

Cao, J., Duan, G., Lin, A., Zhou, Y., <u>You, S.</u>, Wong, J. W.C. and Yang, G. (2023) Metagenomic insights into the inhibitory mechanisms of Cu on fermentative hydrogen production. <u>*Bioresource Technology*</u>, 380, 129080. (doi: <u>10.1016/j.biortech.2023.129080</u>)

Reproduced under a Creative Commons License. https://creativecommons.org/licenses/by-nc-nd/4.0/

This is the author version of the work. There may be differences between this version and the published version. You are advised to consult the published version if you want to cite from it: https://doi.org/10.1016/j.biortech.2023.129080

https://eprints.gla.ac.uk/297096/

Deposited on 24 April 2023

Metagenomic insights into the inhibitory mechanisms of Cu on fermentative hydrogen production

Jinman Cao ^{a,b}, Guilan Duan ^{a,c}, Aijun Lin ^b, Yaoyu Zhou ^d, Siming You ^e, Jonathan W.C. Wong ^f, Guang Yang ^{a,*}

^a State Key Lab of Urban and Regional Ecology, Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^b College of Chemical Engineering, Beijing University of Chemical Technology,

Beijing 100029, PR China

^c University of Chinese Academy of Sciences, Beijing 100049, China

^d College of Resources and Environment, Hunan Agricultural University, Changsha

410128, China

^e James Watt School of Engineering, University of Glasgow, Glasgow, G128QQ, UK

^fSino-Forest Applied Research Centre for Pearl River Delta Environment,

Department of Biology, Hong Kong Baptist University, China

* Corresponding author

Dr. Guang Yang

E-mail: guangyang@rcees.ac.cn

^{*} Corresponding author, E-mail: guangyang@rcees.ac.cn

1 Abstract:

2	Cu is widely present in the feedstocks of dark fermentation, which can inhibit H_2
3	production efficiency of the process. However, current understanding on the
4	inhibitory mechanisms of Cu, especially the microbiological mechanism, is still
5	lacking. This study investigated the inhibitory mechanisms of Cu ²⁺ on fermentative
6	hydrogen production by metagenomics sequencing. Results showed that the exposure
7	to Cu ²⁺ reduced the abundances of high-yielding hydrogen-producing genera (e.g.
8	Clostridium sensu stricto), and remarkably down-regulated the genes involved in
9	substrate membrane transport (e.g., gtsA, gtsB and gtsC), glycolysis (e.g. PK, ppgK
10	and pgi-pmi), and hydrogen formation (e.g. pflA, fdoG, por and E1.12.7.2), leading to
11	significant inhibition on the process performances. The H ₂ yield was reduced from
12	1.49 mol H_2 /mol-glucose to 0.59 and 0.05 mol H_2 /mol-glucose upon exposure to 500
13	and 1000 mg/L of Cu^{2+} , respectively. High concentrations of Cu^{2+} also reduced the
14	rate of H ₂ production and prolonged the H ₂ -producing lag phase.
15	Keywords: Cu; Fermentative hydrogen production; Inhibition; Microbial community
16	structure; Metagenomic analysis
17	
18	1. Introduction
19	Hydrogen energy is a promising substitute to fossil fuels, because of its
20	advantages of pollution-free combustion applications and high energy density (Fan et
21	al., 2022). At present, the main hydrogen production technologies are steam

reforming and gasification using fossil fuels (Dahiya et al., 2021). However, these

23 traditional H₂-producing methods are environmentally unfriendly and cost-intensive.

Therefore, it is desired to develop alternative technologies to produce hydrogen in an
 environmentally friendly way.

26 Biological dark fermentation has been regarded as one of the most sustainable 27 technologies to produce hydrogen, because of its low energy requirement, 28 environment protection, and easy operation conditions (Cheng et al., 2022). What 29 makes dark fermentation more attractive is its capability to utilize multiple organic 30 wastes (e.g. livestock manure, agroforestry wastes, food wastes, sewage sludge and 31 wastewater) to produce hydrogen (Arun et al., 2022; Khoufi et al., 2015; Sillero et al., 32 2022). Despite the strengths of dark fermentation, a low hydrogen yield is the primary 33 limitation of this process, which restricts its scale-up and wide application (Ren et al., 34 2022). It has been reported that inhibitors presenting in the reactor, such as toxic 35 organics and heavy metals, are some of the major factors limiting hydrogen yields for 36 dark fermentation (Bundhoo and Mohee, 2016). Among various inhibitory substances, 37 heavy metals have drawn particular attentions, owing to its high toxicity and wide 38 presence in hydrogen fermentation reactors (Chen et al., 2021; Elbeshbishy et al., 39 2017). Numerous studies have been conducted to examine the inhibitory effect of 40 heavy metals on the efficiency of dark hydrogen fermentation (Sharma and Melkania, 41 2018; Lin and Shei, 2008; Chen et al., 2021; Matyakubov et al., 2022). 42 Copper (Cu), a typical heavy metal, has been frequently detected in the 43 feedstocks of dark fermentation, such as wastewater (Al-Saydeh et al., 2017), 44 municipal solid waste (Sharma and Melkania, 2018), livestock manure (Liu et al., 45 2020), and sewage sludge (Chu and He, 2021). The concentrations of Cu can be up to 46 1751 mg/kg total solids (TS), 422 mg/kg TS, 259.3 mg/L, and 1726 mg/kg dry weight

