
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

This is the peer reviewed version of the following article: Metra, M. et al. (2023) Worsening of chronic heart failure: definition, epidemiology, management and prevention. A clinical consensus statement by the Heart Failure Association (HFA) of the ESC. *European Journal of Heart Failure*, 25(6), pp. 776-791, which has been published in final form at https://doi.org/10.1002/ejhf.2874

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

http://eprints.gla.ac.uk/297668/

Deposited on: 2 May 2023
Worsening of chronic heart failure: definition, epidemiology, management and prevention. A clinical consensus statement by the Heart Failure Association (HFA) of the ESC

Marco Metra,1* Daniela Tomasoni,1* Marianna Adamo,1 Antoni Bayes-Genis,2 Gerasimos Filippatos,3 Magdy Abdelhamid,4 Stamatis Adamopoulos,5 Stefan D. Anker,6 Laura Antohi,7,8 Michael Böhm,9 Frieder Braunschweig,10 Tuvia Ben Gal,11 Javed Butler,12 John G.F. Cleland,13 Alain Cohen-Solal,14 Kevin Damman,15 Finn Gustafsson,16 Loreena Hill,17 Ewa Jankowska,18 Mitja Lainscak,19 Lars H. Lund,9 Theresa McDonagh,20 Alexandre Mebazaa,21 Brenda Moura,22,23 Wilfried Mullens,24 Massimo Piepoli,25,26 Piotr Ponikowski,18 Amina Rakisheva,27 Arsen Ristic,28 Gianluigi Savarese,9 Petar Seferovic,28 Rajan Sharma,29 Carlo Gabriele Tocchetti,30 Mehmet Birhan Yılmaz,31 Cristiana Vitale,32 Maurizio Volterrani,32 Stephan von Haehling,33,34 Ovidiu Chioncel,6,7 Andrew JS Coats,35 Giuseppe Rosano32

*M. Metra and D. Tomasoni equally contributed as first authors

Affiliations

1. Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy.
2. Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, CIBERCV, Universitat Autònoma de Barcelona, Spain.
3. Department of Cardiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece.
4. Faculty of Medicine, Cairo University, Giza, Egypt.
5. 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece.
6. Department of Cardiology (CVK); and Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.
7. Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu', Bucharest, Romania.
8. University of Medicine Carol Davila, Bucharest, Romania.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ejhf.2874

This article is protected by copyright. All rights reserved.
9. Saarland University Hospital, Homburg/Saar, Germany.
10. Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
11. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
12. Baylor Scott and White Research Institute, Dallas, Texas, USA; Department of Medicine, University of Mississippi, Jackson, Mississippi, USA.
13. British Heart Foundation Centre of Research Excellence. School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
15. University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands.
16. Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark.
17. Queen's University Belfast, Belfast, UK.
18. Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
19. Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Division of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia
20. Department of Cardiovascular Science, Faculty of Life Science and Medicine, King's College London, 125 Coldharbour lane, London SE5 9RS, UK.
21. Université Paris Cité, Inserm MASCOT, AP-HP Department of Anesthesia and Critical Care, Hôpital Lariboisière, Paris, France.
22. Faculty of Medicine, University of Porto, Porto, Portugal.
23. Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal.
24. Hospital Oost-Limburg, Genk, Belgium.
25. Clinical Cardiology, IRCCS Policlinico San Donato, Milan, Italy
26. Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
27. Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan.
28. School of Medicine, University of Belgrade, Belgrade, Serbia.
30. Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy.
31. Department of Cardiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
32. Department of Medical Sciences, Centre for Clinical and Basic Research, IRCCS San Raffaele Pisana, Rome.
33. Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg- August University, Goettingen, Germany.
34. German Center for Cardiovascular Research (DZHK), partner site Goettingen, Goettingen, Germany.
35. Heart Research Institute, Sydney, Australia

Corresponding Author:
Marianna Adamo, MD
University of Brescia
Piazza Mercato 25100 Brescia
marianna-adamo@hotmail.com
+ 393897834503
Abstract

Episodes of worsening symptoms and signs characterize the clinical course of the patients with chronic heart failure. These events are associated with poorer quality of life, increased risks of hospitalization and death and are a major burden on health care resources. They usually require diuretic therapy, either administered intravenously or by escalation of oral doses or with combinations of different diuretic classes. Additional treatments may also have a major role, including initiation of guidelines recommended oral medical therapy (GRMT). Hospital admission is often necessary but treatment in the emergency service or in out-patient clinics or by primary care physicians has become increasingly used. Prevention of first and recurring episodes of WHF is an essential component of HF treatment and this may be achieved through early and rapid administration of GRMT. The aim of the present clinical consensus statement by the Heart Failure Association of the ESC is to provide an update on the definition, clinical characteristics, management and prevention of WHF in clinical practice.
1. Preamble

The clinical course of heart failure (HF) is characterized by episodes of worsening symptoms and signs. (1, 2, 3) These episodes of worsening HF (WHF) are followed by an increased risk of hospitalizations and death and are a major burden on the health care system, because of their frequency, urgency and prognostic impact. (1, 3, 4, 5) Their prevention is a major target of current treatment of HF. The aim of the present clinical consensus statement by the Heart Failure Association (HFA) of the ESC is to provide an update on the definition and clinical characteristics of WHF and summarize recent findings for the management and prevention of WHF in clinical practice.

2. Definition and classification

2.1 Definition

Worsening HF can be defined as worsening symptoms and signs of HF in patients with pre-existing HF, requiring intensification of treatment, most often diuretic therapy. It requires a prior diagnosis of HF, excluding episodes of new-onset HF. Cases where poor adherence to treatment, rather than decompensation of pre-existing HF, is the cause of worsening symptoms and signs are also excluded. (Table 1) The need of intensification of HF therapy is an essential component of our definition of WHF. Worsening HF must be kept distinct from acute HF which is a much broader entity including also new onset HF as well as different clinical presentations such as acute pulmonary oedema, right ventricular failure and cardiogenic shock. (1) When the term of WHF is used the focus is, instead, on the clinical course of the patient with chronic, pre-existing HF. We provide here an in-depth review of this topic with focus on findings with implications for clinical practice.

2.2 Clinical presentations

Episodes of WHF can have different clinical presentations depending on precipitating factors, comorbidities, speed of deterioration, severity, symptoms and clinical signs (e.g., worsening peripheral oedema, increasing exertional breathlessness, orthopnoea). Clinical presentation dictates the urgency and site of care (Figure 1). Sites of care include the following:
1) **Hospitalization:** patients with WHF are often hospitalized for urgent assessment, intravenous medications and other specific treatments. Hospitalization remains the most frequent clinical event for WHF;

2) **Emergency department visit:** patients present at the emergency department (ED) for worsening signs/symptoms, receive intravenous (IV) therapy, generally loop diuretics, and are discharged without hospitalization

3) **Ambulatory treatment:** either as outpatients receiving IV (intravenous) therapy in an outpatients setting or as outpatients treated with an escalation of their oral diuretic therapy.

The common feature of all these WHF events is the need for an urgent re-evaluation of the patient because of worsening symptoms or signs. Most patients with severe WHF are currently admitted to hospital for IV diuretic therapy. However, managing patients in day-care facilities, out-patient clinics and in the community is becoming more frequent both because patients are increasingly seeking alternatives to hospital admission (which will depend on service availability, symptom severity and acuity, distance from the clinic/hospital, patients’ decisions, physicians’ advice) and hospitals are seeking to reduce admissions and use finite resources more cost-efficiently.

Although new onset HF may be considered as WHF, too, the present document is focused only on WHF occurring in patients with a previous diagnosis of HF, i.e. worsening of pre-existing chronic HF. Worsening heart failure may also occur while patients are hospitalized and similarly lead to the initiation or escalation of intravenous treatment, generally with diuretics and/or inotropes. These episodes are also associated with subsequent poorer outcomes and their reduction may be major target of treatment. Their consideration goes beyond the aims of this clinical consensus statement and they have been extensively reviewed elsewhere.

