacts, which we group into two attack types depending on
whether the technique targets memory artefacts that are not
expected to change (static) and those that do change (dynamic)
during normal PLC run-time. For instance, a static attack
scenario could involve an adversary modifying the logic within
the PLC application program by changing a program object
that an input or output is assigned to, or altering the use of
registers within such logic. Dynamic attack scenarios involve
manipulating the run-time data elements of PLC operations,
such as brute forcing a sensor to be active. The attack scenarios

TABLE II: MITRE ICS ATT&CK Techniques Targeting PLC
Memory Contents.

Attack Type MITRE Technique Observed In

Program Download
(T0843) [3], [30]

Modify Program (T0889)
(StaticMP) [29], [31]Static

Modify Controller
Tasking (StaticMCT)

(T0821)
[3], [12]

I/O Image (DynamicIO)
(T0877) [11], [14]

Dynamic Brute Force I/O
(DynamicBF) (T0806) [11]

are generalised and implemented against two PLC vendors.
While password protection on PLC application code is now
a common security control provided by many ICS vendors
[28], we assume that the attacker has bypassed this. Previous
studies have demonstrated approaches to circumvent PLC
password-protected control logic, for instance by overwriting
weak password hashing and or accessing vendor hard-coded
credentials that could be exploited [29].

One additional type of insider threat that is not included
within the scope of our attack scenarios is the act of physical
sabotage. These types of attack can include cutting electrical
cables and tampering with power supplies. As this type of at-
tack warrants a different approach as detection and subsequent
analysis of sabotage attacks is unlikely to be viable through
the use of PLC data artefacts alone, such as network metrics
and memory snapshots, which is the focus of PLCPrint.

V. EVALUATION

We evaluate PLCPrint with two PLC models from different
vendors to determine whether the PLC memory register map-
ping process can be generalised across PLC vendors. Specifi-
cally, we use Siemens S7-300 and Allen-Bradley ControlLogix
1756-L71 (AB CLX) PLCs. Alternative PLC models could
be included in future work by extending the functionality
of PLCPrint to additional open-source PLC communication
libraries implemented for protocols used by alternative leading
PLC vendors, including Schneider Electric (Modbus-TCP)4,
General Electric5, and Mitsubishi (MELSEC)6. Such libraries
can be used to read PLC registers and acquire various memory
artefacts. The existence of these frameworks, and software
contributions including decompilers by third-parties, is par-
ticularly important due to the lack of tools provided by ICS
vendors themselves. However, there are limitations with the
ongoing maintenance of such open-source libraries, including
providing updates with more recent implementations of vendor
protocol stacks, for instance.

We performed 400 individual attack scenario experiments
using the GULP testbed, 200 scenarios for each PLC. Each
attack type (dynamic and static) has an equal number of
attack scenarios executed, resulting in 200 scenarios for each
attack type per PLC. Each attack scenario generated a test
PLC memory fingerprint finT , which was compared with the
original baseline fingerprint finB for a particular PLC.

4https://libmodbus.org
5https://github.com/mandiant/ics mem collect
6https://pypi.org/project/pymcprotocol/
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One-Class Support Vector Machine (OCSVM) K-Nearest Neighbour (K-NN)

Dynamic Static Dynamic Static
S7-300 AB-CLX S7-300 AB-CLX S7-300 AB-CLX S7-300 AB-CLX

Test Data

Size

(PMRMs)

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

200 0.95 0.97 0.86 0.9 0.94 0.97 0.93 0.96 0.82 0.91 0.86 0.92 0.94 0.97 0.93 0.96
400 0.94 0.95 0.86 0.89 0.9 0.92 0.89 0.94 0.79 0.87 0.82 0.89 0.88 0.92 0.86 0.93
600 0.88 0.92 0.8 0.89 0.85 0.89 0.84 0.89 0.77 0.86 0.82 0.89 0.8 0.89 0.85 0.87
800 0.86 0.91 0.82 0.88 0.84 0.87 0.89 0.93 0.76 0.86 0.81 0.88 0.78 0.88 0.88 0.94
1000 0.86 0.92 0.78 0.88 0.88 0.87 0.84 0.91 0.76 0.86 0.8 0.86 0.78 0.88 0.83 0.89

TABLE III: Novelty Detection Results using OCSVM and K-NN Algorithms.

(a) AB CLX 1756 PLC (b) Siemens S7-300 PLC

Fig. 5: Distribution of MC features influenced by attack type.

