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Aim:There have been substantial changes in the simulation technology landscape,

in particular virtual reality (VR), during the past decade, which have resulted

in increased abundance and decreased cost. We therefore updated a previous

meta-analysis conducted in 2011, aiming to quantify the impact of digital

technology-enhanced simulation (T-ES) compared with traditional teaching in

physicians, physicians-in-training, nurses, and nursing students.

Design: We conducted a meta-analysis consisting of randomized controlled trials

published in English between January 2011 and December 2021 in peer-reviewed

journals indexed in seven databases. Moderators for study duration, instruction,

type of healthcare worker, type of simulation, outcome measure, and study

quality rated by Medical Education Research Study Quality Instrument (MERSQI)

score were included in our model and used to calculate estimated marginal

means (EMMs).

Results: The overall e�ect of T-ES was positive across the 59 studies included

in the analysis compared with traditional teaching [overall e�ect size 0.80 (95%

CI 0.60, 1.00)]. This indicates that T-ES is e�ective in improving outcomes across

a wide variety of settings and participants. The impact of T-ES was found to be

greatest for expert-rated productmetrics such as procedural success, and process

metrics such as e�ciency, comparedwith knowledge and procedure timemetrics.

Conclusions: The impacts of T-ES training on the outcome measures included in

our study were greatest in nurses, nursing students and resident physicians. T-ES

was strongest in studies featuring physical high-fidelity mannequins or centers,

compared with VR sensory environment T-ES, though there was considerable

uncertainty in all statistical analyses. Further high-quality studies are required to

assess direct e�ects of simulation training on patient and public health outcomes.

KEYWORDS

medical education, clinical assessment and examination, medical students, virtual reality,

high-fidelity simulation

Introduction

Technology-enhanced simulation (T-ES) allows learners to develop their knowledge

and skills without exposing real patients to potential harm. T-ES enables clinicians to train

for low-frequency, high-intensity events where other forms of medical education may not

provide a sufficiently realistic experience. T-ES also allows healthcare professionals to gain

insight into clinical practice from multiple perspectives, including that of the patient. For

example, a nationwide study in the United States concluded that high-quality simulation

experiences could substitute up to 50% of traditional clinical hours across the prelicensure
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nursing curriculum (1). This is, however, dependent on simulation

exercises being of sufficient quality, and it is therefore important

for educators to have strong supporting evidence for increased

adoption of simulation.

There are numerous potential benefits to the adoption of T-

ES: simulation could contribute to increasing both quality and

capacity of healthcare training, provided it is sufficiently realistic

with opportunities to apply learning, both of which are key themes

when frontline healthcare professionals are surveyed (2). Aside

from this, the use of high-fidelity mannequins has been shown

to encourage the development of professional identity among

nurses (3). Also, newly qualified physicians entering the hospital

environment often report feeling scared and underprepared when

facing acutely ill, predominantly elderly patients (4). Simulation has

been demonstrated to be effective in increasing medical students’

confidence when entering practice (5), and has been demonstrated

to be an effective approach for reducing anxiety and increasing

self-confidence, compared with conventional didactic teaching (6).

However, a compromise must be made between realism and cost,

whilst maintaining a level of realism appropriate to each stage

of clinicians’ professional development. High-fidelity simulation

centers featuring realistic hospital ward or surgical environments

require substantial resources alongside the clinical team: static,

specialized technology, technicians, actors and psychologists, as

well as debriefing and human factors experts (7). Therefore,

the advantages of higher-fidelity simulation must be evidence-

based, especially as low-fidelity simulation modalities that do

not feature digital technology, such as bench-top models or

standardized patients, can be a lower-cost and less resource-

intensive alternative. In particular, in the past decade, virtual reality

(VR) technology has become more attractive for educators due to a

substantial decrease in headset cost, with a simultaneous increase

in availability due to the rise of low-cost smartphone-based VR

headsets, which have combined to make T-ES more accessible

globally (8).

The main finding of the Cook et al. (9) study was that T-

ES was “consistently associated with large effects for outcomes of

knowledge, skills, and behaviors and moderate effects for patient-

related outcomes.” However, this analysis focused predominantly

on quasi-experimental studies or randomized studies with no

intervention control groups.