3. Epidemiology and outcome

3.1. Hospitalizations

Worsening HF is a common cause of urgent hospitalizations in adults. Many, likely most, patients with HF will be hospitalized for WHF at some time. Hospitalization rates for WHF vary depending on many factors including national customs, socio-economic factors and the availability of out-of-hospital management resources. An
example of how extrinsic factors may influence hospitalizations rates has been the impact of COVID-19 lockdown which has reduced dramatically admissions for HF.\(^{22, 23, 24, 25, 26}\)

Patients hospitalized for WHF have a substantial increase in rehospitalization rates and mortality compared to those who remain clinically stable (Table 2).\(^{27, 28}\) In the US, among patients hospitalized for worsening HF with reduced ejection fraction (HFrEF) between 2007 and 2018, the rates of in-hospital mortality, 30-day mortality and 30-day HF readmission were 4.0%, 8.2% and 9.8%, respectively.\(^{18}\) In the ESC HFA Long Term Registry, in-hospital mortality was 3.4%, 2.1% and 2.2% in patients with HFrEF, HF and mildly reduced ejection fraction (HFmrEF) and HF and preserved ejection fraction (HFpEF), respectively. One-year mortality rates were 22, 17, and 17 per 100 patient-years and HF re-hospitalization rates 29, 19 and 17 per 100 patient-years, respectively. All-cause re-hospitalization rates were 48, 35, and 42 per 100 patient-years, in HFrEF, HFmrEF, and HFpEF, respectively.\(^{29}\) Many readmissions after a HF hospitalization are primarily for reasons other than HF, including infection and renal dysfunction, often with HF as a secondary diagnosis. HF increases patients’ fragility, making them more susceptible to and exacerbating the effects of comorbidities.

In the large National Cardiovascular Data Registry PINNACLE database, 17% of the patients developed WHF within 18 months following initial diagnosis of HFrEF and their 2-year mortality and 30-day rehospitalization rates were 22.5%, and 56%, respectively.\(^{30}\) Kimmoun et al. analysed all studies published from 1980 to 2017 regarding acute HF, including 285 studies representing 15 million of patients. Total mortality and non-elective rehospitalizations rates were 17.6 and 24% and of 18% and 46%, at 30-day and 1-year, respectively, after the acute HF event. A decline in all-cause deaths, likely related with the implementation of neurohormonal antagonists, with stable rehospitalization rates was found in the last decades.\(^{11}\)

3.2. Outpatient treatment of WHF

3.2.1. Data from clinical trials

The Valsartan Heart Failure Trial (Val-HeFT) trial was one of the first trials to include as an outcome WHF, including the administration of intravenous inotropic or vasodilator therapy for at least four hours.\(^{31}\) A secondary analysis of MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy Post Approval Registry) trial was the first to show the prognostic impact of outpatient WHF events.\(^{32}\) In this study, risk of death was higher both in patients with a hospitalization for WHF and in those who were treated for WHF as
outpatients, compared to that of patients without HF events, hazard ratio (HR) 12.4, 95% confidence interval (CI) 9.1-16.9 for patients hospitalized for WHF and HR 10.7, 95% CI 6.1-18.7 for those treated for WHF as outpatients. (32)

The poor outcome of WHF events without hospitalization was confirmed by subsequent analyses of other clinical trials. (Table 2) In PARADIGM-HF (Prospective Comparison of ARNI [angiotensin-receptor-neprilysin inhibitor] with ACEI [angiotensin-converting enzyme inhibitor] to Determine Impact on Global Mortality and Morbidity in Heart Failure) trial, among 8399 patients, 361 (4.3%) had outpatient intensification of HF therapy, 78 (1.0%) had an ED visit, and 1107 (13.2%) had HF hospitalizations. The risk of subsequent death, compared to patients without HF events, was similar after each manifestation of WHF: outpatient intensification of HF therapy (HR, 4.8; 95% CI, 3.9-5.9); ED visit (HR, 4.5; 95% CI, 3.0-6.7); HF hospitalizations (HR, 5.9; 95% CI, 5.2-6.6). (6)

Other studies showed that outpatients, compared to inpatients with WHF, had a lower risk of clinical events, though still significantly higher than that of outpatients. (33) In a pre-specified analysis of the DAPA-HF trial (Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure), Docherty et al. examined the frequency and significance of different types of WHF. Among the 4744 randomized patients, 8.6% of patients were treated by an outpatient augmentation of oral treatment, 0.4% with an urgent HF visit with IV therapy and 10.3% had a HF hospitalization. The adjusted risk of death from any cause (in comparison with no event) was lower for outpatient WHF (HR 2.67, 95% CI, 2.03-3.52) or an urgent HF visit (HR 3.00, 95% CI, 1.39-6.48) compared to an HF hospitalization (HR 6.21, 95% CI, 5.07-7.62). (8) BISTAT-CHF (The BISTAT Study to Tailored Treatment in Chronic Heart Failure) included 2 516 patients with worsening signs and symptoms of HF, of whom 1 694 were managed as inpatients and 822 as outpatients. Inpatients had higher rates of the primary outcome of death or HF hospitalization with an incidence rate per 100 person-years of 33.4, 95% CI 31.1-35.9, for inpatients vs. 18.5, 95% CI, 16.4-21.0, for outpatients; adjusted hazard ratio 1.24, 95% CI 1.07-1.43. (34)

Among patients with worsening chronic HF in the VICTORIA (Vericiguat Global Study in Subjects with Heart Failure with Reduced Ejection Fraction) trial, those randomized within 3-month from HF hospitalization had an approximately 2-fold higher risk of cardiovascular death or HF hospitalization than those with an outpatient WHF event without hospitalization, even after adjusting for relevant covariates, background therapy, and laboratory tests. This risk was further increased in those randomized within 1 month of HF hospitalization (>40 events per 100 patient-
years) or among patients randomized within their index hospitalization (>50 events per 100 patient-years).(35)

The significance of ambulatory WHF episodes was more recently evaluated in patients with HFP EF enrolled in the PARAGON-HF (Prospective Comparison of ARNI with ARB Global Outcomes in HF with Preserved Ejection Fraction) trial. Of 884 first WHF events, 66 (7.5%) were urgent HF visits. Regardless of the treatment setting, patients with a first episode of WHF had higher rates of subsequent death: 19.2 per 100 patient-years for those who had a HF hospitalization and 10.1 per 100 patients-years for those who had urgent HF visit, compared with 4.0 per 100 patient-years in those who did not experience WHF. Patients whose first episode of WHF was an urgent visit had similar age, comorbidities, baseline N-terminal prohormone of B-type natriuretic peptide (Nt-proBNP), and Meta-Analysis Global Group in Chronic Heart Failure risk scores to those in whom the first HF event was a hospitalization.(36)

3.2.2. Data from registries

Registries have confirmed that treatment of WHF with intensification of outpatient oral diuretic therapy or outpatient IV loop diuretic administration is occurring in an increasing proportion of patients. In an analysis of the nationwide Danish registry, among 74 990 outpatients with HF, there were 9 per 100 person-years who had intensification of diuretic therapy. One-year mortality was 18.0% after outpatients’ intensification of diuretic therapy, 22.6% after HF hospitalization, and 10.4% for matched controls with neither events.(37) In US, among 3 426 outpatients with chronic HFrEF enrolled in the CHAMP-HF (Change the Management of Patients with Heart Failure) Registry, intensification of oral diuretics occurred in 796 (23%) patients. Patients with a diuretic dose increase had a significantly higher number of HF hospitalizations, rate ratio, 2.53, 95% CI, 2.10-3.05, ED visits, rate ratio, 1.84, 95% CI, 1.56-2.17, and home health visits, rate ratio, 1.88, 95% CI, 1.39-2.54, compared with patients with no increase in diuretic dose. (38) Ambrosy et al. described the incidence of WHF events across the care continuum from ambulatory encounters to hospitalizations.(7) A total of 126 008 WHF episodes were identified, including 27.6% outpatient encounters, 22.5% ED visits/observation stays, and 50.0% hospitalizations. Thirty-day mortality rates ranged from 3.0% for outpatient encounters to 5.0% for ED visits and up to 14.1% for HF hospitalizations. The 30-day rate of hospitalizations for WHF ranged from 8.2% for outpatient encounters to 12.4% for hospitalizations.(7)
4. Pathophysiology