47	in sewage sludge (Chu and He, 2021), municipal solid waste (Moreno et al., 2013),
48	wastewater (Urrutia et al., 2019), and livestock manure (Guan et al., 2011),
49	respectively. In general, trace concentrations of Cu is necessary for bacterial growth
50	and activating some enzymes and co-enzymes (Sivagurunathan et al., 2015), while a
51	relatively high concentration of Cu is inhibitory and toxic to microorganisms (Chen et
52	al., 2021), because it can disturb the uptake of nutrients, alter bacterial protein
53	synthesis, cause DNA damage, and destroy the integrity of cell membrane. Some
54	studies found that Cu could inhibit the hydrogen production during dark fermentation
55	(Li and Fang, 2007; Sharma and Melkania, 2018; Lin and Shei, 2008), and the
56	inhibition degree of Cu was greater compared to Cr, Zn, Cd, Ni, and Pb (Li and Fang,
57	2007). Nevertheless, most previous studies concentrated on the inhibition effect of Cu
58	on dark fermentation performances, including H ₂ production, substrate utilization, and
59	liquid metabolites generation (Li and Fang, 2007; Sharma and Melkania, 2018; Chen
60	et al., 2021; Lin and Shei, 2008). There is still limited understanding about the
61	inhibitory mechanisms of Cu on fermentative hydrogen production, especially about
62	the microbiological mechanism. As a biological process, microbes in the reactor and
63	their related functional genes essentially determine the metabolic pathway and activity
64	of fermentative H ₂ production (Cai et al., 2011). Accordingly, the impact of Cu on the
65	microbial community structure and functional genes in dark hydrogen fermentation
66	requires to be further investigated.
67	Therefore, the present study aimed to explore the inhibitory mechanisms of Cu

67 Therefore, the present study aimed to explore the inhibitory mechanisms of Cu 68 on dark hydrogen fermentation. First, the influence of different concentrations of Cu 69 on the fermentation performances, including hydrogen yield, glucose utilization and

liquid metabolites formation, were experimentally investigated. Second, the impact of
Cu on the bacterial community structure and functional genes associated with key
hydrogen-producing pathways were analyzed to elucidate the related inhibition
mechanisms. This study will facilitate the ability to understand how heavy metals
inhibit the process efficiency of dark fermentation, and provide theoretical guidance
for mitigating the inhibition effect.

76 2. Materials and methods

90

77 **2.1. Inoculum preparation**

78 In the present work, the seed sludge (i.e. anaerobically digested sludge) was 79 collected from a local wastewater treatment plant. The main properties of the raw seed 80 sludge were: TS content, 54.33 g/L; volatile solids (VS) content, 27.91 g/L; and pH= 81 6.80. The raw seed sludge was heated to 100 °C and maintained there for fifteen 82 minutes to eliminate hydrogen-consuming microorganisms (Yang and Wang, 2021). 83 After cooling to the ambient temperature, the pretreated sludge was centrifuged and 84 washed via resuspension using deionized water (Cao et al., 2022), and then was used 85 as the fermentation inoculum. VS concentration of the inoculum used was 16.67 g/L, 86 and the dominant genera in the inoculum were *Clostridium sensu stricto*, 87 Proteiniphilum, Petrimonas, Candidatus Caldatribacterium, Sedimentibacter and 88 Paraclostridium. 89 2.2. Batch fermentation experiments

91 150 mL glass bottles, including 10 mL nutrients solution (without Cu), 30 mL

92 inoculum, 60 mL deionized water, and 1 g glucose. Each liter of nutrients solution

5

Batch H₂ fermentation experiments were conducted in triplicate using a series of

contained 0.004 g NiCl₂·6H₂O, 0.085 g MgCl₂·6H₂O, 0.25 g FeSO₄·7H₂O, 5 g 94 K₂HPO₄·3H₂O, 5 g NaH₂PO₄·2H₂O, 5 g NH₄Cl and 40 g NaHCO₃ (Yang et al., 2019). 95 Cu concentrations in the reactors were set by adding CuCl₂ (99.9%, Macklin 96 Biochemical Co., Ltd) at 5, 10, 100, 500, and 1000 mg/L, which were named as the 97 Cu-5, Cu-10, Cu-100, Cu-500, and Cu-1000 groups, respectively. The group without 98 Cu addition was set as the control. The initial pH of the mixture in all reactors was 99 adjusted to 7.00 ± 0.10 . Finally, all reactors were flushed with nitrogen gas, and then 100 placed in a shaker (120 rpm) at 37 °C for biohydrogen production. 101 2.3. Bacterial community analysis 102 When the fermentation process terminated, samples of the control group and the groups with significant lower hydrogen yield induced by Cu^{2+} were collected to study 103 the impact of Cu²⁺ on bacterial community structure. The FastDNA SPIN Kit for soil 104 105 was used in this work for DNA extraction. PCR amplification of the V4-V5 region of 106 bacterial 16S rRNA gene was conducted with the primers 515F/907R (Yang and 107 Wang, 2021). After PCR purification and qualification, the sequencing of PCR 108 amplicons was conducted, and the Operational Units (OTUs) were clustered at an 109 identity threshold of 97%. In order to obtain the bacterial community composition, 110 taxonomic assignment of the OTUs was carried out using RDP Classifier against the 111 Silva database. Bacterial alpha diversity was evaluated by the Shannon index in this 112 work, which referred to the variety of different species of bacteria present in a 113 fermentation sample (Lozupone and Knight, 2008). Bacterial richness was evaluated 114 by the indices of ACE and Chao1 in this work, which referred to the total number of 115 bacterial species present in a fermentation sample (Lozupone and Knight, 2008).