Today, the technology landscape is markedly different than

what existed when Cook et al. (9) was conducted, as both VR

and smartphone technology was still relatively novel at that

time, and potentially beyond the means of medical educators

particularly in low-to-middle-income countries. We aimed to

update the results of Cook et al. (9) in light of the latest

simulation technology and novel research. We also used more

focused search criteria and improved statistical methodology,

focusing on studies with traditional education control groups and

using estimated marginal means (EMMs) to assess the efficacy of

simulation across subgroups within the included studies. Here,

we provide an evidence-based assessment of T-ES compared with

traditional training using a meta-analysis framework. Our analysis

is especially important as few reviews published since Cook et al.

(9) have focused on simulation in physicians practicing non-

surgical specialties.

Methods

The Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) (10) guidance was followed throughout

this meta-analysis. Our inclusion criteria followed the PICOS

(Population, Intervention, Comparison, Outcomes and Study

design) framework. Included participants were physicians,

physicians-in-training, medical students, nurses or nursing

students. Interventions were any type of digital high-fidelity

mannequin or simulation center, VR, defined as exploration

and manipulation of computer-generated three-dimensional

(3D) sensory environments; and virtual patient (VP) simulation,

where learners interact with computerized patient cases and

scenarios. We excluded low- or mid-fidelity studies, those featuring

real-life standardized patients, and computer-based e-learning

studies, which were beyond our definition of T-ES as we aimed

to incorporate the latest interactive digital technology. The

comparator was equivalent traditional teaching on the same

topic. Outcome measures were clinical skills or procedural quality

assessed by expert raters, patient health outcomes, knowledge

assessed by written examinations, and time metrics. To meet our

inclusion criteria, post-tests conducted immediately after either

T-ES or didactic training were not conducted in T-ES settings, in

order to assess transfer of skills.

We based our search strategy on Cook et al. (9), and made

minor alterations as advised by an academic librarian. Detailed

search terms are provided in Supplementary Appendix 1. A filter

for studies published between January 2011 and December 2021

was applied to all searches, to incorporate those published in decade

following Cook et al. (9).

We performed a search of seven literature databases:MEDLINE

(n results = 14,876), Embase (n = 4,903), Scopus (n = 5,044),

Web of Science (n = 4,095), PsycINFO (n = 1,267), CINAHL

(n = 7,504), and ERIC (n = 681), which was conducted in April

and May 2022 (Figure 1), with the last search carried out on May

31st, 2022. Reference lists of all studies meeting the inclusion

criteria were searched, however no additional suitable studies were

identified. Potentially relevant studies were recorded and once all

searches were complete, studies were assessed against eligibility

criteria. Post-test data were then extracted from intervention and

control groups of suitable studies and added to a pre-prepared

spreadsheet. All suitable outcome measures (expert ratings of

process or product measures, patient outcomes, time or knowledge

scores) reported as a mean value with standard deviation (SD), or

information that could be used to calculate SD, were extracted from

each paper. Any papers which did not contain suitable data for

calculating standardized mean differences (SMDs)—for example,

only providing p-values or median data—were excluded. Data

analysis was conducted using a random-effects multilevel meta-

analysis method, in order to account for multiple non-independent

effect sizes within each study, for example multiple expert ratings

of different aspects of the same procedure. The metafor (11) 3.9

package for R (12) 4.2.2 was used for meta-analysis, with the

orchaRd (13) 2.0 package used for data visualization. Emmeans

(14) 1.8.2 was used to calculate EMMs. dmetar (15) 0.0.9 was used

to calculate heterogeneity across the multilevel model. An overall

effect size was calculated using all outcome measures, followed by
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FIGURE 1

PRISMA flow chart—of 38,370 studies screened, 3,940 abstracts were searched in detail, of which 449 were duplicates–59 studies were included

overall, with 136 individual e�ect sizes analyzed.

moderator and EMM analyses. R script used for the meta-analysis

can be found in Supplementary Appendix 3.

