
Supplementary Information.  1 

 2 

No evidence of sustained nonzoonotic Plasmodium knowlesi transmission in Malaysia from 3 

modelling malaria case data 4 

 5 

Fornace, et. al.  6 

 7 

1. Malaysian malaria surveillance data.  8 

 9 

1.1 Geolocation and cleaning malaria surveillance data. 10 

 11 

Malaria surveillance data included all malaria case notifications in Malaysia reported between 12 

January 2012 to December 2020. All case records included geographic data including the 13 

names of kampungs (villages) where cases were resident and locations of infections. Exact 14 

Global Positioning System (GPS) coordinates were not available for over 20% of study 15 

records, with increasing availability in later years as GPS technology was routinely 16 

implemented. 17 

 18 

To assess the accuracy of recorded GPS coordinates, coordinates with less than 2 decimal 19 

points were first mapped onto Google Earth and locations were manually confirmed or GPS 20 

coordinates were excluded as unreliable. For each year, GPS coordinates were also imported 21 

into Quantum GIS and overlaid with administrative shapefiles for Malaysia. State and district 22 

names were extracted from administrative polygons and compared to reported states and 23 

districts listed within surveillance data. For all data where administrative units did not match, 24 

GPS coordinates were marked as unreliable and manually confirmed. For remaining GPS 25 

coordinates, data was mapped onto publicly available satellite data (Google Earth, Open 26 

Street Map) to confirm locations. All kampungs were assigned a unique code and records 27 

were manually checked to confirm any alternate spellings of names. GPS coordinates reported 28 

from the same kampung were compared to ensure locations were consistent. For records with 29 

no GPS coordinates, the centroid of the kampung was used to geolocate records. Kampung 30 

centroids were either calculated as a mean of all available records from that kampung or 31 

manually identified from satellite data, census data or by personnel familiar with the region. 32 

 33 

To clean nonspatial malaria data, yearly surveillance data was imported into R (R Statistical 34 

Software, v 3.6.2). As the database structure changed slightly during the reporting period, data 35 

was coded with standard headings and merged. Variables not routinely collected throughout 36 



the study period (e.g. gametocyte presence) were coded as NA for missing records. The dates 37 

of symptom onset, diagnosis, hospitalisation and notification were extracted for all records. 38 

Onset dates were excluded as unreliable if they occurred after diagnosis and/or notification 39 

dates. Due to recall bias, symptom onset dates were additionally excluded as unreliable if they 40 

occurred more than 30 days prior to diagnosis.  41 

 42 

1.2 Surveillance data characteristics.  43 

 44 

Between 16 December 2011 and 3 January 2021, 32,635 malaria cases were reported to the 45 

national surveillance system (Supplementary Tables 1 and 2).  46 

 47 

Supplementary Table 1. Malaria cases by parasite species in East and West Malaysia*, 48 

number (%) 49 

 50 

 P. 

falciparum 

P. knowlesi P. malariae P. ovale P. vivax Mixed 

infections 

Total 

East 

Malaysia 

(Borneo) 

2,196  

(6.7%) 

19,931 

(61.1%) 

1,096 

(3.4%) 

99 

(0.3%) 

2,566 

(7.9%) 

205 

(0.6%) 

26,093 

West 

Malaysia 

853 

(13.0%) 

3,212 

(49.1%) 

48 

(0.7%) 

20 

(0.3%) 

2,375 

(36.3%) 

34 

(0.5%) 

6,542 

* Includes all malaria cases, including imported cases and reoccurences 51 

 52 

Supplementary Table 2. Demographic breakdown of malaria cases, number (%) 53 

 54 

 P. falciparum P. knowlesi P. vivax All Malaria 

N 3,049 23,143 4,941 32,635 

Male (n, %) 2,484 (81.5%) 18,701 (80.8%) 4,209 (85.2%) 26,651 (81.7%) 