93

116 **2.4. Metagenomic analysis**

In this work, the control group and the Cu-1000 group were selected for 117 118 metagenomic sequencing. The DNA extraction approach was the same as that used in 119 the bacterial community analysis. After the construction of paired-end library, the 120 sequence was performed on an Illumina HiSeq 2000 platform. The clean reads of the 121 genome dataset were assembled into contigs (length ≥ 300 bp), which were then 122 uploaded and used for gene prediction and annotation. The KEGG annotation were 123 obtained by aligning representative sequences to the Kyoto Encyclopedia of Genes and Genomes database using BLAST with e-value cutoff of 1e⁻⁵ (Zhu et al., 2022). 124 125The abundances of the genes were calculated based on the reads per kilobase per 126 million mapped reads (RPKM) (Tang et al., 2022). 127 2.5. Other analytical methods 128 TS and VS concentrations of the seed sludge were analyzed according to the 129 APHA standard methods (APHA, 2005). In detail, 10.0 mL of the sludge sample was 130 dried until a constant weight at 105 °C to determine the TS concentration, and then 131 the dried sludge sample was calcined at 600 °C in a muffle furnace until a constant 132weight to determine the VS concentration. After filtering the fermentation broth 133through a membrane (0.45 μ m), glucose and the dominant liquid metabolic products 134 (acetate, propionate and butyrate) were analyzed using a high-performance liquid

135 chromatography (Cao et al., 2022). Glucose utilization efficiency was calculated

136 according to Eq. (1) at the end of the hydrogen fermentation.

Glucose utilization efficiency (%) = $(Glu_{initial}-Glu_{end})/Glu_{initial}$ (1)

137	Where, <i>Glu</i> _{initial} was defined as the glucose concentration before the start-up of
138	hydrogen fermentation; Glu_{end} was defined as the glucose concentration at the end of
139	hydrogen fermentation.
140	Total volume of the produced biogas for all reactors was determined by water
141	displacement method. The fraction of hydrogen in biogas was determined by a gas
142	chromatography with carrier gas of helium (80 mL/min) (Wang et al., 2022).
143	Operational temperatures of the gas chromatography were: injection port, 120°C;
144	column oven, 110°C; and detector, 150 °C. The modified Gompertz model was
145	employed to fit the cumulative H_2 production data in this work (Yang et al., 2019).
146	3. Results and discussion
147	3.1. The influence of Cu ²⁺ on hydrogen production
148	The impact of different concentrations of Cu^{2+} on cumulative hydrogen
149	production is shown in Fig. 1. For all six groups, the hydrogen-producing process
150	completed within 48 h, and followed the same pattern of lag, rapid and slow phases.
151	The similar H ₂ -producing pattern has also been found in other fermentation reactors
152	(Kim et al., 2022; Matyakubov et al., 2022).
153	Fig. 1
154	The modified Gompertz model was employed to evaluate the hydrogen
155	fermentation characteristics by fitting the data in Fig. 1 ($R^2 > 0.99$) (Table 1). For the
156	cumulative hydrogen production potential (P), the value decreased slightly at Cu^{2+}
157	concentrations of lower than 100 mg/L, while decreased significantly at Cu^{2+}
158	concentrations of higher than 500 mg/L, indicating that the high concentrations of
159	Cu ²⁺ reduced the hydrogen-producing capacity of fermentative bacteria. For the

160	maximum hydrogen production rate (R_m) , the control group obtained the highest
161	value, reaching 24.51 mL/h. Upon exposure to Cu^{2+} , R_m showed a deceasing trend
162	with the increasing $Cu^{2\scriptscriptstyle +}$ concentration. The lowest R_m was only 2.05 mL/h for the
163	Cu-1000 group, which was reduced by 91.64% as compared with the group without
164	\mbox{Cu}^{2+} addition. The decline in P and R_m values may be attributed to that those high
165	concentrations of Cu^{2+} decreased the activity of vital enzymes involved in H_2
166	generation and inhibited the growth of biohydrogen-producing microbes (Chen et al.,
167	2021). For the lag time (λ), it is evident that the low concentrations of Cu ²⁺ (<= 100
168	mg/L) shortened the lag time for hydrogen production, while the higher
169	concentrations of Cu^{2+} (>= 500 mg/L) prolonged the lag time. Possible reason for this
170	phenomenon is that Cu ²⁺ at a low concentration can function as a trace growth factor
171	for biohydrogen-producing bacteria (Sharma and Melkania, 2018), which shortened
172	the time to recover microbial activity after the high temperature pretreatment, while
173	excessive amount of Cu ²⁺ was toxic to biohydrogen-producing bacteria (Wong et al.,
174	2014), thereby restricting the recovery of microbial activity for biohydrogen
175	production during the initial phase of the fermentation.
176	Table 1
177	When the fermentation process terminated, the control group obtained the
178	highest hydrogen yield value, reaching 1.49 mol H ₂ /mol-glucose. This value of
179	hydrogen yield is within the normal range of the values obtained by literature (Yang
180	et al., 2019; Wang and Yin, 2017). With the exposure to Cu^{2+} at 5, 10, 100, 500 and
181	1000 mg/L, the hydrogen yields decreased to 1.44, 1.37, 1.33, 0.59 and 0.05 mol
182	H_2 /mol-glucose, respectively. It is clear that Cu^{2+} exposure inhibited the fermentative