An increase in intracardiac pressures plays a pivotal role in the pathophysiology of WHF, irrespective of left ventricular ejection fraction (LVEF), and precedes overt decompensation. (39, 40) Hypoperfusion and end-organ injury and dysfunction may also be present. (1, 41, 42) Among patients hospitalized with WHF in the ESC HFA Registry, 9.9% were “dry-warm”, 70% were “wet-warm”, 20% were wet-cold”, and 0.4% were “dry-cold”. (43) Congestion may reduce absorption of guideline recommended medical treatments (GRMT) and loop diuretics, further worsening HF. (44) Congestion usually presents with variable degrees of bilateral lower limb oedema and substantial weight gain. On the other hand, a significant proportion of patients hospitalized for decompensated HF display only minor increases in body weight (<1 kg) before hospital admission. (45) In these patients, congestion may be precipitated by fluid redistribution, rather than accumulation, with pulmonary congestion being the main clinical sign. (42) Sympathetic stimulation induces a transient vasoconstriction leading to a sudden displacement of volume from the splanchnic and peripheral venous system to the pulmonary circulation. Being maladaptive volume redistribution a leading cause of worsening HF, the splanchnic nerve modulation has been identified as a potential target for patients with WHF. (46, 47)

An important contributor of a recurrent WHF event after discharge is residual congestion that can be clinically overt or subclinical. Precipitating factors leading to WHF include non-adherence to diet (i.e. salt restriction) or medications. (48) Comorbid conditions, either cardiovascular (myocardial ischaemia, atrial fibrillation, valvular heart disease) or non-cardiovascular (lung and renal disease, sleep-disordered breathing, iron deficiency, thyroid disorders) or other precipitant factors (i.e. infections) can contribute to the development of WHF and may require a specific treatment. (49, 50, 51) Greene at al have proposed that congestion and HF symptoms entirely explicable by failure to take medication or an intercurrent non-HF event such as acute coronary syndrome should not be included in the definition of WHF as they do not primarily reflect an alteration in the HF process but rather a second insult. (5, 52) There is logic to this proposal and it is close to the practice adopted by many clinical event committees in defining a WHF event.

5. Early detection

5.1. Clinical signs and risk scores
Physical examination cannot accurately detect the underlying haemodynamic changes that lead to WHF.(53) Several congestion scores including symptoms (dyspnoea, orthopnoea, fatigue) and signs of HF (rales, peripheral oedema, jugular vein distension, hepatomegaly, weight gain) have been proposed and may be useful in different settings/moments of the patients’ journey.(53) Patient-reported outcomes (e.g. Kansas City Cardiomyopathy Questionnaire[KCCQ]) or exercise tests (e.g. six minute walking test, cardiopulmonary exercise test) may be more accurate and objective measurements of WHF than NYHA class alone. (54, 55, 56) In a pre-specified pooled analysis of VITALITY-HFpEF any degree of worsening from baseline on the KCCQ physical limitation score (PLS) (worsening in ≥1 response category) suggested a deterioration in patients with HFpEF.(57) Development of exercise intolerance is a marker of HF progression. (Figure 1)

Several HF risk scores are available for patients with chronic HF to predict development of WHF or mortality,(58, 59) whereas, to date, no largely validated risk scores has been developed for patients with a recent episode of WHF. The Comparison of Outcomes and Access to Care for Heart Failure (COACH) trial has recently demonstrated that a previously derived and validated point-of-care tool for risk stratification (EHMRG30-ST), including clinical and laboratory variables, combined with the provision of standardized transitional care may enable physicians to make informed decisions about appropriate care settings and may enhance safety by reducing discharge from ED of high-risk patients presenting with WHF and improve efficiency by reducing admission of lower-risk patients.(60)

5.2. Biomarkers

Changes in plasma concentrations of biomarkers may detect congestion and WHF at an earlier stage so that prompt treatment may prevent hospitalization.(1, 61, 62, 63) The increase in NT-proBNP concentrations may be similar regardless of site of care (urgent visit vs HF hospitalisation).(36) Although serial measurements of natriuretic peptides plasma concentrations may identify patients with WHF at an earlier stage,(64) strategies based on measurements of NT-proBNP levels to guide therapy have failed to show advantages compared with usual care in prospective randomized trials.(65, 66) However, in the most recent Safety, Tolerability and Efficacy of Rapid Optimization, Helped by NT-proBNP Testing, of Heart Failure Therapies (STRONG-HF) trial serial measurements of NT-proBNP, along with physical examination and assessment of symptoms and signs of congestion, during frequent follow-up visits to optimized GRMT for HF
were used to rapidly implement GRMT in patients with a recent hospitalization for HF (Table 3).(67)

Multiple mechanisms cause the release of high sensitivity cardiac troponin in patients with HF (Table 3).(61, 68, 69, 70) Elevated NT-proBNP and troponin identified patients with HF at increased risk of major events with a significant incremental value compared with clinical parameters alone in recent trials.(71, 72)

In BIOSTAT-CHF carbohydrate antigen 125 (CA-125) was the strongest single biomarker to distinguish WHF requiring hospitalization from worsening HF in chronic outpatients, with a C-index of 0.71.(73) Higher levels of CA-125 were positively associated with measures of peripheral congestion. Furthermore, CA-125 remained independently associated with a higher risk of clinical outcomes, even beyond a predefined risk model and clinical surrogates of congestion.(63, 70, 74, 75) Biologically active adrenomedullin (bio-ADM) was the strongest predictor of a clinical congestion score.(76) Also, albuminuria resulted a marker of systemic congestion in these patients, being associated with other markers of congestion (e.g. NYHA functional class, higher concentrations of biologically active adrenomedullin, CA-125, and NT-proBNP at baseline) and less with indices of renal function.(77) Among 4268 patients with HFrEF from studies that assessed soluble ST2 (sST2) for risk prediction in chronic HF, sST2 yielded strong, independent predictive value for all-cause and cardiovascular mortality, and hospitalization for WHF.(78) In patients admitted due to acute HF, sST2 at discharge predicted the risk of re-hospitalizations.(79)

Worsening renal function (WRF) is common in patients presenting with WHF due to an increase in central venous pressure, leading to raised renal interstitial pressures, and neurohormonal activation.(80, 81, 82) In a post-hoc analysis of the PARAGON-HF trial, patients who experienced an HF hospitalization during follow-up had an accelerated decline in estimated glomerular filtration rate (eGFR) both in the 12-months before and in those following HF hospitalization, compared with a stable eGFR trajectory in those without HF hospitalization.(83) The prognostic value of WRF is, however, critically dependent on concomitant congestion and it may be associated with better outcome when occurring in a patients with decongestion and a good diuretic response, representing a sign of adequate decongestion.(81, 82, 84, 85) Other biomarkers that can be useful in the management of patients with WHF are enlisted in Table 3.