Age (median, IQR) 32 (21 – 43) 36 (26 – 49) 30 (21 – 42) 35 (24 – 47) 

Indigenous (n, %) 1,678 (55.0%) 23,016 (99.4%) 2,342 (47.4%) 28,149 (86.3%) 

 55 

 56 

2. Serial interval estimation. 57 

 58 

Assessing the probability of human-mosquito-human transmission of P. knowlesi requires 59 

estimating the timing between reported P. knowlesi cases from the same transmission chain. 60 

This requires estimating the duration of a series of sequential processes which need to occur 61 



in a human-mosquito-human transmission cycle. The generation time (Tg) refers to the 62 

duration of time between an infection and the individual infecting another person [1]. The serial 63 

interval (SI), the time between clinical presentation of primary and secondary cases, is more 64 

commonly used as infection is typically unobserved [2]. While these intervals can be inferred 65 

from contract tracing data for directly transmitted diseases, these intervals can only be 66 

estimated indirectly for vector-borne diseases [3]. Additionally, there is a lack of empirical 67 

evidence on human-mosquito-human P. knowlesi transmission as this has only been 68 

experimentally observed once. The rapid replication cycle of P. knowlesi and weak evidence 69 

of adaptation to humans suggests this may differ from other nonzoonotic malaria species [4].  70 

 71 

To estimate the generation time and serial intervals for human-mosquito-human P. knowlesi 72 

transmission, we used a quantitative model-based approach developed by Huber et. al [5]. 73 

This models the SI and Tg as random variables based on the sum of random variables 74 

representing the sequential steps in the transmission cycle including: the prepatent period, the 75 

human to mosquito transmission period, the extrinsic incubation period, the mosquito to 76 

human transmission period and infection to detection periods. These were parameterised 77 

using a combination of data from secondary literature and the Malaysian malaria surveillance 78 

dataset.  79 

 80 

Within this analysis, we made two important assumptions. First, we assumed that 81 

asymptomatic human infections did not contribute to transmission. This was based on the very 82 

low parasite densities of human P. knowlesi infections detected during community surveys 83 

within Malaysia, likely insufficient to infect mosquitoes [6-8]. Second, we assumed that 84 

individuals became non-infectious on the date of diagnosis and treatment. This is based on 85 

the Malaysian national malaria policy of hospitalising malaria cases from diagnosis until 86 

confirmation as microscopy negative [9]. Within Malaysia, all malaria treatment is free through 87 

government healthcare providers. 88 

 89 

1. Prepatent period (PREP). Estimates of the prepatent period for P. knowlesi were based on 90 

experimental P. knowlesi infections in people following bites from infected An. balabacensis, 91 

the main vector in Malaysian Borneo [10]. This was modelled as Normal(10.6 days, 1.15 days) 92 

based on data from Table 1. The time between an individual developing a patent infection and 93 

becoming symptomatic was modelled as Normal(3.5 days, 0.2 days) based on this 94 

experimental data.  95 

 96 

2. Human to mosquito transmission period (HTMP). No data was available on the duration or 97 

timing of infectiousness of P. knowlesi in humans. However, multiple studies have reported P. 98 



knowlesi gametocytes in people at both microscopic and submicroscopic densities [11-13]. 99 

While P. knowlesi gametocytes are highly synchronous in macaques [4, 14], available 100 

evidence suggests this is not the case in human infections [13]. Infectiousness to mosquitoes 101 

is dependent on the density of malaria gametocytes, with infectious individuals predominantly 102 

having gametocyte densities high enough to be detected microscopically [15]. The presence 103 

of microscopically detected P. knowlesi gametocytes is captured by the Malaysian 104 

surveillance data for cases reported after 2014. These data showed a clear increasing trend 105 

in the proportion of cases with observed gametocytes relative to the time since symptom 106 

onset. Using this data, we modelled Yi, the number of infectious individuals (defined as having 107 

gametocyte densities high enough to be detected by microscopy) out of the total number of 108 

cases (ni) as the realisation of a binomial random variable Yi ~ Binomial(ni, πi). The probability 109 

an individual was infectious (πi) was specified as logit(πi) = β0 + β1xi, where β0 is the intercept 110 

and β1xi describes the effect of days since symptom onset. This model was then used to 111 

simulate the probability and duration of infectiousness using 10,000 simulations. We assumed 112 

that no individuals had sufficient gametocyte densities to become infectious prior to developing 113 

patent malaria and, if an individual became infectious, they remained infectious until treatment. 114 