A. Attack Detection Performance

We evaluate the attack detection process through One Class
Support Vector Machine (OCSVM) and K-Nearest Neighbour
(K-NN) novelty detectors. OCSVM has been used in many
previous studies within the literature and so provides a good
baseline comparative to related attack detection approaches. K-
NN provides benefits for real-time systems since new training
data can be continuously added. A range of test dataset sizes
based on the number of generated PMRMs were also evaluated
to determine how the sample size impacts the classification
performance. Dynamic and static attack scenarios for each
PLC were conducted for each test dataset size parameter.

The accuracy and F1 results for anomaly detection are
shown in Table III. Both PLCs show high performance reach-
ing F1 scores of 0.97 and 0.92 for the S7-300 and AB
CLX PLCs, respectively, demonstrating the generalisability
of PLCPrint at detecting anomalous PLC behaviour. More-
over, the achieved F1 scores are competitive with existing
PLC anomaly detection approaches [9], [11], [15]. PLCPrint
anomaly detection performs best when the PLCs were subject
to static attacks, possibly as static attacks typically comprise
lower entropy regarding how PLC registers are manipulated.
Dynamic attacks are more likely to include high entropy when
targeting PLC registers and so are less deterministic.

While both OCSVM and K-NN novelty detectors achieved
high performance measures, OCSVM generally is more effec-
tive, indicated not only by the F1 scores, but also by the very
low False Negative Rate (FNR) which is often considered a
more important metric than false positives in the context of
attack detection [32]. Overall, OCSVM achieves an average
FNR = < 0.9%, with the K-NN classifier performing slightly
worse but not significantly at FNR = < 1.0%. High accuracy

measures are also recorded, highlighting that attacks were
detected positively in most cases.

Furthermore, we also examine how the size of the test
dataset impacts on the performance of detection. Size is
represented by the number of PMRMs that a dataset contains.
The detection performance of PLCPrint is poorer with larger
test datasets containing more PMRMs that were previously
unseen in the training dataset. However, PLCPrint is able to
identify anomalous PLC activity with a very small sample of
200 PMRMs. In context, a baseline fingerprint generated by
PLCPrint may contain several thousand PMRMs, depending
on the complexity of the process the PLC is controlling. Thus,
this highlights the sensitivity of the chosen novelty detection
algorithms but emphasises that PLCPrint only requires low
amounts of anomalous data to detect an attack. Smaller
sample sizes would benefit a real deployment of PLCPrint
as it reduces the active data acquisition from PLCs that are
often already resource constrained. The steady decrease trend
in performance as the quantity of PMRMs increases, also
presented in Table III, could be resulting from increased levels
of unexpected noise within the test dataset that has impacted
the overall distribution of data, particularly when we include
larger amounts of attack data points within the datasets.

B. Attack Type Classification Performance
The attack type classification is evaluated using the same

400 datasets acquired for the attack detection evaluation. To
classify attack types, we use the deviation in the four MCs
presented previously in section III-D as our feature set.

We firstly examine how deviations in the four MCs are
dependent on the types of attack. Under dynamic attacks, we
identify a significant increase in MC 3 deviations for both
PLCs at the time where the attack occurred. One reason for this
is that dynamic attack scenarios do not manipulate the PLC’s
application code by changing the static declaration of registers,
but instead dynamically activate or deactivate PLC registers.
Conversely, as static injection attacks do target modifications
to the PLC application code, we see changes in which PLC
registers are or are not statically instantiated within a specific
static instance of the PLC application code. Hence, we see
that static attack scenarios cause a significant increase in the
deviations of MC 2 and a lower deviation increase in MC 3.
The scale of increase in deviations is not particularly important
here as this will depend on external variables such as the
number of registers included in the PLC’s MRL. However,
the significance of the increase in deviations of both MC 2
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TABLE IV: Mapping Condition (MC) Feature Set Combinations.

MC Feature Ft1 Ft2 Ft3 Ft4 Ft5 Ft6 Ft7 Ft8 Ft9 Ft10 Ft11 Ft12 Ft13 Ft14 Ft15

MC1 3 5 5 5 3 3 3 5 5 5 3 3 3 5 3
MC2 5 3 5 5 3 5 5 3 3 5 3 3 5 3 3
MC3 5 5 3 5 5 3 5 3 5 3 3 5 3 3 3
MC4 5 5 5 3 5 5 3 5 3 3 5 3 3 3 3

and 3 for static and dynamic attacks respectively highlights
the importance of these as features for attack classification.