183	hydrogen production, especially when the exposure concentration of Cu^{2+} was higher
184	than 500 mg/L (Student's <i>t</i> -test, p<0.05). The inhibition in hydrogen production may
185	be due to that the high concentrations of Cu^{2+} caused the increased generation of
186	reactive oxygen species (ROS) in bacterial cells, then leading to DNA damage and the
187	decline of enzymatic activity (Chen et al., 2021). In addition, the exposure to higher
188	concentrations of Cu can destroy the integrity of cytoplasmic membrane and inhibit
189	the uptake of essential nutrients during the cultivation of bacteria (Lemire et al., 2013).
190	These adverse effects may cause the growth arrest of fermentative bacteria, or even
191	lead to the death of some high-yielding biohydrogen-producing microbes, thereby
192	decreasing the values of hydrogen yield. Similarly, Sharma and Melkania (2018)
193	found that H_2 production of dark fermentation decreased from 226.9 to 153.8 mL
194	upon exposure to Cu^{2+} at 100 mg/L. The different inhibition threshold between
195	Sharma and Melkania (2018) and this study may be due to different bacterial
196	community in the inoculum.
197	3.2. Glucose utilization and liquid metabolites formation
198	Besides hydrogen production, glucose utilization efficiency is also an important

199 aspect for assessing the fermentation performance in this work. Fig. 2 shows the

- influence of Cu^{2+} on the utilization efficiencies of glucose. It can be seen that the
- 201 glucose utilization efficiency was 97.49% for the control group, and it changed barely
- at the Cu^{2+} concentrations of lower than 100 mg/L (97.44-97.55%). However, the
- 203 glucose utilization efficiency declined significantly at the Cu^{2+} concentrations of
- 204 higher than 500 mg/L, probably because the high concentrations of Cu^{2+} decreased
- 205 the activities of microbes and functional enzymes (e.g. glucokinase, pyruvate

decarboxylase and glucose-6-phosphate dehydrogenase). The decreased efficiency of
glucose utilization may cause the decline of hydrogen production for the Cu-500 and
Cu-1000 groups.

209

Fig. 2

210 The main liquid metabolites generated from glucose utilization were further 211 analyzed (Fig. 3), which could be used as an indicator to deduce the metabolic 212 pathways of fermentative microbes. As shown in Fig. 3, the concentration of total 213 metabolites (acetate, butyrate and propionate) was 4238.89 mg/L in the fermenter without Cu²⁺ addition, and decreased by 7.15%, 11.43%, 11.90%, 48.11% and 89.40% 214 upon the exposure to Cu^{2+} at 5, 10, 100, 500 and 1000 mg/L, respectively. Particularly, 215 acetate and butyrate concentrations significantly decreased at Cu^{2+} of higher than 500 216 217 mg/L. During dark fermentation, these two metabolites are commonly formed in the 218 H₂-producing pathways (Hallenbeck, 2009). Much lower concentrations of acetate 219 and butyrate in the Cu-500 and Cu-1000 systems indicate the significant lower yield 220 of hydrogen, which can be confirmed in Fig. 1. 221 Fig. 3 222 Regarding the composition of these metabolites, acetate and butyrate were the 223 major components in the control, Cu-5, Cu-10, Cu-100 and Cu-500 fermenters, with 224 acetate proportions of 60.13%, 63.73%, 61.62%, 66.85% and 44.16%, and butyrate 225 proportions of 39.87%, 36.23%, 38.31%, 33.01% and 55.75%, respectively, which

- indicated that the butyrate-type fermentation dominated in the aforementioned five
- 227 fermenters. Nevertheless, the mixed-acid type fermentation played a dominant role in
- the Cu-1000 fermener, with butyrate and propionate proportions of 87.51% and

229 12.49%, respectively. This phenomenon may be due to that such a high concentration of Cu^{2+} changed the bacterial community structure, thereby leading to a shift in the 230 231 metabolic pathway during the fermentation process. Other studies also found that the 232 exposure to Cu^{2+} changed the fermentation type of biohydrogen production (Lin and 233 Shei, 2008; Han et al., 2014).

234

3.3. Bacterial community analysis

235 Bacterial communities present in the system play a crucial role in the efficiency of a dark fermentation bioreactor (Hung et al., 2011). In order to understand how Cu²⁺ 236 237 inhibited the hydrogen productivity, bacterial community structures of the control, 238 Cu-500 and Cu-1000 groups were analyzed and compared in this study. Table 2 239 shows the indices of bacterial diversity and richness for the aforementioned three 240 groups.

241

Table 2

242 As illustrated in Table 2, the Good's coverage values were higher than 0.999 for 243 all three samples, indicating that the sequencing depth was enough to capture 244 adequate bacterial community. The value of Shannon index follows the order of 245 control > Cu-500 > Cu-1000, which indicates that the exposure to high concentrations 246 of Cu²⁺ decreased the bacterial diversity during the fermentation process. Meanwhile, 247 as compared to the Cu-500 and Cu-1000 samples, the control sample also exhibited 248 higher values of Chao1 and Ace (Table 2), indicating that high concentrations of Cu^{2+} 249 also decreased the bacterial richness. The decline in bacterial diversity and richness may be attributed to that the excessive Cu^{2+} was toxic to fermentative bacteria in the 250 251inoculum, thereby leading to the death of some bacterial species during the