5.3. Imaging
Echocardiography provides a thorough assessment of signs of congestion, including inferior vena cava diameter, pulmonary artery pressure, estimates of ventricular filling pressure and diastolic function such as the \(E/e'\) ratio. Ultrasound may also measure lung B-lines, jugular vein diameter, and intra-renal venous flow, which may be also useful for the early detection of subclinical congestion.(86, 87, 88) About a half of ambulatory patients without clinical signs of congestion had ultrasound markers of congestion, which were associated with elevated natriuretic peptides and an adverse prognosis.(89) These measures may be useful for physicians to choose and monitor their management choices (e.g. in-hospital admission; IV diuretic administration, oral diuretic escalation, GRMT uptitration). More specifically, the technique of lung ultrasound represents a helpful non-invasive method to detect changes in pulmonary congestion and to assess residual congestion (and pleural effusion) either pre-discharge or in the routine care of ambulatory patients with chronic HF, identifying those at increased risk for adverse events.(90)

5.4. Devices

Implantable haemodynamic monitoring systems enable daily transmission of snapshot recordings to remote health-care providers, obviating the need for in-person visits and facilitating home telemonitoring. They can therefore detect WHF when still subclinical, allowing prompt adjustment of therapy to prevent WHF events.(91, 92, 93) The CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) trial showed a significant reduction in HF hospitalizations for patients in NYHA class III who were managed with CardioMEMS, a wireless implantable pulmonary artery pressure sensor.(91) Decreases in HF hospitalizations with CardioMEMS were mainly related to frequent medications adjustments with significant increases in the doses of diuretics, vasodilators, and neurohormonal antagonists.(94) Neutral results from the larger haemodynamic-GUIDEed management of Heart Failure (GUIDE-HF) trial, including also NYHA class II patients, might be partially explained by the interference of COVID-19 pandemic.(95) Furthermore, the observed mean reduction in pulmonary pressure with CardioMEMS monitoring was only slightly higher than for the control group, suggesting that a more aggressive treatment was needed. Even if more changes in diuretics with pulmonary artery pressure monitoring occurred, it is unclear if the cumulative dose increased. Systemic arterial pressure and renal function were not monitored, and this might have hampered effective pharmacological management. Also, the GUIDE-HF trial enrolled a substantial proportion of patients with baseline pressures in the target range with a
6. Site of care

6.1. Site of care

Management of WHF has traditionally been hospital-based, but the increasing prevalence of HF and the costs of HF on healthcare systems led to the need and the development of different opportunities other than long hospital stays (Figure 2). (17, 44, 101)

Telemonitoring systems that allow daily recording of HF symptoms and daily measurements of blood pressure or weight might early detect episodes of WHF. Whether telemonitoring improves clinical outcomes in selected populations needs further confirmation. (99, 100)

Cardiac resynchronization therapy and the implantable cardioverter-defibrillator offer diagnostic features that allow monitoring of several variables, including intrathoracic impedance used to measure changes in thoracic fluid content, intracardiac pressures, heart rate variability, patients' physical activity level, and arrhythmias. (98) In a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing device-based remote monitoring strategies for congestion-guided HF management versus standard therapy, a strategy of congestion-guided HF management significantly reduced the primary outcome of all-cause death and hospitalizations for HF. Conversely, a strategy of impedance-guided management did not reduce the risks of all-cause death, HF hospitalizations, and the composite of both compared to standard therapy. (93)

Telemonitoring systems that allow daily recording of HF symptoms and daily measurements of blood pressure or weight might early detect episodes of WHF. Whether telemonitoring improves clinical outcomes in selected populations needs further confirmation. (99, 100)

Conversely, a strategy of congestion-guided management significantly reduced the primary outcome of all-cause death and hospitalizations for HF and the results were mainly driven by a reduction in the risk of hospitalizations for HF. The strategy of congestion-guided HF management was also associated with a significant reduction in the number of hospitalizations for HF. (93)

Patients that could benefit from haemodynamic monitoring systems implantation are those with NYHA class III, with an increased risk of HF events or with a recent episode of worsening HF, displaying high pulmonary artery pressure at baseline. (96, 97)

The study showed that implantation of the Cordella Sensor was feasible and safe with excellent accuracy of the Cordella Sensor PAP measurements, compared to fluid-filled catheter at 3-month follow-up. (96, 97)

Patients that could benefit from haemodynamic monitoring systems implantation are those with NYHA class III, with an increased risk of HF events or with a recent episode of worsening HF, displaying high pulmonary artery pressure at baseline. (96, 97)

Cardiac resynchronization therapy and the implantable cardioverter-defibrillator offer diagnostic features that allow monitoring of several variables, including intrathoracic impedance used to measure changes in thoracic fluid content, intracardiac pressures, heart rate variability, patients' physical activity level, and arrhythmias. (98) In a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing device-based remote monitoring strategies for congestion-guided HF management versus standard therapy, a strategy of congestion-guided HF management significantly reduced the primary outcome of all-cause death and hospitalizations for HF. Conversely, a strategy of impedance-guided management did not reduce the risks of all-cause death, HF hospitalizations, and the composite of both compared to standard therapy. (93)

Telemonitoring systems that allow daily recording of HF symptoms and daily measurements of blood pressure or weight might early detect episodes of WHF. Whether telemonitoring improves clinical outcomes in selected populations needs further confirmation. (99, 100)
In the COACH trial patients judged as at low risk were discharged early with early discharge defined as either discharge directly from the ED or discharge after an observation period in the hospital of up to 3 days. Patients who were discharged early were given access to standardized transitional care in the Rapid Ambulatory Program for Investigation and Diagnosis of Heart Failure (RAPID-HF) clinic. The RAPID-HF clinic was staffed by a nurse and supervised by a cardiologist, and the clinic provided outpatient care for up to 30 days after discharge from the ED or hospital. This strategy proved to be safe and effective for the treatment of these patients. (102) Door-to-furosemide time, defined as the time from patient arrival at the ED to the first intravenous furosemide injection, should be shortened. Early and aggressive treatment of congestion is crucial for patients with WHF in order to reduce duration of hospitalization, avoid in-hospital WHF and early re-admissions and improve outcome. (103) Patients presenting with signs of hypoperfusion and low cardiac output, low oxygen saturation levels (i.e. peripheral oxygen saturation <92%) and/or symptoms at rest (NYHA class IV) must be managed in-hospital.

6.2. In-hospital treatment

Medical treatment of patients with WHF requiring hospitalization is codified in the 2021 ESC guidelines. (1) The previous algorithm for the management of diuretic therapy (104) can be adapted following the recent results from ADVOR (acetazolamide in decompensated heart failure with volume overload). ADVOR assessed the use of IV acetazolamide compared to placebo in addition to furosemide in patients admitted with acute HF and volume overload. Acetazolamide is a carbonic anhydrase inhibitor that reduces sodium reabsorption in the proximal tubular and may improve diuretic efficiency when added to loop diuretics. (105) Patients receiving the intravenous combination of furosemide and acetazolamide had a greater incidence of successful decongestion within 3 days, which did not translate into better outcome, at least for mortality. (106) Importantly, patients enrolled in ADVOR did not receive other proximal tubular diuretics, like sodium glucose co-transporter 2 (SGLT2) inhibitors, although these drugs have a different mechanism of action.

In a pre-specified analysis of the EMPULSE (a study to test the effect of empagliflozin in patients who are in hospital for acute HF) trial on decongestion-related endpoints, Biegus and colleagues showed that empagliflozin started orally 3 days after hospital admission led to greater improvement in congestion compared with furosemide alone after hospital discharge, as early as at day 15, and was associated with higher probability of clinical benefit at day 90. (105, 107) In the
absence of data regarding the combination of these 3 class of drugs, Mebazaa et al. proposed the association of acetazolamide and SLGT2 inhibitors with furosemide in different time periods during an acute HF hospitalization and post-discharge (IV acetazolamide from admission to day 3 and an SGLT2 inhibitor from day 3 and on).(105)(74) The prospective, double-blind, placebo-controlled CLOROTIC (Safety and Efficacy of the Combination of Loop with Thiazide-type Diuretics in Patients with Decompensated Heart Failure) trial randomized patients with acute HF to receive hydrochlorothiazide (HCTZ) or placebo in addition to an intravenous furosemide. HCTZ was associated with greater weight loss and diuretic response but not with a significant improvement in patient-reported dyspnoea. A decline in renal function occurred more frequently among patients treated with HCTZ vs. placebo. (108)