The specific number of deviations for each MC is not
particularly important as this number will partially depend on
the number of possible perturbations that an adversary can
cause. For example, a PLC that has a high number of defined
variables and registers in the MRL also has a high amount of
potential MC deviations that can be caused during an attack.
The relationships between individual MC deviations when
the PLCs are subject to dynamic and static attack scenario
types are demonstrated in Fig 5. The deviations have been
normalised using a standard scalar from 0.0 to 1.0. Moreover,
the diagonal graphs in Fig 5 illustrate the distribution of MC
deviations for static and dynamic PLC attacks. For both PLCs,
there is considerable overlap of MC4 deviations compared
with the remaining MCs, in particular MC2. Furthermore, we
identify a strong relationship between MC2 and MC3 for both
types of attack, emphasised by clearer separation of clustering.
Relationships between deviations in other MC features, includ-
ing MC 1 and 3, and between MC 3 and 4, also indicated high
predictive potential for PLC attack classification. Additionally,
we see very similar distributions of MC deviations are caused
between the different PLC vendors as well, indicating that
the attack type classification approach using MC deviations is
highly generalisable, despite technical differences in how PLC
models are programmed and configured.

While some of the graphs illustrated in Fig 5 display clearer
clustering of features for classifying different types of PLC
attack, it is not the case for all of the MC pairs shown
in the graphs. To better understand the attack classification
performance of each of the four MCs, we evaluate each MC
individually and as a feature set combination by running the
datasets through five supervised machine learning classifiers.
Specifically, we used Logistic Regression (LR), K-Nearest
Neighbour (K-NN), Gaussian Naive Bayes (GNB), Support
Vector Machine (SVM) and Random Forrest (RF) classifiers
due to their applicability to smaller feature sets and low
overhead. We arranged 15 feature sets based on the different
possible MC combinations, which are presented in Table IV.

The subsequent F1 score results are presented as two heat
maps illustrated in Figs. 6a and 6b for the AB CLX and
Siemens S7-300 PLCs, respectively. Each performance test
provides two F1 scores for classifying dynamic and static
attack scenarios, respectively. The F1 scores in Fig. 6 represent
the harmonic mean composed of the dynamic and static F1
scores for each tested classifier and feature set combination
(Ft1 - Ft15 defined in table IV). An average for each feature set
is also included, which is composed of the F1 scores from the
individual classifiers. Generally, the classifiers perform better
for the S7-300 PLC compared to the AB CLX PLC, although
similar feature sets provided similar scales of performance for

(a) AB CLX PLC (b) S7-300 PLC

Fig. 6: Heat maps showing the average F1 scores for each
classifier with each MC feature set as described in table IV.
(Average performance of dynamic and static attacks.

both PLCs. Feature set Ft8, which combines MC 2 and 3,
produces the highest performance for attack type classification
for both PLCs, reaching F1 scores with the K-NN classifier
of 0.94 for the AB CLX and 0.97 for the S7-300 PLC. The
datasets generated by PLCPrint are particularly suited to K-
NN, which results in high accuracy for most of the feature sets
for both PLCs. The F1 scores from Ft8 reinforce our initial
hypothesis that was identified from analysing the graphs in Fig.
5. Conversely, we can see from the results that Ft4, comprising
solely MC 4, was the weakest feature set for classifying
different attack types scoring an average F1 score of 0.57 for
both PLCs. Interestingly, increasing the feature set size does
not strongly correlate with classifier performance, with some
larger feature sets such as Ft10 and Ft13 for the S7-300 PLC in
Fig. 6b performing worse than smaller feature sets. Moreover,
feature sets that do not contain MC 2 generally perform worse
than those that do contain it, emphasising the importance of
static statuses when performing PLC attack classification.