The duration of patent malaria was estimated as the sum of the time between an individual 115 

developing patent malaria and becoming symptomatic and the time between symptom onset 116 

and treatment. The time between symptom onset and treatment was fit to Malaysian 117 

surveillance data and modelled as a Gamma distribution. As there was insufficient data to 118 

estimate the probability of infectiousness two weeks past symptom onset, we assumed a 119 

constant probability of infectiousness after 15 days.  120 

 121 

These probabilities of infectiousness were multiplied by a constant mosquito-to-human ratio 122 

estimated from empirical data on human landing catches in Sabah, Malaysia [16, 17]. While 123 

other models have used time-varying mosquito-to-human ratios ([5, 18]), Malaysia is 124 

equatorial and strong seasonal trends in mosquito densities are not typically observed. This 125 

could be expanded in future work to model geographic heterogeneities or uncertainties 126 

around this number. 127 

 128 

3. Extrinsic incubation period (EIP). The next step in the transmission cycle occurs within the 129 

mosquito. The extrinsic incubation period (EIP) is the time between parasite transmission 130 

from an infectious human to a mosquito and the production of sporozoites within the 131 

mosquito. Previous studies have estimated the EIP for P. knowlesi as 10 days [17, 19]. An 132 

experimental study of P. knowlesi in An. stephensi identified the EIP as 6.8 days, however 133 

this is not a natural P. knowlesi vector in Malaysia [20]. To represent the uncertainty around 134 

these estimates, EIP was modelled as ~ Normal(10 days, 1 day).  135 



 136 

4. Mosquito to human transmission period (MHTP). Following the approach described by 137 

Huber et. al, we modelled the time between the end of the EIP and the time of a subsequent 138 

human infection as a geometric random variable with probability 1 – p, where p is the 139 

constant probability of daily survival [5]. This assumes no variability in mosquito daily 140 

survival and no association between mosquito survival and probability of human infection. 141 

The probability of daily survival was estimated as 0.85 based on An. balabacensis data from 142 

Sabah, Malaysia [17].  143 

 144 

5. Infection to detection period (IDP). As the SI is based on reported clinical cases, 145 

estimation of the SI also requires assessing the time between human infection by a mosquito 146 

and detection by the health facility. This was modelled as the sum of the prepatent period, 147 

time between patency and symptom onset and time between symptom onset and diagnosis, 148 

with variables parameterised based on secondary literature or malaria surveillance data as 149 

described previously.  150 

 151 

Probabilistic descriptions of the Tg and SI were obtained by summing random variables 152 

using the approach developed by Huber et. al [5]. First, the Tg was calculated as: 153 

 154 

Tg(𝑖 +  𝑗 +  𝑘 +  𝑙)  155 

= ∑ ∑ ∑ ∑(Pr(𝑃𝑅𝐸𝑃 = 𝑖) x (Pr(HMT𝑃 = 𝑗)  x (Pr(EI𝑃 = 𝑘)  x (Pr(MHT𝑃

𝑙𝑘𝑗𝑖

156 

= 𝑙) 157 

 158 

Where i, j, k and l are dummy variables used to calculate the probability of the Tg for all 159 

combinations of i, j, k and l. The same approach was used to calculate the SI, accounting for 160 

the infection to detection periods of the primary and secondary cases:  161 

 162 

SI(−𝑖 +  𝑗 +  𝑘)  = ∑ ∑ ∑(Pr(ID𝑃 = 𝑖) x (Pr(GI = 𝑗)  x (Pr(ID𝑃 = 𝑘)