6.3. Emergency department visit

Not all patients who present to the ED due to WHF require hospitalization. (20, 33) Patients considered at low-risk profile after ED evaluation could be discharged home, or managed for 24 to 48 h in an ED-based observation unit. (102, 109) A large proportion of patients experience improvement in dyspnea and/or a complete resolution of symptoms within 24 hours of IV therapy (e.g diuretics, vasodilators) during their ED stay. This strategy requires transition to outpatient care with a close follow-up.(109)

6.4. Outpatient intravenous or subcutaneous diuretic therapy

A practical guide for the outpatient management of worsening chronic HF (including both ambulatory IV diuretics in a day-hospital setting and ‘hospital at home’ or ‘home hospitalization’) has been recently published.(44) The cornerstone of WHF treatment is intravenous loop diuretic since congestion is crucial in the pathophysiology of WHF. Diuretic sessions usually consist in a 3-6 hours IV diuretic infusion. Doses of loop diuretics depend on the oral diuretic maintenance dose. Assessment of treatment response (including diuresis, urinary sodium, clinical decongestion, electrolytes, biomarkers and/or ultrasound) is of utmost importance. Initial experiences of ambulatory IV diuretic treatment have been published.(110, 111) Subcutaneous formulation of furosemide might be particularly useful for home treatment.(112)

6.5. Outpatients intensification of oral treatment
Intensification of oral diuretic therapy in ambulatory patients with chronic HF and evidence of worsening includes (1) initiation of a loop diuretic in patients who were not previously treated; (2) change to a total daily dose of loop diuretic higher than their previous total daily dose; (3) short-term addition of a diuretic with a different mechanisms of action (e.g. thiazides, metolazone). Thiazide-like diuretics, namely oral metolazone (2.5 to 5 mg), can be used in patients with advanced HF with diuretic resistance in a sequential nephron blockade or in those with estimated glomerular filtration rate <30 ml/min/1.73m2. This approach requires a closer monitoring of serum potassium and sodium concentrations.(101)

Change from furosemide to either bumetanide or torasemide may also be considered.(37, 38) Of note, TRANSOFRM-HF (Torasemide Comparison With Furosemide for Management of Heart Failure) trial, enrolling patients discharged after a hospitalization for HF, failed to show a significant difference in all-cause mortality over 12 months with torasemide compared to furosemide.(113)

6.6. Frequent flyers

Patients with WHF that progress to advanced HF, presenting with refractory symptoms and signs of congestion despite high doses of oral loop diuretics and optimal medical therapy, may represent one of the main target population for the treatment with IV diuretics in the outpatient setting (day hospital or “hospital at home” settings). Indeed, these patients spend a substantial amount of time in hospital (‘frequent flyers’). In these patients intermittent treatment with inotropic agents has been proposed while, also, considering them for advanced treatments.(114, 115) Recurrent worsening episodes can be the preamble to lack of response to GRMT and, thus, trigger candidacy to heart transplantation (HT), durable mechanical circulatory support (MCS) and palliative care. Data from retrospective studies showed that ambulatory patients with advanced HF (INTERMACS profiles 4–7) might benefit from long-term MCS even more than those with cardiogenic shock (INTERMACS 1-2) or inotrope-dependent (INTERMACS 3) due to the lower risk of complications.(114, 116) The ROADMAP (Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device [LVAD] and Medical Management) trial evaluated HeartMate II (HMII) LVAD support versus optimal medical management in ambulatory NYHA functional class IIIB/IV patients meeting indications for LVAD destination therapy but not dependent on intravenous inotropic support. Overall, LVAD support prolonged survival and improved health status, but was associated with a higher risk of adverse events and hospitalizations. Then, the
HeartMate III LVAD has been associated with a lower risk of adverse events compared to HMII pump, possibly widening the indications to LVAD. As for the recommendations to heart transplantation, we refer to HF guidelines.

7. Prevention

Guidelines recommend ACEI, ARNI, mineralocorticoid antagonists, beta-blockers and SGLT2 inhibitors to reduce the risk of HF hospitalizations and death (Figure 2). Recent analyses show the efficacy of GRMT also for the prevention of outpatient WHF events, including emergency visits with IV diuretic administration and outpatient visits followed by diuretic dose intensification. In PARADIGM-HF, the benefit of sacubitril/valsartan over enalapril was similar to the primary outcome for the expanded composite outcome including outpatient intensification of HF therapy, emergency department visits, HF hospitalizations and cardiovascular deaths (HR, 0.79; 95%CI, 0.73-0.86) with consistent effects across the different components. In PARAGON-HF, enrolling patients with HFrEF, cardiovascular death and HF hospitalizations and episodes of WHF outside of the hospital setting were similarly reduced by sacubitril/valsartan vs valsartan, HR, 0.87, 95%CI 0.75-1.005 and HR 086, 95%CI 0.75-0.99, respectively. PARAGLIDE-HF, a multicenter, double-blind, randomized, controlled trial testing safety, tolerability and efficacy of sacubitril/valsartan vs valsartan in patients with LVEF > 40% enrolled within 30 days of a WHF event will add data for the treatment of these patients.

Randomized controlled trials have shown that SGLT2 inhibitors reduce all WHF events with a similar efficacy on HF hospitalizations as well as on outpatient events. The benefits of SGLT2 inhibitors on clinical outcome and quality of life are additive to those of the other GRMT and are significant also in patients randomized during a HF hospitalization or within 30 days from it. Similar to what shown also with the other GRMT, the beneficial effects on outcome of SGLT2 inhibitors become significant early after their initiation with, therefore, a strong rationale for their early initiation after a WHF episode.

Administration of ferric carboxymaltose is advised according to guidelines and recent trials in patients with iron deficiency and LVEF <50% to reduce the risk of HF rehospitalizations and improve symptoms and quality of life.

Finally, VICTORIA (A Study of Vericiguat in Participants With HFrEF) included only patients with HFrEF, NYHA class II-IV, elevated natriuretic peptides concentrations and WHF, defined as a
HF hospitalization within 6 months before randomization or an episode of decompensation with outpatient treatment with intravenous furosemide 3 months before randomization. (139, 140) These criteria yielded a very high risk study group with an annualized event rate of the primary endpoint of cardiovascular death or HF hospitalizations of 37.8 vs 33.6 events per 100 patients per year with placebo and vericiguat, respectively. The 10% relative risk reduction of the primary endpoint (HR, 0.90, 95%CI, 0.82–0.98) therefore corresponded to a 3.7 absolute risk reduction, similar in magnitude to that of previous trials. (140, 141) The benefit of vericiguat did not differ significantly across the spectrum of risk in worsening HF and the range of times from WHF to randomization. (35) Based on these results, vericiguat administration should be advised, in addition to the four pillars of HFrEF therapy, in patients symptomatic and with LVEF <40% after a WHF event. (Figure 2) (1, 119, 142, 143)

Besides, exercise rehabilitation seems to reduce the risk of further HF events among older, frail patients hospitalized for decompensated HF, especially in those who are highly adherent to the exercise programme. (142, 144, 145)

8. Future directions

Further epidemiology data seem necessary to better understand the size of the problem of WHF and its impact on healthcare resources. This seems particularly warranted since more patients are now treated in an outpatient setting and the new medications should have a major effect on the patients’ clinical course.

There is a compelling need to prevent or reduce the occurrence of WHF in order to improve outcomes for patients with HF and to reduce the pressure on healthcare resources. Biomarkers, imaging techniques and devices enable early detection of congestion and identify patients at risk of WHF. However, convincing evidence from randomized, prospective trials showing a favourable effect on outcome with the use of any of these tools is lacking. The best strategies for relieving congestion with diuretic agents, in terms of dose, combinations and mode of administration requires further research. Mechanisms leading to decompensation are still incompletely understood and should probably be better characterized. Finally, we have new and effective treatments to reduce or prevent WHF and it is time to develop implementation strategies to ensure they are used effectively.
Figures legend

Figure 1. The four domains of a patient with an episode of worsening HF. Abbreviations: ED, Emergency Department; HT, heart transplantation; IV, intravenous; PAP, pulmonary artery pressure; VAD, ventricular assist device.