Fig. 7 depicts the average F1 and AUC-ROC scores com-
posed from the results of the aforementioned five classifier
algorithms. The graphs in Figs 7a and 7b illustrate the average
F1 scores for dynamic and static attack type classifications,
and the performance of each attack type based on the cho-
sen feature set. Generally, dynamic attack scenarios result
in higher F1 scores for classification performance compared
with static attacks with both PLCs. One justification for the
differences in F1 scores is that static attacks produced greater
distribution in MC deviations since they can induce changes
in both the dynamic and static status of a register. Conversely,
dynamic attacks can only influence a register’s dynamic status.
For the AB CLX PLC, the classification of dynamic attacks
always out-performed the classification of static attacks, how-
ever this is not the case for the S7-300 PLC, where the F1
scores are often reciprocal. In particular, static attacks are
classified more accurately for the S7-300 PLC. It is likely that
this is due to a larger number of register purtubations being
possible on the S7-300 PLC compared with the AB CLX,
which is a consequence of how the PLCs were programmed
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(a) AB CLX PLC F1 Scores. (b) S7-300 PLC F1 Scores. (c) AB CLX PLC AUC-ROC. (d) S7-300 PLC AUC-ROC.

Fig. 7: Attack classification performance of each feature set for both PLC models: a & b) Average F1 Scores composed from
5 classifier algorithms for dynamic and static attack scenarios; and c & d) AUC-ROC scores for each classifier.

to control the GULP testbed physical process. The graphs in
Figs. 7c and 7d illustrate the attack classification AUC-ROC
scores for each classifier when different feature sets are used.
The K-NN classifier performs best with a slightly higher AUC
score for the AB CLX PLC and significantly increased for the
S7-300 PLC. The performance of all five classifiers generally
improves as the feature set sizes increased, with the exceptions
of Ft4, Ft7, Ft10 and Ft13, which all contain MC 4, identified
to be the weakest feature, and omit the strongest feature, MC
2. From the perspective of deploying PLCPrint in a real-world
ICS, the K-NN algorithm is particulary beneficial as it involves
instance-based learning and can adapt to new training data as
it is collected over long periods of time. Thus, K-NN can
respond quickly to input changes during real-time.

C. Attack Technique Classification
In addition to evaluating PLCPrint’s ability to classify

between static and dynamic attack scenarios, we examine
whether the individual attack scenario techniques, presented
earlier in table II, can also be differentiated. We demonstrate
this analysis only on the S7-300 PLC since it achieved higher
performance scores in the aforementioned attack classification
stage compared with the AB CLX.

Using the GULP testbed, we execute an additional 200
attack scenarios using the same process and tools as discussed
in section IV and conduct an equal number of scenarios for
four of the attack techniques presented in table II, resulting in
50 scenarios for each attack technique. The modify program
and modify controller tasking techniques always require the
program download technique to be used in conjunction and
so the program download technique was not evaluated inde-
pendently. The PLCPrint methodology is identical to previous
experiments and the finT datasets generated from the attack
scenarios are analysed through the same approach as in section
III. We evaluate all datasets using the five classifier algorithms
and the eight best performing feature sets from the attack
classification evaluation in section V-B.

The plots in Fig. 8 illustrate the distribution of the four
different attack techniques when evaluated with pairs of the
MC feature sets. The combination of MC 2 and 3 continues to
be the most identifiable feature set at distinguishing between
individual attack techniques. However, unlike the graphs in
Fig. 5, there is additional noise when trying to identify the
specific attack techniques since there are more similarities
between two techniques from the same attack type than there is
between the two attack types (dynamic and static) themselves.

Fig. 8: Attack techniques MC feature set distribution showing
greater ambiguity between classification clusters.

(a) Classifier F1 scores for high-
est performing MC feature sets.

(b) Average F1 scores for classify-
ing attack techniques.

Fig. 9: Attack technique classification performance for S7-300

As shown in Fig. 9a, the resulting F1 scores for attack
technique classification are significantly lower than for the
attack type classification discussed previously in Fig. 6. Fea-
ture sets Ft11 and Ft14 achieve the highest scores of 0.79
and 0.8, respectively, with the K-NN classifier. In addition,
we investigate the performance of classifying each individual
attack technique, as shown in Fig. 9b. We observe that
dynamic attack techniques are better classified in most cases.
Attacks that used the DynamicBF technique perform best,
reaching an F1 score of 0.98 for Ft14. The classification of
static attack techniques, in particular StaticMP generally yield
lower measures. From further analysis of this, it is unclear why
the classification of the StaticMP attack technique was much
poorer than the other three techniques. One potential reason
is that StaticMP has the lowest impact on the PLC register
manipulation and focuses more on altering the structure of
the PLC application code rather than the logic itself.
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D. Computational Performance and Overheads