252	fermentation process. The loss of some types of functional bacteria (e.g.
253	Paraclostridium, Clostridium sensu stricto 1 and Clostridium sensu stricto 18) may
254	lead to the decline in hydrogen yield for the Cu-500 and Cu-1000 systems.
255	Furthermore, bacterial compositions at genus level for the control, Cu-500 and
256	Cu-1000 groups were compared and illustrated in Fig. 4. According to Fig. 4, high
257	concentrations of Cu^{2+} remarkably changed the bacterial community structure in
258	hydrogen fermentation. For the control reactor, the genera Clostridium sensu stricto
259	were dominant with a relative abundance of 73.79%, followed by Paraclostridium
260	(15.37%), and Bacillus (4.45%). For the Cu-500 system, Bacillus became dominant
261	with relative abundance of 86.06%, while the abundance of genera Clostridium sensu
262	stricto was dramatically reduced to 10.12%. When increasing the Cu^{2+} concentration
263	to 1000 mg/L, the abundance of the genera Clostridium sensu stricto further
264	decreased to 0.29%, and Bacillus became the only dominant genus with relative
265	abundance of 98.69%. It is clear that the exposure to high concentrations of Cu^{2+}
266	significantly inhibited the growth of Clostridium sensu stricto during the fermentation
267	process, which might be the determinant reason for the declined biohydrogen
268	production for the Cu-500 and Cu-1000 groups. It has been found that Clostridium
269	sensu stricto genera are highly-yielding H ₂ producers in dark fermentation system,
270	which can use multiple substances (e.g. starch, sucrose and glucose) to produce
271	hydrogen (Mo et al., 2022). Meanwhile, Clostridium sensu stricto have a theoretical
272	hydrogen production of 4 mol H_2 /mol glucose (Hallenbeck, 2009), which is much
273	higher than that of other biohydrogen-producing genera, like Enterobacter and
274	Bacillus (Wang and Yin, 2017). Similarly, other investigations also observed a

significant positive correlation between hydrogen yield and *Clostridium sensu stricto*genera in dark fermentation (Yang and Wang, 2021; Li et al., 2020; Zhao et al.,
2020).

278

294

Fig. 4

279 In addition, the relative abundance of genus *Paraclostridium* also significantly decreased upon exposure to high concentrations of Cu²⁺. Paraclostridium belongs to 280 281 obligate anaerobe that can use glucose for fermentative H₂ production (Sasi Jyothsna 282 et al., 2016; Yang et al., 2019). Therefore, the much lower Paraclostridium 283 abundance may be another factor leading to the lower hydrogen yield for the Cu-500 284 and Cu-1000 systems. By contrary, the abundance of Bacillus significantly increased upon exposure to Cu^{2+} at 500 and 1000 mg/L, indicating that this genus was more 285 resist to Cu^{2+} compared to the other genera, probably due to its better spore-forming 286 287 ability (Hawkes et al., 2002). Although it has been reported that several species of 288 Bacillus are H₂-producing bacteria (Kumar et al., 2015; Ramu et al., 2020), their 289 hydrogen productivity is commonly lower than that of *Clostridium* spp. (Wang and 290 Yin, 2017). Meanwhile, because hydrogen yield of the Cu-1000 group was only 0.05 291 mol H₂/mol-glucose, it can be inferred that *Bacillus* species enriched in this study 292 were not hydrogen producers. 293 3.4. Metagenomic analysis of functional genes involved in hydrogen production

- 295 pathway and activity in dark fermentation bioreactor (Jiang et al., 2021). Accordingly,

Functional genes in active bacteria fundamentally determine the metabolic

296 metagenomic analysis was employed to compare the metabolic functions between the

control fermenter and the Cu-1000 fermenter based on the KEGG database, and thefindings are shown in Fig. 5.

299 Fig. 5 300 According to Fig. 5, the relative abundances of sequences related to both 301 glycolysis and pyruvate metabolism were significantly higher in the control system 302 compared with the Cu-1000 system, indicating that glycolysis and pyruvate 303 metabolism were significantly inhibited with exposure to the high concentration of 304 Cu^{2+} . These two processes are crucial for converting glucose to hydrogen during the 305 dark fermentation process. Therefore, as compared with the control group, the 306 inhibition on these two metabolic processes may cause the significant lower hydrogen 307 yield for the Cu-1000 group. In general, glucose is firstly transported into cells, and 308 then break down into intermediate pyruvate, NADH and ATP through glycolysis. 309 Afterwards, there are three possible pathways to produce H_2 (Fig. 6a) (Hallenbeck, 310 2009). For the first pathway, intermediate pyruvate is broken down into acetyl-CoA 311 and formate, which is further decomposed to H₂ and CO₂. For the second pathway, 312 reduced ferredoxin, which is generated during the decomposition of intermediate 313 pyruvate into acetyl-CoA and CO₂, transfers electrons to hydrogenase, finally 314 generating H₂. For the third pathway, the reduced NADH, which is generated from 315 glycolysis, can be re-oxidized with proton reduction to produce H₂. The metabolic 316 activity of the aforementioned three pathways primarily relies on biochemical 317 reactions catalyzed by functional enzymes, so the abundances of genes encoding these 318 functional enzymes were further investigated (Fig. 6b).

319

Fig. 6

320	The membrane transport of glucose into bacterial cells is the first stage for
321	biohydrogen production. It is apparent in Fig. 6b that the genes related to glucose
322	transport, including gtsA (K17315), gtsB (K17316) and gtsC (K17317) (No. 1-3),
323	were significantly down-regulated in the presence of high concentration of Cu^{2+} , with
324	the abundances decreasing by 84.74%, 76.56% and 69.10% in comparison with the
325	control, respectively. This phenomenon indicates that the exposure to high
326	concentrations of Cu^{2+} inhibited the membrane transport of glucose into bacterial cells,
327	thereby blocking the intracellular metabolite of glucose for producing hydrogen from
328	the source.
329	When glucose is delivered into bacterial cells, the glucose will be further
330	converted to pyruvate, reduced NADH, and ATP through glycolysis. The impact of
331	Cu^{2+} on the genes encoding the enzymes involved in glycolysis (No. 4-18) is
332	illustrated in Fig. 6b. For instance, in the presence of 1000 mg/L Cu^{2+} , the abundances
333	of genes encoding pyruvate kinase (K00873, PK), hexokinase (K00844, HK),
334	polyphosphate glucokinase (K00886, <i>ppgK</i>), glucose-6-phosphate isomerase (K13810,
335	tal-pgi), ATP-dependent phosphofructokinase (K21071, pfk), ADP-dependent
336	phosphofructokinase (K00918, <i>pfkC</i>), fructose 1,6-bisphosphate aldolase (K01622,
337	K01622), phosphoglycerate kinase (K00927, PGK),
338	2,3-bisphosphoglycerate-independent phosphoglycerate mutase (K15635, <i>apgM</i>) and
339	enolase (K01689, ENO) decreased by 61.79%, 70.68%, 76.30%, 78.18%, 85.60%,
340	70.00%, 73.22%, 35.93%, 74.37% and 35.94% in comparison with the control,
341	respectively. This phenomenon indicates that the high concentration of Cu^{2+}
342	significantly inhibited the synthesis of enzymes to break down glucose into pyruvate
	10