We excluded quasi-experimental studies as scores at baseline

and post-test are not independent, and many single-group pre-

test/post-test studies do not report correlation values, which are

required to calculate SMDs. Between-group SMDs also better

account for confounding effects due to individual differences

between participants (16). We also did not pool SMDs sizes using

subgroup analyses as these can be liable to various statistical and

methodological issues such as a failure to reflect uneven sample

sizes, spurious correlations with other variables and inflated type-

I errors (17). We instead used moderator analysis and EMMs

to evaluate the included studies. Moderators for study duration,

instruction, type of healthcare worker, type of simulation, outcome

measure and study quality rated by Medical Education Research

Study Quality Instrument (MERSQI) score were included in our

model and used to calculate EMMs.

All studies were appraised using the MERSQI (18), a validated

instrument which has been demonstrated to be reliable in similar

studies (19)—this was used to examine whether there was any

statistically significant relationship between study quality and effect

size. Publication bias, time-lag bias (when the results of negative

trials take substantially longer to publish than positive trials), and

small study bias tests were performed by fitting mean-centered year

and effective sample size as moderators using a meta-regression

method suitable for high-heterogeneity multilevel meta-analyses

(20). Funnel plots were not used due to subjectivity, whilst the

trim-and-fill method was not used as its performance is especially

poor when there is between-study heterogeneity and no publication

bias (21).

Results

Overall, 59 studies met our inclusion criteria and were

included in themeta-analysis, which produced 136 individual effect

sizes (Supplementary Figure 1 and Supplementary Appendix 2).

We found themean SMDwas 0.80 [(95%CI 0.60, 1.00), I2 = 84.6%,

p < 0.0001]—an effect size 0.8 is considered “large”. The mean

of the T-ES group is at the 79th percentile of the didactic group,

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2023.1149048
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mitchell and Ivimey-Cook 10.3389/fmed.2023.1149048

therefore a participant from the T-ES group with a mean score

for that group would obtain a higher score than 79% of the

participants from the didactic group (22). Details of individual

study methodologies can be found in Supplementary Table 1.

The mean Medical Education Research Study Quality Instrument

(MERSQI) score was 12.8 (±2.48) out of a possible 18, indicating

that study quality was generally high.

Total heterogeneity was considerable (I2 = 84.6%), of which

52.6% was due to between-study heterogeneity and 32% was from

heterogeneity between the individual effect sizes. A moderator test

for publication bias and time-lag bias was conducted, which was not

statistically significant [estimated effect size −0.10 (95% CI −0.27,

0.065), p = 0.23; −0.028 (−0.10, 0.045), p = 0.45]. Moderator

analysis also confirmed that there was no statistically significant

impact of study quality (MERSQI score) on the overall effect size

[−0.11 (−0.26, 0.031), p = 0.12], which means that lower-quality

studies did not contribute to an unduly strong effect size.

The impact of T-ES across our included outcome measures

was found to be greatest in nurses and nursing students [n = 20,

EMM 1.11 (0.55, 1.67)] and residents [n = 59, 0.92 (0.57, 1.27)],

and smallest in medical students [n = 44, 0.55 (0.11, 1.00)]

and physicians in practice [n = 13, 0.64 (-0.16, 1.44)]. High-

fidelity mannequins or physical environments [n = 52, 0.90 (0.51,

1.28)] were then compared to studies featuring simulated VR

environments [n = 77, 0.70 (0.36, 1.03)]. VP case-based T-ES

demonstrated the greatest EMMs of anymodality [n= 7, 1.28 (0.46,

2.10)], though this result should be interpreted with caution due to

a small sample size and below-average MERSQI scores (range 9.5–

11.5). Lastly, average scores were greater when T-ES training was

carried out over more than 1 day [0.94 (0.63, 1.24)], compared with

single-day exercises [0.58 (0.19, 0.96)], which may suggest a dose-

response relationship where a greater duration of T-ES training

leads to greater scores in our included outcome measures.

Discussion

This meta-analysis included a diverse range of relevant

outcome measures over three different high-fidelity simulation

modalities—high-fidelity mannequins and centers, VR and VPs—

and physicians and nurses at all stages of training. The overall

effect size of 0.80 [0.60, 1.00] shows a strong immediate effect of

T-ES training when translated to knowledge scores, clinical settings

involving real patients, and dexterous surgical tasks involving

cadaver or porcinemodels. These results support the consensus that

high-fidelity simulation is best suited to refining performance as

opposed to knowledge, with the largest effects shown for process

and product outcomes as opposed to time or knowledge. Broadly,

this suggests that T-ES can contribute to improving patient care and

prepare healthcare trainees for unfamiliar situations.