𝑘𝑗𝑖

 163 



Supplementary Table 3. Parameters used for SI and Tg estimation 164 

 165 

Description Estimate Source 

Prepatent period ~Normal(10.6 days, 1.14 days) [21] 

Time from patent infection 

to symptom onset 

~Normal(3.5 days, 0.2 days) [21] 

Time from symptom onset 

until treatment 

~Gamma(2.484, 0.473) Fit to Malaysian 

surveillance data 

Duration of infectiousness Binomial model fit to presence/ absence of 

microscopically observed gametocytes 

from time from infection 

Fit to Malaysian 

surveillance data, 

constant rate of 

infectiousness after day 

15 

Mosquito to human ratio 4 Mean biting rate 

reported by [22] 

Probability of mosquito 

daily survival 

0.85 [17] 

Infection to detection 

period 

Time from infection to symptom onset + 

Time from symptom onset to treatment 

 

 166 

 167 

3. Estimation of RC 168 

 169 

3.1 Transmission likelihood 170 

 171 

Based on estimates of the duration of infectiousness, we fit shifted Rayleigh distributions to 172 

describe a prior distribution of possible serial intervals for nonzoonotic P. knowlesi 173 

transmission (Figure S1a) and P. falciparum/ P. vivax transmission (Figure S1b). Using a 174 

fixed value for the spatial parameter (δ) of 0.1, we estimated the likelihood of two cases 175 

being connected based on the geographic location and time of reporting (Figure S1). The 176 

fixed value for the spatial parameter corresponded to most cases being infected within a 177 

10km radius of their reported residence location; this parameter was obtained based on 178 

reported travel history from case investigations reporting most individuals remaining within 179 

the same village or district prior to their diagnosis. Individuals with a history of long-range 180 

travel were classified as imported cases according to Malaysian Ministry of Health 181 

surveillance guidelines.  182 

 183 



Supplementary Figure 1. Likelihood of two cases being part of the same transmission chain 184 

based on notification time (X axis) and geographic distance (Y axis) with priors used for a.) 185 

nonzoonotic P. knowlesi transmission and b.) P. falciparum and P. vivax transmission 186 

 187 

 188 

 189 

We used an adapted version of the NetRate model to estimate RC [18, 23-25]. Data was 190 

input as a series of n infections (I1,…In) reported at times t = {t1,…tn} with a binary 191 

classification of importation status. The serial interval parameters were represented by the 192 

function f1 and the relationship between geographic location of cases and likelihood of 193 

transmission was represented by the function f2, giving the function: 194 

 195 

𝑓(𝑥𝑖, 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) =  𝑓1(𝑡𝑖|𝑡𝑗; 𝛼𝑖,𝑗) x 𝑓2(𝑥𝑖|𝑥𝑗; 𝛽) 196 

 197 

where t is the time, x is the spatial locations, α is the transmission rate and β are the spatial 198 

parameters. The hazard is defined as the pairwise likelihood divided by the survival function 199 

as: 200 

𝐻 =  
𝑓(𝑥𝑖, 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) 

𝑆(𝑥𝑖 , 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) 
 201 

 202 

The pairwise likelihood of a case reported at time tj and location xj infecting a case reported 203 

at time ti and location xi is: 204 

 205 

𝑓(𝑥𝑖, 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) =  𝛼(𝑡𝑖 − 𝑡𝑗 −  𝛾)𝑒−
1
2

𝛼(𝑡𝑖− 𝑡𝑗− 𝛾) 1

𝛽
 206 



 207 

With the hazard term simplifying to: 208 

 209 

𝐻(𝑥𝑖, 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) =  𝛽𝛼(𝑡𝑖 −  𝑡𝑗 −  𝛾)𝑒−𝛽(𝑥𝑖− 𝑥𝑗) 210 

