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We theoretically propose an atomic Bose-Einstein condensate as an analog model of backreaction effects
during the preheating stage of the early Universe. In particular, we address the out-of-equilibrium dynamics
where the initially excited inflaton field decays by parametrically exciting the matter fields. We consider a
two-dimensional, ring-shaped BEC under a tight transverse confinement whose transverse breathing mode
and the Goldstone and dipole excitation branches simulate the inflaton and quantum matter fields,
respectively. A strong excitation of the breathing mode leads to an exponentially growing emission of
dipole and Goldstone excitations via parametric pair creation: Our numerical simulations of the BEC
dynamics show how the associated backreaction effect results not only in an effective friction of the
breathing mode, but also in a quick loss of longitudinal spatial coherence of the initially in-phase
excitations. Implications of this result on the validity of the usual semiclassical description of backreaction
are finally discussed.
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Introduction.—Since Unruh’s pioneering proposal [1],
analog models of gravity represent a promising platform
where a wide range of effects of quantum fields in curved
spacetime can be studied from first principles and poten-
tially find experimental confirmation [2]. A most cele-
brated achievement was the observation of the analog of
Hawking radiation [3,4] emanating from the acoustic
horizon in a trans-sonically flowing Bose-Einstein con-
densates (BECs) of ultracold atoms [5–9]. Analogs of
cosmological particle creation effects have also been
investigated on the BEC platform both theoretically
[10–14] and experimentally [15,16].
While these advances clearly demonstrate the power of

the analog gravity program, they all address kinematic,
test-field effects of a noninteracting quantum field theory
on a predetermined curved spacetime background [17].
The next challenge that stands in front of the analog
gravity community is to extend these investigations to
the so-called backreaction phenomena [18], where the
background has its own dynamics and interplays with the
quantum field.
A simplest example of such an effect is the radiative

friction felt by an accelerated mirror in response to the
dynamical Casimir emission [19]. Here, theoretical studies

in a single-mode geometry [20,21] have hinted at an
important role of quantum fluctuations of the friction force
[22–24]. At an even more idealized level, signatures of
backreaction and entanglement effects have been high-
lighted in trilinear Hamiltonian models in both theory [25]
and experiments [26]. Beyond these toy models, a full
understanding of quantum features in backreaction effects
is of outstanding importance in the case of black hole
evaporation under the effect of Hawking emission [27],
where one expects that quantum fluctuations may be
involved in the so-called information paradox [28]. In
the analog model context, first pioneering steps in this
direction have been taken in Refs. [29–31].
A seemingly insurmountable hurdle in extending analog

gravity toward backreaction effects is posed by the starkly
different formof the nonlinear evolution equations, governed
by Einstein gravity and the (still unknown) physics of
spacetime at the Planck scale on one side and by the
(well-controlled) microscopic material dynamics of the
analog model on the other side. In this work, we fully
acknowledge this difficulty and, as a workaround, we take
inspiration from the effective field theory approach [32] and
adopt a phenomenological perspective based on the
assumption that observable consequences of backreaction
at the mesoscopic level such as dissipation, fluctuation, and
decoherence result from a coarse-graining process and are,
thus, ultimately insensitive to the microscopic details of the
interactions [33].
Moving along these lines, we consider in this Letter

an analog model of the preheating of the early Universe
[34–36] (see also the topical reviews [37–39]). This is the
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later stage of the inflation, when the inflaton field has ended
its slow rolling on the potential plateau and has fallen into
the final potential well. The ensuing periodic oscillations
around the bottom of the potential well parametrically
excite the vacuum fluctuations of the matter fields that are
coupled to the inflaton, resulting in an explosive production
of matter in the Universe and a corresponding decay of the
inflaton oscillations [40,41]. The dynamics of this process
has been addressed in previous literature by using simpler
single-field models [42,43], as well as more complex
configurations and different types of inflaton potentials
[44–51].
In our analog model, we simulate this dynamics by using