Figure 2. Treatment and prevention of WHF. a Treatment with new agents, including myotropic agents, is pending approval by the regulatory authorities. b Data on early initiation and administration are available for neurohormonal antagonists and modulators, SGLT2I and ferric carboxymaltose.(51, 130, 131, 146, 147) c Replacement of ACEI with ARNI is advised in patients previously on ACEI. (1, 148) Abbreviations: ACEI = angiotensin Converting Enzyme inhibitor; ARNI = angiotensin receptor neprilysin inhibitor; ID = iron deficiency; LVEF, left ventricular ejection fraction; MRA = mineralocorticoid antagonist; sGC = soluble guanylate cyclase; SGLT2i, sodium glucose co-transporter 2 inhibitors.

CONFLICTS OF INTEREST

M.M. reports personal fees from Amgen, AstraZeneca, Abbott Vascular, Bayer, Edwards Therapeutics, Livanova, Vifor Pharma, as member of Trials’ Committees or advisory boards or for speeches at sponsored meetings in the last 3 years. D.T. reports personal fees from Boehringer Ingelheim. M.A. reports speaker fees from Abbott Vascular and Medtronic. A.B.G. reports consulting fees and/or lectures from Abbott, Astrazeneca, Bayer, Boehringer Ingelheim, Roche Diagnostics, Vifor. S.D.A. declares grants and personal fees from Vifor and Abbott Vascular, and personal fees for consultancies, trial committee work and/or lectures from Actimed, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bioventrix, Brahms, Cardiac Dimensions, Cardior, Cordio, CVRx, Edwards, Farringay, Impulse Dynamics, Janssen, Novartis, Occlutech, Pfizer, Respicardia, Servier, Vectorious, and V-Wave. Dr. Anker also declares that he is named co-inventor of two patent applications regarding MR-proANP (DE 102007010834 & DE 102007022367), but he does not benefit personally from the related issued patents. M.B. is supported by the Deutsche Forschungsgemeinschaft (German Research Foundation; TTR 219, project number 322900939) and reports personal fees from Abbott, Amgen, Astra Zeneca, Bayer, Boehringer Ingelheim, Cytokinetik, Medtronic, Novartis, ReCor, Servier and Vifor. J.B. serves as a consultant to Abbott, Adrenomed, Amgen, Array, AstraZeneca, Bayer, Berlin Cures, Boehringer Ingelheim, Bristol-Myers Squibb, CVRx, G3 Pharmaceutical, Innolife, Janssen, LivaNova, Luitpold, Medtronic, Merck, Novartis, Novo Nordisk, Occlutech, Relypsa, Roche, Sanofi, SC Pharma, V-Wave Limited, and Vifor. J.C.F.C. is supported by a British Heart Foundation Centre of Research Excellence (grant number RE/18/6/34217), reports personal fees from Abbott, Amgen, Novartis, Medtronic, Idorsia, Boehringer-Ingelheim, Astra-Zeneca, Biopeutics, Torrent, Moderna, grants and personal fees from Bayer, Bristol Myers Squibb, Pharmacosmos. Vifor, Johnson & Johnson, Myokardia, Viscardia, NI...
Medical, Pharma Nord. A.C.S reports honoraria from Merck, Bayer, Vifor, Novartis, AstraZeneca, Boehringer Ingelheim, Sanofi. G.F. reports lecture fees and/or committee member contributions in clinical trials sponsored by Bayer, Medtronic, Vifor, Servier, Novartis, Amgen, and Boehringer Ingelheim, and research support from the European Union. F.G. reports consulting fees for Bayer, Alnylam, Ionis, Pfizer, Abbott and speaks fees from AstraZeneca, Novartis and Orion Pharma. E.J. reports research grants and personal fees from Vifor Pharma, personal fees from Bayer, Novartis, Abbott, Boehringer Ingelheim, Pfizer, Servier, AstraZeneca, Berlin Chemie, Cardiac Dimensions, Takeda and Gedeon Richter. M.L. reports honoraria and/or lecture fees from AstraZeneca, Boehringer Ingelheim, Novartis, Vifor. L.H.L. is supported by Karolinska Institutet, the Swedish Research Council [grant 523-2014-2336], the Swedish Heart Lung Foundation [grants 20150557, 20190310], and the Stockholm County Council [grants 20170112, 20190525], reports grants from AstraZeneca, Vifor, Boston Scientific, Boehringer Ingelheim, Novartis, MSD; consulting fees from Vifor, AstraZeneca, Bayer, Pharmacosmos, MSD, MedScape, Sanofi, Lexicon, Myokardia, Boehringer Ingelheim, Servier, Edwards Life Sciences, Allevant; speaker’s honoraria from Abbott, OrionPharma, MedScape, Radcliffe, AstraZeneca, Novartis, Boehringer Ingelheim, Bayer; Patent: AnaCardio; Stock ownership: AnaCardio A.M. has received grants from Roche Diagnostics, Abbott Laboratories, 4TEEN4, and Windtree Therapeutics; honoraria for lectures from Roche Diagnostics, Bayer, and MSD; is a consultant for Corteria Pharmaceuticals, S-form Pharma, FIRE-1, Implicity, 4TEEN4, and Adrenomed; and is co-inventor of a patent on combination therapy for patients having acute or persistent dyspnoea. B.M. reports advisory or speaker fees from AstraZeneca, Bayer, Boehringer Ingelheim, Ely Lilly, Servier, Novartis, Vifor Pharma. W.M. received research grants/consultancy fees from Novartis, Vifor, Medtronic, Abbott, AstraZenica, Boehringer Ingelheim. M.P. Consultancy, speaker fees from Astra-Zeneca, Boehringer-Ingelheim, CHF solution, Menarini, Novartis, Novo Nordisk, Servier, Vifor. PP has received consulting fees from Boehringer Ingelheim, AstraZeneca, Vifor Pharma, Amgen, Servier, Novartis, Bayer, MSD, Pfizer, Cibiem, Impulse Dynamics, Renal Guard Solutions, and BMS. PP has also received honoraria from Boehringer Ingelheim, AstraZeneca, Vifor Pharma, Amgen, Servier, Novartis, Berlin Chemie, Bayer, Pfizer, Impulse Dynamics, Renal Guard Solutions, BMS, and Abbott Vascular for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events. A.R. reports speaker honoraria fees from Bayer, Pfizer, Roche. G.S. reports grants and personal fees from Vifor, grants and non-financial support from Boehringer Ingelheim, personal fees from Società Prodotti Antibiotici, Roche, Servier, GENESIS, Cytokinetics, Medtronic, grants and personal fees from AstraZeneca, grants from Novartis, Boston Scientific, PHARMACOSMOS, Merck, outside the submitted work. G.C.T. reports honoraria or consultation fees from VivaLyfe, Univers Formazione, Solaris, Myocardial Solutions; Funding from Amgen and MSD; listed as an inventor of 2 patents related to HF; 2 grants from the Italian Ministry of Health (PNRR-MAD-2022-12376632 and RF-2016-02362988). S.V.H. has been a paid consultant for and/or received honoraria payments from AstraZeneca, Bayer, Boehringer Ingelheim, BRAHMS, Chugai, Grünenthal, Helsinn, Hexal, Novartis, Pharmacosmos, Resplicardia, Roche, Servier, Sorin, and Vifor. SvH reports research support from Amgen, Boehringer Ingelheim, IMI, and the German Center for Cardiovascular Research (DZHK). A.J.S.C. reports honoraria and/or lecture fees from AstraZeneca, Bayer, Boehringer Ingelheim, Edwards, Menarini, Novartis, Servier, Vifor, Abbott, Actimed, Arena, Cardiac Dimensions, Corvia, CVRx, Enopace, ESN Cleer, Faraday, Impulse Dynamics, Resplicardia, Viatris, outside the submitted work. All other authors report no conflict of interest.
References

Neprilysin Inhibition in Acute Decompensated Heart Failure. The New England journal of medicine.
failure: a circulating biomarker-based perspective. A review from the Biomarkers Working Group of the
Table 1. Definition, pathophysiology and site of care of worsening heart failure (WHF).