and reduced NADH, thereby resulting in much less precursors for the subsequenthydrogen production.

345	The abundances of genes involved in hydrogen formation were further analyzed
346	in detail (Fig. 6b). As shown in Fig. 6b, with exposure to the high concentration of
347	Cu ²⁺ , the relative abundances of genes encoding formate C-acetyltransferase (K00656,
348	E2.3.1.54) (No. 21) and pyruvate formate lyase activating enzyme (K04069, pflA) (No.
349	22), which play important roles on the decomposition of pyruvate into formate,
350	decreased by 73.69% and 80.81% in comparison with the control, respectively.
351	Meanwhile, the abundance of gene encoding formate dehydrogenase major subunit
352	(K00123, $fdoG$) (No. 23), which acts on the decomposition of formate to hydrogen
353	and CO ₂ , decreased by 72.31% upon exposure to the high concentration of Cu^{2+} . The
354	down-regulation of the aforementioned three genes was disadvantageous to hydrogen
355	production from the "formate-decomposition pathway". In addition, the abundances
356	of genes encoding pyruvate-ferredoxin oxidoreductase (K03737, por) (No. 19) and
357	ferredoxin hydrogenase (K00532, E1.12.7.2) (No. 20) significantly decreased from
358	291.02 and 35.07 RPKM to 50.34 and 0 RPKM with exposure to the high
359	concentration of Cu^{2+} , respectively. As the genes <i>por</i> and <i>E1.12.7.2</i> play crucial roles
360	in the other two biohydrogen-producing pathways (i.e. "the NADH-oxidation
361	pathway" and "the pyruvate-decomposition pathway"), the down-regulation of these
362	genes were also unfavorable for hydrogen production. In summary, the high
363	concentration of Cu ²⁺ significantly down-regulated the abundances of functional
364	genes related to three biohydrogen-producing pathways, which was the fundamental
365	factor leading to the significant low hydrogen yield for the Cu-1000 group.

366	In addition, as shown in Fig. 6b, the relative abundances of genes encoding
367	phosphate acetyltransferase (K13788, pta) (No. 24), acetate kinase (K00925, ackA)
368	(No. 25), butyryl-CoA dehydrogenase (K00248, ACADS) (No. 26), phosphate
369	butyryltransferase (K00634, <i>ptb</i>) (No. 27) and butyrate kinase (K00929, <i>buk</i>) (No. 28),
370	which contribute to the formation of acetate (No. 24-25) and butyrate (No. 26-28),
371	were all remarkably decreased with exposure to the high concentration of Cu^{2+} . The
372	down-regulation of these genes may contribute to the much lower yield of acetate and
373	butyrate for the Cu-1000 group.
374	3.5. Implications to fermentative hydrogen production
375	As a typical heavy metal that has been widely detected in the feedstocks of dark
376	fermentation, Cu can inhibit the hydrogen production efficiency. Previous
377	investigations mainly concentrated on the inhibition effect of Cu on dark fermentation
378	performances (e.g. hydrogen yield and substrate utilization) (Li and Fang, 2007; Lin
379	and Shei, 2008; Mohanraj et al., 2016), while current understanding on the inhibitory
380	mechanisms of Cu on dark fermentation is still lacking. This work investigated the
381	inhibitory mechanisms of Cu on dark fermentation from the aspects of bacterial
382	community structure and functional genes for filling the existing knowledge gap.
383	In addition to bacterial community structure and functional genes, the activity of
384	key enzymes also plays an important role in fermentative hydrogen production
385	(Hallenbeck, 2009). In future work, it is suggested to investigate the impact of Cu on
	(Traitereden, 2009), in facare work, it is suggested to investigate the impact of ea on
386	the activity of some key enzymes (e.g. pyruvate kinase, pyruvate-ferredoxin
386 387	the activity of some key enzymes (e.g. pyruvate kinase, pyruvate-ferredoxin oxidoreductase and hydrogenase) involved in hydrogen production. Furthermore, the

389 considered. For instance, the co-fermentation of high-Cu feedstocks (e.g. sewage

390 sludge and livestock manure) with low-Cu feedstocks (e.g. potato peel waste and

391 macroalgae) may be a promising approach for mitigating the inhibition effect of Cu

392 on fermentative hydrogen production.

393 **4. Conclusions**

 Cu^{2+} significantly inhibited fermentative hydrogen production at exposure

395 concentrations of higher than 500 mg/L. High concentrations of Cu^{2+} also reduced the

³⁹⁶ hydrogen production rate, prolonged the hydrogen-producing lag phase, and inhibited

the liquid metabolites formation. Mechanisms analysis showed that the presence of

398 high concentrations of Cu^{2+} significantly declined the utilization efficiency of glucose,

led to much less enrichment of high-yielding hydrogen-producing genera (e.g.