an elongated ring-shaped atomic BEC as experimentally
realized in Ref. [16] and first proposed in the context of
backreaction studies in Ref. [30]. Under the approximation
of a negligible cosmological expansion on the timescale of
the preheating stage [37–39], the BEC can be taken to be at
rest and stationary so to simulate a flat spacetime. As a key
advantage over superconducting [52] or trapped-ion [53]
systems, elongated BECs naturally support several different
excitation branches [54] that can be used to enrich the
analog model by encoding the several different degrees of
freedom involved in the cosmological problem at hand. In
our proposal, the inflaton field is described by a (gapped)
collective transverse breathing mode of the elongated con-
densate. As it is sketched in Fig. 1, the relatively high-
frequency oscillations of the breathing mode then lead to the
parametric amplification of zero-point fluctuations in the
lower-energy longitudinal (dipole and Goldstone) modes,
which encode the matter fields of the cosmological model.
Our theoretical approach is based on ab initio numerical

simulations of the atomic cloud dynamics via the so-called
truncated Wigner approximation (TWA) [56,57]: In con-
trast to the semiclassical treatment of the breathing mode
dynamics in Refs. [30,58], our formalism is able to include
the dynamical interplay of the quantum fluctuations in the
different modes via the backreaction effects. Differently
from Ref. [59], we will not delve here into the physics
of thermalization of the generated particles during the
successive reheating stage [60–65].
The system.—We consider a dilute two-dimensional gas

of mass m atoms at zero temperature, homogeneous along
the longitudinal x direction with length Lx and perio-
dic boundary conditions, and trapped in the transverse
y direction by an external potential VextðyÞ. For numerical
convenience, this is taken as harmonic of frequency ω0 at
small y with a hard wall at y ¼ �Ly=2 on both sides. The
many-body Hamiltonian reads [66]

Ĥ ¼
Z

dr

�
Ψ̂†ðrÞĥ Ψ̂ðrÞ þU

2
Ψ̂†ðrÞΨ̂†ðrÞΨ̂ðrÞΨ̂ðrÞ

�
; ð1Þ

where ĥ≡ −ðℏ2=2mÞ∇2 þ VextðyÞ is the single-particle
Hamiltonian and U is the strength of the zero-range
interatomic collisional interaction.

At the mean-field level, the quantum field operator Ψ̂ðrÞ
is approximated by its classical average hΨ̂ðrÞi≡ ψðrÞ,
whose evolution follows the so-called Gross-Pitaevskii
(GP) equation [54]

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
∇2ψ þ Ujψ j2ψ : ð2Þ

The quantum dynamics of small excitations on top of a
stationary ground-state BEC can then be described at
second order in the fluctuation amplitude around the mean
field by the Bogoliubov theory [67]. The spectrum fωr

ng of
the collective Bogoliubov modes and the corresponding
eigenfunctions furn; vrng are calculated by diagonalizing the
Bogoliubov operator [67]

LBog½ψ ;ψ��≡
�
ĤGPþUQjψ j2Q UQψ2Q�

−UQ�ψ�2Q −½ĤGPþUQjψ j2Q�

�
;

ð3Þ
where the operator Q≡ I − jψihψ j projects orthogonally
to the single-particle condensate wave function ψ , ĤGP ≡
ĥþ Ujψ j2 − μ is the GP Hamiltonian, and μ is the chemical
potential.
For each mode, the integer-valued subscript n and

the superscript r ¼ g; d; b;…, respectively, identify the

FIG. 1. Bogoliubov spectrum of collective excitations around
the ground state. The three curves correspond to modes with zero
(Goldstone, black), one (dipole, blue), and two (breathing, green)
nodes in the transverse direction. The red circle highlights the
transverse breathing mode that is excited at early times to
simulate the inflaton oscillations; the yellow (purple) circles
highlight the dipole (Goldstone) modes of opposite momenta that
are resonantly excited by the parametric processes indicated by
the arrows. System parameters: gas of N ¼ 106 atoms in an
integration box of size Lx;y=l0 ¼ 140, 3.54 in units of the

transverse harmonic oscillator length l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mω0