<table>
<thead>
<tr>
<th>Includes</th>
<th>Excludes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>– Worsening symptoms and signs of HF</td>
<td>– New onset HF</td>
</tr>
<tr>
<td>– Requiring intensification of treatment, generally including diuretic therapy</td>
<td>– Episodes with concomitant factors, including comorbidities and/or poor compliance, as primary cause</td>
</tr>
<tr>
<td>– Occurring in patients with pre-existing HF</td>
<td></td>
</tr>
<tr>
<td>Pathophysiology</td>
<td></td>
</tr>
<tr>
<td>– Disease progression</td>
<td>Precipitating factors as main cause</td>
</tr>
<tr>
<td>– Congestion</td>
<td></td>
</tr>
<tr>
<td>Site of care</td>
<td></td>
</tr>
<tr>
<td>– Hospital</td>
<td>Episodes requiring no changes in HF treatment</td>
</tr>
<tr>
<td>– Emergency Department</td>
<td></td>
</tr>
<tr>
<td>– Ambulatory</td>
<td></td>
</tr>
<tr>
<td>– with IV therapy</td>
<td></td>
</tr>
<tr>
<td>– with escalation of oral therapy</td>
<td></td>
</tr>
</tbody>
</table>

HF, heart failure; IV, intravenous
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Study population</th>
<th>WHF definition</th>
<th>All-cause mortality, HR (95% CI)</th>
<th>All-cause mortality, rates</th>
<th>Other outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized clinical trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solomon et al. 2007(28)</td>
<td>7,572 patients from the CHARM Program.</td>
<td>1,455 (19%) had HF hospitalization.</td>
<td>Unadjusted HR 4.55 (4.11-5.03); adjusted HR 3.15 (2.83-3.50) compared to those never hospitalized.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skali et al. 2014(32)</td>
<td>1,820 patients from the MADIT-CRT trial.</td>
<td>52 (2.9%) patients experienced non-fatal outpatient WHF and 331 (18.2%) non-fatal inpatient WHF.</td>
<td>HR 10.7 (6.1-18.7) for outpatient WHF; HR 12.4 (9.1-16.9) for inpatient WHF, compared with non WHF events.</td>
<td>Rates per 100 p/y: -Inpatient WHF, 18.5 -Outpatient WHF, 15.9 -Non-WHF, 1.5.</td>
<td>-</td>
</tr>
<tr>
<td>Okumura et al. 2016(6)</td>
<td>8,399 patients from the PARADIGM-HF trial.</td>
<td>In an examination of first nonfatal events, 1107 patients (13.2%) were hospitalized for WHF; 78 (1.0%) had an ED visit; 361 (4.3%) had outpatient intensification of therapy.</td>
<td>-Inpatient WHF, HR 5.9 (5.2-6.6); -ED visit, HR 4.5 (3.0-6.7) -Outpatient WHF, HR 4.8 (3.9-5.9) compared to patients without WHF events.</td>
<td>Rates per 100 p/y: -Inpatient WHF, 33.4 (30.3-36.8) -ED visit, 25.1 (16.9-37.5) -Outpatient WHF, 27.2 (22.7-32.7) -No WHF events, 5.9 (5.6-6.3).</td>
<td>Rate of CV death per 100 p/y: -Inpatient WHF, 30.3 (27.4-33.6) -ED visit, 19.9 (12.7-31.2) -Outpatient WHF, 22.1 (18.0-27.0) -No WHF, 4.6 (4.2-4.9).</td>
</tr>
<tr>
<td>Docherty et al. 2020(8)</td>
<td>4,744 patients from DAPA-HF trial.</td>
<td>First episode of WHF: -407 (8.6%) outpatient augmentation of therapy; -20 (0.4%) urgent HF visit with IV therapy; -489 (10.3%) HF hospitalization.</td>
<td>-Outpatient WHF, adjusted HR 2.67 (2.03-3.52) -Urgent HF visit, adjusted HR 3.00 (1.39-6.48) -Inpatient WHF, adjusted HR 6.21 (5.07-7.62), in comparison with no WHF events.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lam et al, 2021(35)</td>
<td>5,050 patients from the VICTORIA trial.</td>
<td>3,378 (67%) were randomized less than 3 months from index HFH (11% in-hospital),</td>
<td>Rates of CV death or HFH per 100 p/y: -HFH < 3 months, 40.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Study</td>
<td>Patients</td>
<td>Outcomes</td>
<td>Adjusted HR (95% CI)</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Vaduganathan et al. 2021(36)</td>
<td>4,796 patients from PARAGON-HF</td>
<td>884 experienced a first episode of WHF, of which 66 (7.5%) were urgent HF visits and 818 (92.5%) were HF hospitalizations.</td>
<td>HR 0.52 (0.27 to 0.97) for an urgent HF visit compared with HF hospitalization.</td>
<td>- HFH 3 to 6 months, 29.6 - outpatient WHF: 23.4. Adjusted HR, 1.48 (1.27-1.73), for the HFH <3 months pts vs outpatient WHF; no significant difference between HFH 3 to 6 months and outpatient WHF (adjusted (P = .25)).</td>
<td></td>
</tr>
<tr>
<td>Butler et al. 2019(30)</td>
<td>11,064 patients with incident HFrEF from the National CV Data Registry PINNACLE</td>
<td>1,851 (17%) developed WHF.</td>
<td>Subsequent 2-year mortality rate was 22.5%. The mean survival time using Kaplan-Meier estimate was 19.7 ±0.2 months.</td>
<td>56% of patients were re-hospitalized within 30 days of the WHF event.</td>
<td></td>
</tr>
<tr>
<td>Ferreira et al. 2019(34)</td>
<td>2,516 patients with WHF from the BIOSTAT-CHF</td>
<td>1,694 inpatients WHF; 822 outpatients WHF.</td>
<td></td>
<td>Rate of the composite of all-cause death or HF per 100p/y: -Inpatients, 33.4 (31.1-35.9) -Outpatients 18.5 (16.4-21.0). Adjusted HR 1.24 (1.07-1.43) for inpatients vs outpatients.</td>
<td></td>
</tr>
<tr>
<td>Butt et al. 2020(14)</td>
<td>17,176 patients with a first hospital admission for HF in 2013–2015 from Danish nationwide registries.</td>
<td>8,860 (51.6%) patients were admitted with new-onset HF and 8,316 (48.4%) with worsening of CHF.</td>
<td>-Unadjusted HR 1.37 (1.31–1.44); adjusted HR 1.22 (1.16–1.28) compared with new-onset HF.</td>
<td>-Unadjusted HR for all-cause death or HFH: 1.54 (1.48–1.60); adjusted HR 1.37 (1.31–1.43) -Unadjusted HR for HF readmission: 2.13 (2.01–2.27);</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Patients</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madelaire et al. 2020(37)</td>
<td>74,990 Danish patients diagnosed with HF from 2001 to 2016.</td>
<td>Unadjusted HR for any readmission 1.34 (1.29–1.39); adjusted HR 1.81(1.69–1.93); adjusted HR 1.18(1.13–1.22) compared with new-onset HF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greene et al. 2021(18)</td>
<td>22,677 patients with HFrEF hospitalized between 2007 and 2018 in US.</td>
<td>Rates of 30-day HF readmission and 30-day all-cause readmission were 9.8% and 15.1% in pts with WHF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shah et al. 2022(33)</td>
<td>2,661 US patients hospitalized for HF from ASCEND-HF trial.</td>
<td>Rates of death during the subsequent 150 days: - 21.0% (17.5–25.0) for pts with HFH - 11.4% (7.7–16.8) for pts discharged from the ED - 8.0% (6.9–9.3) for pts without WHF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambrosy et al. 2022(7)</td>
<td>103,138 patients with HF from 2010-2019 from Kaiser Permanent Northern California, KPNC.</td>
<td>30-day rates of all-cause hospitalization: 20.8%, for inpatient WHF vs 16.7% for pts with HFrEF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Authors and Year</td>
<td>Population Details</td>
<td>Data</td>
<td>Follow-Up</td>
<td>Hospitalization and Mortality Rates</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td>------</td>
<td>-----------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Kaplön-Cieślicka et al. 2022(29)</td>
<td>5,951 participants in the ESC HF Long-Term Registry hospitalized for acute HF.</td>
<td>-</td>
<td>-</td>
<td>In-hospital mortality was 3.4% in HFrEF, 2.1% in HFmrEF, and 2.2% in HfPEF. One-year mortality rates were 22, 17, and 17 per 100 p/y, respectively.</td>
<td></td>
</tr>
<tr>
<td>Kimmoun et al. 2021(11)</td>
<td>A systematic review including 285 AHF studies (15 millions pts) from 1980 to 2017.</td>
<td>-</td>
<td>-</td>
<td>-Total 30-day and 1-year all-cause death rates were 7% (6–8) and 24% (23–26), respectively.</td>
<td></td>
</tr>
<tr>
<td>Agarwal et al. 2021(13)</td>
<td>8,273,270 HF hospital admissions from 2010 to 2017 from US.</td>
<td>-</td>
<td>-</td>
<td>-Rates per 1000 adults for HF readmissions: 1.0 in 2010, 0.9 in 2014 and 1.1 in 2017; -All-cause 30-day readmissions: 0.8 in 2010, 0.7 in 2014 and 0.9 in 2017.</td>
<td></td>
</tr>
<tr>
<td>Labrosciano et al. 2021(15)</td>
<td>Patients >18 years hospitalised with HF from 2010–2015 in Australia and New Zealand.</td>
<td>-</td>
<td>-</td>
<td>Out of 153,592 patients, 16,442 (10.7%) died within 30 days of admission (6.6% in hospital and 4.1% after discharge).</td>
<td></td>
</tr>
<tr>
<td>Hariharaputhiran et al. 2022(16)</td>
<td>283,048 patients hospitalized for HF from 2008-2017 in Australia and New Zealand.</td>
<td>-</td>
<td>-</td>
<td>48.3% (48.1-48.5) were surviving by 3 years, 34.1% (33.9-34.3) by 5 years and 17.1% (16.8-17.4) by 10 years (median survival 2.8 years).</td>
<td></td>
</tr>
</tbody>
</table>