400 *Clostridium sensu stricto*), and remarkably down-regulated the abundances of genes

401 involved in glycolysis (e.g. *PK*, *ppgK* and *pgi-pmi*) and hydrogen formation (e.g. *pflA*,

402 *fdoG*, *por* and *E1.12.7.2*), fundamentally leading to the inhibition on the fermentation

403 efficiency.

404

405 Acknowledgements

406 This study was supported by the National Natural Science Foundation of China (No.

407 41991332), the Key Research and Development Program of Shandong Province,

408 China (No. 2021CXGC010803), and the China Postdoctoral Science Foundation (No.

409 **2022M713307**).

410 **References**

411	1.	Al-Saydeh, S.A., El-Naas, M.H., Zaidi, S.J., 2017. Copper removal from
412		industrial wastewater: A comprehensive review. J. Ind. Eng. Chem. 56, 35-44.
413	2.	APHA, 2005. Standard Methods for the Examination of Water and Wastewater,
414		twenty first ed. American Public Health Association/American Water Works
415		Association/Water Environment Federation, Washington, DC, USA.
416	3.	Arun, J., Sasipraba, T., Gopinath, K.P., Priyadharsini, P., Nachiappan, S.,
417		Nirmala, N., Dawn, S.S., Chi, N.T.L., Pugazhendhi, A., 2022. Influence of
418		biomass and nanoadditives in dark fermentation for enriched bio-hydrogen
419		production: A detailed mechanistic review on pathway and commercialization
420		challenges. Fuel 327, 125112.
421	4.	Bundhoo, M.Z., Mohee, R., 2016. Inhibition of dark fermentative bio-hydrogen
422		production: a review. Int. J. Hydrogen Energy, 41, 6713-6733.
423	5.	Cai, G.Q., Jin, B., Monis, P., Saint, C., 2011. Metabolic flux network and
424		analysis of fermentative hydrogen production. Biotechnol. Adv. 29, 375-387.
425	6.	Cao, J.M., Xu, C.L., Zhou, R., Duan, G.L., Lin, A.J., Yang, X., You, S., Zhou,
426		Y.Y., Yang, G., 2022. Potato peel waste for fermentative biohydrogen production
427		using different pretreated culture. Bioresour. Technol. 362, 127866.
428	7.	Cheng, D.L., Ngo, H.H., Guo, W.S., Chang, S.W., Nguyen, D.D., Deng, L.J.,
429		Chen Z., Ye, Y.Y., Bui, X.T., Hoang, N.B., 2022. Advanced strategies for

430		enhancing dark fermentative biohydrogen production from biowaste towards
431		sustainable environment. Bioresour. Technol. 351, 127045.
432	8.	Chen, Y., Yin, Y.N., Wang, J.L., 2021. Recent advance in inhibition of dark
433		fermentative hydrogen production. Int. J. Hydrogen Energy 46, 5053–5073.
434	9.	Chu, L.Q., He, W., 2021. Toxic metals in soil due to the land application of
435		sewage sludge in China: Spatiotemporal variations and influencing factors. Sci.
436		Total Environ. 757, 143813.
437	10.	Dahiya, S., Chatterjee, S., Sarkar, O., Mohan, S.V., 2021. Renewable hydrogen
438		production by dark-fermentation: Current status, challenges and perspectives.
439		Bioresour. Technol. 321, 124354.
440	11.	Elbeshbishy, E., Dhar, B.R., Nakhla, G., Lee, H.S., 2017. A critical review on
441		inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 79,
442		656-668.
443	12.	Fan, X.N., Li, Y.M., Luo, Z.Y., Jiao, Y.G., Ai, F., Zhang, H.R., Zhu, S.N., Zhang,
444		Q.G., Zhang, Z.P., 2022. Surfactant assisted microwave irradiation pretreatment
445		of corncob: Effect on hydrogen production capacity, energy consumption and
446		physiochemical structure. Bioresour. Technol. 357, 127302.
447	13.	Guan, T.X., He, H.B., Zhang, X.D., Bai, Z., 2011. Cu fractions, mobility and
448		bioavailability in soil-wheat system after Cu-enriched livestock manure
449		applications. Chemosphere 82, 215–222.

- 450 14. Gujre, N., Rangan, L., Mitra, S., 2021. Occurrence, geochemical fraction,
- 451 ecological and health risk assessment of cadmium, copper and nickel in soils
- 452 contaminated with municipal solid wastes. Chemosphere 271, 129573.
- 453 15. Hallenbeck, P.C., 2009. Fermentative hydrogen production: Principles, progress,
- and prognosis. Int. J. Hydrogen Energy 34, 7379–7389.
- 455 16. Han, H.L., Jia, Q.B., Wei, L.L., Shen, J.Q., 2014. Influence of Cu²⁺ concentration
- 456 on the biohydrogen production of continuous stirred tank reactor. Int. J.
- 457 Hydrogen Energy 39, 13437–13442.
- 458 17. Hawkes, F.R., Dinsdale, R., Hawkes, D.L., Hussy, I., 2002. Sustainable
- 459 fermentative hydrogen production: challenges for process optimisation. Int. J.
- 460 Hydrogen Energy 27, 1339-1347.
- 461 18. Hung, C.H., Chang, Y.T., Chang, Y.J., 2011. Roles of microorganisms other than
- 462 *Clostridium* and *Enterobacter* in anaerobic fermentative biohydrogen production
- 463 systems A review. Bioresour. Technol. 102, 8437–8444.
- 464 19. Jiang, X.P., Yan, Y.Y., Feng, L.Y., Wang, F., Guo, Y.Q., Zhang, X.Z., Zhang,
- 465 Z.G., 2021. Bisphenol A alters volatile fatty acids accumulation during sludge
- 466 anaerobic fermentation by affecting amino acid metabolism, material transport
- 467 and carbohydrate-active enzymes. Bioresour. Technol. 323, 124588.
- 468 20. Kim, B., Jeong, J., Kim, J., Yoon, H.H., Nguyen, P.K.T., Kim, J., 2022.
- 469 Mathematical modeling of dark fermentation of macroalgae for hydrogen and
- 470 volatile fatty acids production. Bioresour. Technol. 354, 127193.