p
, with

Nx;y ¼ 512, 12 grid points; equilibrium chemical potential
μ=ℏω0 ¼ 2.38. The independence of our conclusions from the
specific numerical parameters is validated in Supplemental
Material [55].
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longitudinal wave vector k ¼ 2πn=Lx and the different
excitation branches, labeled by the number of transverse
nodes in the wave function (g ¼ Goldstone, zero nodes;
d ¼ dipole, one node; b ¼ breathing, two nodes). As a
concrete example, the dispersion of the Goldstone, dipole,
and breathing branches for the system parameters used
throughout this work is shown in Fig. 1, together with the
basic parametric emission processes. Thanks to the anhar-
monicity of the transverse confinement potential, para-
metric emission can occur in both g and d branches.
The usual way of understanding the parametric emission

of Bogoliubov quanta in time-dependent condensates
consists of generalizing the Bogoliubov theory to the case
of a time-dependent background ψðtÞ. While this approach
well describes both spontaneous and stimulated (and, thus,
exponentially growing) parametric emission processes, it
implicitly assumes that the background dynamics encoded
in the time-dependent Bogoliubov operator LBogðtÞ ¼
LBog½ψðtÞ;ψ�ðtÞ� is not affected by the parametric emis-
sion. In order to capture the backreaction effect of the
parametric emission onto the breathing mode oscillations
and, in particular, its quantum fluctuations, we need to go
beyond this mean-field-like picture.
Simulation method.—In our alternative picture, the para-

metric emission can be seen as the conversion of b-branch
Bogoliubov quanta of the ground-state condensate
into pairs of quanta in either the g or the d branches,
mediated by nonlinear terms that go beyond the quadratic
Bogoliubov Hamiltonian and describe interactions and
interconversion between the Bogoliubov modes, e.g., the
so-called Beliaev-Landau damping processes [68–71].
Beyond this perturbative picture, a simulation of the full

nonlinear dynamics of the atomic gas including nonper-
turbative interactions between Bogoliubov quasiparticles
can be numerically carried out within the TWA [56,57].
The basic idea of TWA is to describe the quantum field
operator Ψ̂ðrÞ in terms of a suitably distributed stochastic
classical field ψðrÞ, whose stochastic averages (indicated as
h·iW in what follows) provide quantum expectation values
of symmetrically ordered observables. For conservative
systems like atomic gases, quantum noise is encoded in the
initial state ψðr; t ¼ 0Þ of the classical field, which then
follows a deterministic time evolution according to the
standard GP equation [Eq. (2)]. Interestingly, similar
classical field approaches are of current use also in the
cosmological literature [61].
In the context of analog models, the TWA has been

widely exploited to study quantum field effects at the test-
field level such as analogs of cosmological particle creation
[12] and of Hawking radiation [6] and has recently started
to be pushed beyond this regime [30]. The validity of the
TWA for our purposes is supported by previous work on
backreaction effects in few-mode systems [24], where
TWA turned out to be a good approximation provided
the population of all relevant modes is macroscopic.

Figure 2 shows how this condition is well verified in
our calculations for the resonant modes on the breathing,
dipole, and Goldstone branches.
In particular, we consider the gas to be initially in its

ground state. Within the TWA, the classical field distribu-
tion corresponding to the ground state is constructed as
the sum of the GP ground state ψ0ðrÞ, plus a Gaussian
stochastic component that accounts for the zero-point
fluctuations of the Bogoliubov modes [56,57]:

ψðr; t ¼ 0Þ ¼ ψ0ðrÞ þ
X
n;r

½βrnurnðrÞ þ βrn
�vrn�ðrÞ�: ð4Þ

Here, the βrn coefficients for each (positive-norm) n, r
Bogoliubov mode are independent, zero-mean, Gaussian
random variables with hβ2ki ¼ 0 and hjβkj2i ¼ 1=2. In
our simulations, a sample of N r ¼ 1000 independent

FIG. 2. Numerical results of the TWA simulations. Stochastic
averages are based on a sample of N r ¼ 1000 independent
realization. (a) Momentum distribution of the population in the
Bogoliubov modes at time ωb