To highlight the rapidity of attack type classification to
assist with incident triaging, we evaluate the computational
performance of PLCPrint. The data acquisition process of
PLCPrint is conducted at a rate of approximately 200 millisec-
onds, however this rate will fluctuate depending on how many
registers are in the MRL and the size of the PLC application
code. The setup specifications we use in these tests include a
Windows 10 workstation with an Intel Core i5-5257U CPU
(2.70 GHz) and 16 GB DDR3 RAM. The consumption time
when performing classification testing for the five classifiers
is compared for both PLC models, demonstrated in Fig. 10a.
Here we see that the K-NN classifier has the lowest test time of
approximately 0.3 seconds for both PLCs, which is particularly
beneficial as K-NN also achieved the highest classification
AUC-ROC and F1 scores, demonstrated in Figs. 6 and 7,
respectively. In comparison, the RF classifier took longer to
test the same dataset for attack type classification, taking over
1.1 seconds, although this is still results in a very effective
classification time. The time consumption demonstrated here
are with the full feature set comprising all four MC variables.

(a) Classifier F1 scores for high-
est performing MC feature sets.

(b) Average F1 scores for classify-
ing attack techniques.

Fig. 10: Attack technique classification for S7-300
Due to the active approaches taken in acquiring memory

artefacts from PLCs and the requirement to continuously
generate test fingerprints in order to detect attacks, we regard
evaluating the potential computational impacts introduced by
PLCPrint as particularly valuable. Understanding these im-
pacts is critical to determining whether the introduced affects
of the proposed solution do not inhibit the operability of the
PLC or wider ICS and physical process.

We firstly evaluate how PLCPrint impacts PLC operations.
Fig. 10b illustrates the time consumption for each physical
state in the GULP testbed, such as water filtration. The
duration for each state while PLCPrint is interfacing with
the PLC is always within ± 2s of the baseline, indicating
that the active data acquisition approach of PLCPrint does
not noticeably impact on the PLC’s ability to monitor and
control the physical process. Additionally, we monitored the
PLC scan cycle time to determine if the data acquisition
methods of PLCPrint introduced latency into the PLC’s main
cyclical operation. The baseline scan cycle time for both PLCs
evaluated was 1ms (±500µs). While PLCPrint was running,
the S7-300 PLC scan cycle time increased briefly to 2ms
(±500µs), however it then resumed at 1ms as in the baseline.
As the PLC scan cycle time can fluctuate within a small
range, it is likely that PLCPrint was not responsible for this

millisecond increase. The cycle time for the AB-CLX PLC did
not change while PLCPrint was performing data acquisition.

E. PLCPrint Limitations
Although PLCPrint is vendor independent, the current im-

plementation of PLCPrint is only evaluated with two vendor-
specific industrial protocols. Furthermore, the evaluations at-
tack scenarios that were performed did not include manipula-
tions to live PLC firmware or exploiting vulnerabilities within
the firmware code.

Moreover, we note that configurations of certain PLC access
controls, such as CPU password protection, could inhibit the
acquisition process of PLCPrint, particularly when imaging the
PLC application code. However, PLCs are generally likely to
enable full or partial access to the registers, such as inputs and
outputs, primarily as other devices require access to perform
tasks. For instance, human-machine interfaces (HMIs) may
require PLC registers in order to display updated sensor values,
or where there are logical dependencies between the registers
of two PLCs in multi-PLC environments.

VI. CONCLUSIONS

In this article, we have presented PLCPrint, a novel finger-
printing approach that enables real-time attack detection and
classification for digital forensics. We proposed PLC Memory
Register Map (PMRM) generation, a novel method which
examines how PLC registers are used by different memory
artefacts. PMRM generation assigns one of four possible
Mapping Conditions (MC) to each register used by the PLC,
resulting in a PLC memory fingerprint comprising multiple
PMRMs. An attack detection and classification algorithm
was introduced that uses deviations in PLC register MCs
as a feature set. We evaluated two novelty detection and
five supervised classification algorithms for attack detection
and attack type classification, respectively. Results from our
experimental evaluation, which was conducted over a physical
water treatment testbed, reveal high F1 scores for both attack
detection and type classification with multiple PLC models,
highlighting the vendor-independence of the PMRM genera-
tion approach. High accompanying accuracy and AUC-ROC
scores demonstrate the generalisation to multiple machine
learning models. Generally, PLCPrint assists with the digital
forensic process by enabling the chain of evidence and rapid
triaging of cyber incidents.
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