 211 

And the survival term as: 212 

 213 

𝑆(𝑥𝑖 , 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗 , 𝛽) = 𝑒−
1
2

𝛼(𝑡𝑖− 𝑡𝑗− 𝛾) 1

𝛽
 214 

 215 

Integrating the survival term over distances is equivalent to: 216 

 217 

𝑆(𝑥𝑖, 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) = 𝑒−
1
2

𝛼(𝑡𝑖− 𝑡𝑗− 𝛾) √𝜋

2√𝛽
 218 

 219 

And the hazard function is: 220 

 221 

𝐻(𝑥𝑖, 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) =  
𝛼(𝑡𝑖 − 𝑡𝑗 −  𝛾)𝑒−

1
2

𝛼(𝑡𝑖− 𝑡𝑗− 𝛾)𝑒−𝛽(𝑥𝑖− 𝑥𝑗)

𝑒−
1
2

𝛼(𝑡𝑖− 𝑡𝑗− 𝛾) √𝜋

2√𝛽

 222 

Which simplifies to: 223 

 224 

𝐻(𝑥𝑖, 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) =  
2√𝛽𝛼(𝑡𝑖 −  𝑡𝑗 −  𝛾)𝑒−𝛽(𝑥𝑖− 𝑥𝑗)2

√𝜋
 225 

 226 

To account for potential unobserved sources of infection, we used Epsilon edges. Within this 227 

framework, a high ε value assumes the case is very likely to be from an unobserved source 228 

unless two cases have a high likelihood of being linked while a low ε assumes unobserved 229 

sources of infection are highly unlikely. 230 

 231 

With ε, this gives: 232 

 233 

𝑓(𝒕, 𝒙; ∈, 𝜷) =  ∏ 𝑆0(∈𝑖)

𝑡𝑖∈𝒕

∏ 𝑆(𝑥𝑖, 𝑡𝑖|𝑥𝑗, 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽) (𝐻0(∈𝑖) +  ∑ 𝐻(𝑥𝑖 , 𝑡𝑖|𝑥𝑗 , 𝑡𝑗; 𝛼𝑖,𝑗, 𝛽)

𝐼𝑘:𝑡𝑘<𝑡𝑖

)

𝐼𝑘:𝑡𝑘<𝑡𝑖

 234 

 235 

With the objective function as: 236 



 237 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜶,∈ − log 𝑓(𝒕, 𝒙; ∈, 𝜷) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜶, ∈, 𝜷 > 0  ∀𝑖, 𝑗 238 

 239 

Geolocated time series data was used to fit models with varying priors on ε, reflecting the 240 

uncertainty around the proportion of zoonotic transmission. Model fit was evaluating using 241 

the second order AIC (AICc), (Table S3).  The best fitting models had no estimates of RC 242 

greater than one for both East and West Malaysia (Figure S2). 243 

 244 

Supplementary Table 4. Model selection statistics for P. knowlesi models with varying 245 

normally distributed priors on ε using a fixed value of δ=0.1 and priors of Normal(0.002, 246 

0.001) for α 247 

 248 

Dataset 

Epsilon Priors 

Mean RC AICc* Mean SD 

East Malaysia 

 

 

0.0001 0.001 0.945 -1012488877 

0.001 0.01 0.796 -1012540285 

0.01 0.1 0.431 -1012612525 

0.1 1 0.362 -1012631421 

1 1 0.074 -1012730557 

West Malaysia  

 

 

0.0001 0.001 0.788 -44737596 

0.001 0.01 0.450 -44748816 

0.01 0.1 0.131 -44762856 

0.1 1 0.115 -44760900 

1 1 0.015 -44768972 

* Lower AICc values represent improved model fit 249 

 250 

 251 



Supplementary Figure 2. Estimated RC values from the best fitting models for P. knowlesi. 252 