0t=2π ¼ 48. The dot-dashed green,
dashed blue, and solid black lines correspond to the breathing,
dipole, and Goldstone branches, respectively. The dotted violet
line shows the population in the breathing mode immediately
after the excitation sequence. (b) Time evolution of the integrated
population in the breathing, dipole, and Goldstone branches over
the regions indicated by the shading in (a). The same color code
as in (a). The dotted violet line shows the time evolution of the
population in the single breathing mode at k ¼ 0.
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realizations of the classical field is used, with an initial
distribution drawn according to Eq. (4).
Numerical results.—In Fig. 2, we illustrate the evolution

of the population in the different Bogoliubov modes,
nrnðtÞ þ 1=2≡ hðb̂rnÞ†b̂rn þ b̂rnðb̂rnÞ†i=2 ¼ hjβrnðtÞj2iW as a
function of time. At the initial time t ¼ 0, the system is
prepared in the Bogoliubov vacuum and the modes host
only zero-point fluctuations, nrnðt ¼ 0Þ ¼ 0. Around a time
ω0t0=2π ¼ 2, we impart a short modulation of the trapping
frequency, ω0ðtÞ=ω0 ¼ 1þ Ae−ðt−t0Þ2=2σ2t of amplitude A
and duration σt so to excite the spatially uniform k ¼ 0
transverse breathing mode of the condensate (red circle in
Fig. 1). This excitation is visible as a marked k ¼ 0 peak in
the momentum-resolved occupation of the b modes right
after the kick [purple dotted line in Fig. 2(a)].
Afterward, the nonlinear coupling between the b and g, d

modes makes the vacuum fluctuations in the dipole and
Goldstone modes get parametrically excited by the oscil-
lations in the transverse direction. Because of the ring
configuration here considered, momentum in the longi-
tudinal direction is conserved and the parametric down-
conversion process involves pairs of particles with opposite
momenta as indicated by arrows in Fig. 1. Energy con-
servation makes the parametric processes to be most
effective into the Goldstone and dipole modes of frequency
ωg;d
res ¼ ωb

0=2 for which the parametric emission is resonant
with the breathing mode oscillations at ωb

0 that are driving
it, as shown in the momentum distributions in Fig. 2(a).
Given the bosonic nature of the Bogoliubov modes, the

parametric emission starts from zero-point quantum fluc-
tuations but then gets self-stimulated as more and more
population is created, leading to an exponential growth of
the population in the resonant modes. This behavior is
apparent in the black solid and blue dashed lines in
Fig. 2(b), which display the evolution of the integrated
population within the integration windows indicated by the
shaded areas in Fig. 2(a). This exponential growth is
analogous of the explosive production of matter that takes
place during the preheating of the early Universe.
At late times, nonlinear and saturation effects start to

dominate the dynamics [60–62,65]. Nonlinear effects are
visible in the appearance of harmonic peaks in the
momentum distributions [30,62,72] as well as an increased
width of all peaks. Self-interaction, scattering, and thermal-
ization processes within the Goldstone and dipole branches
are responsible for these effects: While they are of great
interest as an analog model [59] of cosmological reheating
[60–62,65], a detailed study goes beyond the purpose of
this work and is postponed to future work.
Here, we rather focus on the dynamics of the breathing

mode b during the earlier preheating stage. As a most
important feature, in Fig. 2(b), we see a marked drop in the
integrated population in the breathing b branch (green
dashed line) as soon as the populations in the g, d modes
reach a value comparable to the one in the b mode and

backreaction starts exerting a sizable effective friction onto
the b mode. Interestingly, such a damping is not purely
monotonic, but energy gets at least partially exchanged
between the modes. This intermediate-time damped-
oscillatory phenomenology is qualitatitively similar to
the one predicted in Refs. [21,24] for the backreaction
effect of dynamical Casimir processes in a single-mode
cavity configuration, with interesting new features stem-
ming from the many-mode nature of our system that we are
now going to highlight. The crucial role of quantum
fluctuations in the dynamics is confirmed by the additional
simulations reported in Supplemental Material [55], which
highlight a stronger friction in a stronger interacting BEC.
Local observables.—One may be concerned that the very