In comparison with the Cook et al. (9) study, we found an EMM

of 0.55 [0.16, 0.94] for knowledge outcomes (written examination

assessments on the topic of interest), compared with a pooled effect

size of 1.20 [1.04, 1.35]. Scores for expert-rated outcomes assessed

in real patient cases, cadaver or animal models were notably similar:

1.16 [0.84, 1.48], compared with 1.18 [0.98, 1.37] in the Cook

et al. (9) analysis. The EMM for process metrics was 0.92 [0.52,

1.33] compared with a pooled effect size of 1.09 [1.03, 1.16], and

0.57 [0.16, 0.99] compared with 1.14 [1.03, 1.25] for time skills.

It is notable that these effects were similar despite methodological

differences, principally that we evaluated studies with didactic

teaching control groups, as opposed to the no intervention control

groups evaluated in the Cook et al. (9) analysis, something that has

been a criticism of previous analyses (23). However, as no overall

effect size was provided in the Cook et al. (9) analysis, we are

unable to make a direct comparison, but we can state that T-ES

remains relevant in achieving desired learning outcomes despite the

increasing abundance of technology in the past decade.

Evidence has suggested that low-fidelity simulation is most

impactful in building knowledge, whilst higher-fidelity simulation

is best used to develop performance and action (24). It is

important to note that one recent economic analysis found that

VR training required 22% less time than more traditional high-

fidelity simulation to achieve the same learning outcomes, at a

40% lower cost (25). This must be considered in the context of

evidence that when trainees are exposed to high-fidelity simulation

at an early stage, this may lead to overconfidence relative to lower-

fidelity interventions (26). This is supported by the results of

another recent meta-analysis (27) of 8 VR studies, which found

only a medium effect size for knowledge outcomes [0.44 (0.18,

0.69)]. Interestingly, we also found that the average effect of T-

ES was greater when no instruction was given simultaneously by

clinical academics [EMM 1.13 (0.71, 1.55)], compared to when

instruction was given [0.60 (0.31, 0.89)]. However, as this study only

assessed immediate post-test results, we cannot determine if this is

a longer-term effect on retention following simulation training. In

the existing literature, a progressive curriculum from low-fidelity

to high-fidelity simulation has been shown to be effective (28),

where more inexperienced students learn with minimal extraneous

stimuli until reaching proficiency, preventing cognitive overload.

This is also something we lacked the statistical power to examine.

Due to limited randomized studies with suitable control groups,

we lacked the statistical power to make definitive comparisons

between types of simulation or healthcare professionals using

EMMs. This was apparent when examining a difference in

outcomes of T-ES between physicians at each stage of training,

or between physicians and nurses, as almost three-quarters of

included studies evaluated physicians-in-training, it was difficult

to draw statistically powerful conclusions, something that is also

highlighted by a relative lack of reviews evaluating simulation in

practicing physicians.

Conclusion

Weused a broad search strategy to synthesize 59 generally high-

quality randomized studies to contribute to the evidence base for

simulation in diverse healthcare settings.

We found that skills and knowledge developed during T-ES

are generally transferable to other settings across physicians and

nurses at all stages of training, types of high-fidelity simulation

modality and numerous clinical specialties. However, this must

be considered with considerable uncertainty and heterogeneity

taken into account. Differing inclusion criteria, study designs and

statistical methodology mean that fair and direct comparisons with

Cook et al. (9) are difficult.

With a tendency to focus on novel, rapidly advancing

technologies such as VR, existing simulation modalities such
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as low-fidelity bench-top models or simulated patients may

perhaps not receive equal consideration. Lower-fidelity methods

can still achieve the desired learning outcomes, especially in more

inexperienced trainees. There remains a clear need to identify

whether simulation is effective in improving the quality and

scalability of medical education, and care delivered to patients,

relative to lower-fidelity, less expensive interventions.
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