AHF acute heart failure; CI, confidence interval; CHF, chronic heart failure; CV, cardiovascular; ED, emergency department; HF, heart failure; HFH heart failure hospitalization; HFmrEF, heart failure with mildly reduced ejection fraction; HFrEF, heart failure with reduced ejection fraction; HFpEF, heart failure with preserved ejection fraction.
fraction; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HR, hazard ratio; IV intravenous; p/y, patients/years; WHF, worsening heart failure.
Table 3. Pathophysiological mechanisms, outcome and clinical utility of several biomarkers in patients with WHF.

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Pathophysiological mechanisms</th>
<th>Outcome</th>
<th>Clinical Utility</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natriuretic peptides (NPs)</td>
<td>Related to increased left ventricular myocardial wall stress and intracardiac pressure, activation of neuro-endocrine-immune system.</td>
<td>Admission/discharge/follow-up levels of NPs are diagnostic of HF and predict prognosis. Serial changes have prognostic value.</td>
<td>- Of help for the diagnosis of WHF above all if an increase is detected with serial measurements</td>
<td>(1, 36, 62, 64, 65, 66, 67)</td>
</tr>
<tr>
<td>Cardiac troponin (cTn)</td>
<td>Related to increased left ventricular wall tension, subendocardial hypoperfusion, inflammation, neurohormonal activation, supply–demand mismatch, cytotoxicity, cellular necrosis, apoptosis or autophagy, and possibly exocytosis of cytosolic contents.</td>
<td>Associated with poor outcomes and ventricular remodelling. Combined with NT-proBNP may identify patients at higher risk with incremental value beyond clinical parameters</td>
<td>- To exclude the presence of type 1 MI or other acute triggers for HF (beyond the definition of WHF).</td>
<td>(61, 68, 69, 71, 72, 149)</td>
</tr>
<tr>
<td>CA-125</td>
<td>Related to systemic congestion and inflammation (synthesized by mesothelial cells in response to an increase in hydrostatic pressures and/or inflammatory mediators).</td>
<td>Associated with a higher risk of all-cause mortality and the combined all-cause death and hospitalization for HF.</td>
<td>Associated with systemic congestion. Prognostic assessment. CA125-guided therapy was associated with a reduction of 1-year death/AHF-related risk.</td>
<td>(73, 74, 75)</td>
</tr>
<tr>
<td>Bio-ADM</td>
<td>Related to congestion (ADM expression is stimulated by volume overload). Vasodilatory peptide hormone that regulates endothelial function/stabilizes endothelial barrier function.</td>
<td>Associated with increased risk of all-cause mortality and the combined all-cause mortality and HF hospitalization.</td>
<td>- Subclinical detection of congestion. Prognostic assessment.</td>
<td></td>
</tr>
<tr>
<td>sST2, GDF-15, galectin-3</td>
<td>Markers of inflammation and/or fibrosis.</td>
<td>Prognostic value in acute HF (admission and discharge sST2).</td>
<td>Possible prognostic assessment</td>
<td></td>
</tr>
<tr>
<td>Kidney markers</td>
<td>WRF is common in patients presenting with WHF due to the renal impairment.</td>
<td>The prognostic value of WRF is critically dependent on kidney function.</td>
<td>Kidney function is a major comorbidity</td>
<td>(61, 68, 149)</td>
</tr>
<tr>
<td>(e.g., eGFR, NGAL, miRNA, cystatin C)</td>
<td>to an increase in central venous pressure, leading to raised renal interstitial pressures, and neurohormonal activation.</td>
<td>concomitant congestion and it may be associated with better outcome when occurring in patients with decongestion and a good diuretic response, representing a sign of adequate decongestion.</td>
<td>determinant of medical therapy.</td>
<td>81, 82, 83, 85)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Albuminuria</td>
<td>Related to congestion</td>
<td>Associated with increased risk of mortality and HF (re)hospitalization</td>
<td>-Prognostic assessment.</td>
<td>(77)</td>
</tr>
<tr>
<td>Procalcitonin</td>
<td>Released directly by endotoxins or indirectly via cytokines [e.g. interleukin (IL)-6] during bacterial infections.</td>
<td>-Differential diagnosis of HF (vs pneumonia and infections).</td>
<td>(61)</td>
<td></td>
</tr>
</tbody>
</table>
Worsening signs/symptoms
Severity of congestion
Decreased exercise capacity
Hospitalization
ED visits
Outpatient (IV therapy/oral therapy escalation)

Biomarkers
Imaging
Devices (PAP monitoring)

Increased risk of subsequent mortality and rehospitalizations
Poor health status and QoL
Need of HT or VAD

Figure 1: the four domains of a patient with an episode of worsening HF
TREATMENT

In-hospital
Emergency Department
Outpatient

Treatment of congestion
Intensification of diuretic therapy
- Switch to intravenous loop diuretic
- Escalate oral dose of loop diuretic
- Switch to subcutaneous loop diuretic?
- Add acetazolamide
- Add thiazide-like diuretics?
- Other options (i.e. ultrafiltration)

Treatment of hypoperfusion
Intravenous inotropic therapy
- single administration/ Intermittent
Oral agents
- Digitalis glycosides
- New agents? a

PREVENTION

Start early, possibly before discharge b
Combine drugs as their effects are additive
Administer simultaneously or in rapid sequence

Neurohormonal antagonists and modulators
In patients with HFrEF
- ARNI /ACEI b
- Beta-blockers
- MRA

SGLT2i
In all patients
- Dapagliflozin or Empagliflozin

Intravenous iron supplementation
In patients with ID and LVEF <50%

sGC activators
In patients with LVEF <45%