concept of Bogoliubov modes may cease being well
defined in a regime where nonlinear effects are playing
a major role. To circumvent this objection, we complement
the modewise analysis in Fig. 2 with a study of real-space
quantities. Specifically, we consider the x-dependent trans-
verse cloud size

wðx; tÞ≡
R Ly

0 dyjψðr; tÞj2y2R Ly

0 dyjψðr; tÞj2
ð5Þ

and the spatial correlation function

CwðX; tÞ≡
�
δwðx; tÞδwðxþ X; tÞ

w̄2ð0Þ
�

W
ð6Þ

of its fluctuations δwðx; tÞ ¼ wðx; tÞ − w̄ð0Þ from the initial
value w̄ð0Þ of its spatial average w̄ðtÞ≡ L−1

x

R Lx
0 dxwðx; tÞ

at t ¼ 0.
The time evolution of CwðX; tÞ is illustrated in the left

panel in Fig. 3. Right after the initial kick around ωb
0t ¼ 2,

the breathing mode oscillates coherently with a uniform
amplitude throughout the cloud, and the correlation func-
tion is large and constant. Then, not only does the overall
magnitude of Cw decrease as a signature of backreaction-
induced damping, but spatial coherence is also lost at an
even faster rate [73]. As one can see in the cuts in the
middle panel, at late times the correlation function main-
tains a sizable value only in the sharp peak around X ¼ 0:
Referring specifically to the ωb

0t ¼ 150 curve, this indicates
that the intensity of the b oscillations, encoded in Cwð0; tÞ,
has dropped by a factor around 3 but has almost completely
lost its spatial decoherence as shown by the negligible value
CwðL=2; tÞ ≈ 0. A further visualization of this effect is
available in the right panel in Fig. 3, which highlights the
much faster decrease of the long-distance coherence
CwðL=2; tÞ (blue dashed line) and a relative stabilization
of the oscillation intensity (black solid line).
A momentum-space signature of this effect is visible as a

marked broadening of the k-space breathing mode distri-
bution as time proceeds [green line in Fig. 2(a)], whose
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large momentum width corresponds to the short real-space
coherence length. This population redistribution from the
single initial k ¼ 0 mode into a wider band of modes is
further visible by comparing the purple dashed and green
dot-dashed curves in Fig. 2(b), whose time evolution
recovers the one of the Cw at X ¼ L=2 and at X ¼ 0
shown in the blue and black curves of the right panel in Fig. 3.
These results are the most exciting prediction of our

numerics: While traditional semiclassical models of back-
reaction in gravitation and cosmology include the effect of
the quantum emission within a mean-field theory via its
average contribution to the energy-stress tensor to be
included in the Einstein equations [30,33,74], this figure
shows how the large fluctuations of the two-mode-
squeezed-like state of the emitted g, d fields directly
transfer into an analogous fluctuation of the backreaction-
induced friction force. Evidence of the nonlinear nature of
the backreaction coupling is offered by the non-Gaussian
shape of the Wigner distributions shown in Supplemental
Material [55]. While the possibility of such an effect was
implicitly mentioned in Ref. [60] and preliminary evidence
was already visible in our single-mode calculations [24],
our results here show how the consequences of the friction-
induced decoherence are qualitatively dramatic in a spa-
tially extended multimode geometry.
Conclusions.—In this work, we have theoretically con-

sidered an atomic Bose-Einstein condensate as an analog
model of the nonlinear nonequilibrium dynamics of the
inflaton field in the preheating stage of the early Universe.
Our numerical results predict a crucial role of quantum
fluctuations in the backreaction effect of particle production
onto the inflaton field: Not only does the emission of dipole
andGoldstone excitations lead to an effective damping of the
breathingmode as predicted by a semiclassical picture, but it
is also responsible for a quick decoherence of its initially in-
phase excitation. The generality of themicroscopic processes
underlying our numerically observed results points at the

importance of going beyond semiclassical approaches
[74,75] and including quantum fluctuation features in the
description of backreaction phenomena in gravitation and
cosmology. Future work will extend the study to the elusive
backreaction phenomena that are responsible for black hole
evaporation under the effect of Hawking emission.
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