 253 

 254 

We additionally conducted sensitivity analyses for P. falciparum and P. vivax models to 255 

assess the impact of varying priors on ε while using established distributions for the temporal 256 

component. As transmission of these models is known to be nonzoonotic and extensive local 257 

transmission was documented during the study period, we excluded unlikely scenarios 258 

where all cases were imported (Supplementary Table 4).  259 

 260 

Supplementary Table 5. Model selection statistics for P. knowlesi models with varying 261 

normally distributed priors on ε using a fixed value of δ=0.1 and priors of Normal(0.003, 262 

0.001) for α for a.) P. falciparum and b.) P. vivax 263 

a.) 264 

Dataset 

Epsilon Priors 

Mean RC 

 

AICc* Mean SD Percent RC > 1 

East Malaysia 

 

 

0.0001 0.001 0.568 20.89% 250425034 

0.00001 0.01 0.568 20.95% 250425274 

0.000001 0.1 0.565 20.90% 250487594 

West Malaysia  

 

 

0.0001 0.001 0.386 9.14% 6401555 

0.00001 0.0001 0.101 10.13% 6401460 

0.000001 0.00001 0.099 9.91% 6403864 

 265 

b.) 266 



Dataset 

Epsilon Priors 

Mean RC 

 

AICc* Mean SD Percent RC > 1 

East Malaysia 

 

 

0.0001 0.001 0.524 20.31% 652347120 

0.00001 0.01 0.547 21.19% 652347568 

0.000001 0.1 0.558 21.47% 652347952 

West Malaysia  

 

 

0.0001 0.001 0.230 8.61% 219812878 

0.00001 0.0001 0.246 8.92% 219813166 

0.000001 0.00001 0.250 9.13% 219842030 

 267 

 268 

3.2 Spatiotemporal models of RC 269 

 270 

To visualise the spatial and temporal distributions of P. falciparum and P. vivax cases with 271 

RC estimates > 1, we fit geostatistical models using Integrated Nested Laplace 272 

Approximation (INLA) in R statistical software. For each species, we classified RC estimates 273 

into binary classes based on whether RC estimates were greater than 1. We resampled all 274 

data to 5 km2 grid cells and calculated the total number of P. falciparum or P. vivax cases 275 

per grid cell (mi,t); i = 1…n; t = 1…n; where i indexes location and t indexes year. For each 276 

species, we fit separate models for the probability of a malaria case leading to onward 277 

transmission (RC > 1) was modelled as: 278 

 279 

𝑌𝑖,𝑡 ~ Binomial(𝑚𝑖,𝑡 , 𝜋𝑖,𝑡)) 280 

Where 𝜋𝑖,𝑡 is the probability of a malaria case having an RC estimate over 1 with the linear 281 

predictor for the binomial model specified as: 282 

 283 

logit(𝜋𝑖,𝑡) =  𝛽0 +  𝑤𝑖 +  𝑒𝑡 284 

Where 𝛽0 is the intercept, 𝑤𝑖 is the spatial effect and 𝑒𝑡 is the temporal effect. Candidate 285 

models including the temporal effect as a random effect, temporally structured random walk 286 

models or autoregressive models were evaluated using the Deviance Information Criteria 287 

(DIC). The final model included the temporal effect as a temporally structured random walk 288 

model of order 2 [26]. The spatial effect 𝑤𝑖 was modelled as a Matern covariance function 289 

implemented using the stochastic partial differential equations approach. All models used 290 

1,000 samples to estimate posterior probabilities and were visualised in R. As there were no 291 

RC estimates above 1 for the best fitting P. knowlesi models, models were only fit for P. 292 

falciparum and P. vivax. Mean and maximum RC estimates per village per year are included 293 

below in Figure S3. 294 



 295 

  296 



Supplementary Figure 3. RC estimates for P. knowlesi per village per year, including a) 297 

mean RC estimates and b) maximum RC estimates (areas with highest probability of 298 

nonzoonotic P.knowlesi transmission) 299 

 300 

a.) 301 

 302 



b.)303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 
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