471	21.	Kumar, P., Sharma, R., Ray, S., Mehariya, S., Patel, S.K.S., Lee, J.K., Kalia, V.C.,
472		2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus
473		thuringiensis. Bioresour. Technol. 182, 383-388.
474	22.	Khoufi, S., Louhichi, A., Sayadi, S., 2015. Optimization of anaerobic
475		co-digestion of olive mill wastewater and liquid poultry manure in batch
476		condition and semi-continuous jet-loop reactor. Bioresour. Technol. 182, 67-74.
477	23.	Lemire, J.A., Harrison, J.J., Turner, R.J., 2013. Antimicrobial activity of metals:
478		mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371-
479		384.
480	24.	Li, C., Fang, H.H.P., 2007. Inhibition of heavy metals on fermentative hydrogen
481		production by granular sludge. Chemosphere 67, 668–673.
482	25.	Li, H., Song, W.L., Cheng, J., Ding, L.K., Zhou, J.H., Li, Y.Y., 2020. Effects of
483		harvest month on biochemical composition of alligator weed for biohydrogen and
484		biomethane cogeneration: Identifying critical variations in microbial communities.
485		Int. J. Hydrog. Energy 45, 4161–4173.
486	26.	Lin, C.Y., Shei, S.H., 2008. Heavy metal effects on fermentative hydrogen
487		production using natural mixed microflora. Int. J. Hydrogen Energy 33, 587-593.
488	27.	Liu, W.R., Zeng, D., She, L., Su, W.X., He, D.C., Wu, G.Y., Ma, X.R., Jiang, S.,
489		Jiang, C.H., Ying, G.G., 2020. Comparisons of pollution characteristics, emission
490		situations, and mass loads for heavy metals in the manures of different livestock

- 491 and poultry in China. Sci. Total Environ. 734, 139023.

492	28.	Lozupone, C.A., Knight, R., 2008. Species divergence and the measurement of
493		microbial diversity. FEM Microbiol. Rev. 32, 557-578.
494	29.	Martínez-Mendoza, L.J., Lebrero, R., Muñoz, R., García-Depraect, O., 2022.
495		Influence of key operational parameters on biohydrogen production from fruit
496		and vegetable waste via lactate-driven dark fermentation. Bioresour. Technol.
497		364, 128070.
498	30.	Matyakubov, B., Hwang, Y., Lee, T.J., 2022. Evaluating interactive toxic impact
499		of heavy metals and variations of microbial community during fermentative
500		hydrogen production. Int. J. Hydrogen Energy 47, 31223-31240.
501	31.	Mo, H., Wang, N., Ma, Z.M, Zhang, J.S., Zhang, J.L., Wang, L., Dong, W.F.,
502		Zang, L.H., 2022. Hydroxyapatite fabrication for enhancing biohydrogen
503		production from glucose dark fermentation. ACS omega, 7, 10550-10558.
504	32.	Ramu, S.M., Thulasinathan, B., Hari, D.G., Bora, A., Jayabalan, T., Mohammed,
505		S.N., Doble, M., Arivalagan, P., Alagarsamy, A., 2020. Fermentative hydrogen
506		production and bioelectricity generation from food based industrial waste: An
507		integrative approach. Bioresour. Technol. 310, 123447.
508	33.	Ren, Y., Si, B.C., Liu, Z.D., Jiang, W.Z., Zhang, Y.H., 2022. Promoting dark
509		fermentation for biohydrogen production: Potential roles of iron-based additives.
510		Int. J. Hydrogen Energy 47, 1499–1515.
511	34.	Sasi Jyothsna, T.S., Tushar, L., Sasikala, C., Ramana, C.V. 2016.

Paraclostridium benzoelyticum gen. nov., sp. nov., isolated from marine sediment

- and reclassification of *Clostridium bifermentans* as *Paraclostridium bifermentans*
- 514 comb. nov. Proposal of a new genus *Paeniclostridium* gen. nov. to accommodate
- 515 *Clostridium sordellii* and *Clostridium ghonii*. Int. J. Syst. Evol. Microbiol. 66,
- 516 1268–1274.
- 517 35. Sharma, P., Melkania, U., 2018. Impact of heavy metals on hydrogen production
- from organic fraction of municipal solid waste using co-culture of *Enterobacter aerogenes* and *E. Coli*. Waste Manag. 75, 289–296.
- 520 36. Sillero, L., Solera, R., Perez, M., 2022. Anaerobic co-digestion of sewage sludge,
- wine vinasse and poultry manure for bio-hydrogen production. Int. J. Hydrogen
 Energy 47, 3667-3678.
- 523 37. Sivagurunathan, P., Sen, B., Lin, C.Y., 2015. High-rate fermentative hydrogen
 524 production from beverage wastewater. Appl. Energy 147, 1–9.
- 525 38. Tang, X., Zhou, M., Zeng, G.M., Fan, C.Z., 2022. The effects of dimethyl
- 526 phthalate on sludge anaerobic digestion unveiling the potential contribution of
- 527 plastic chemical additive to spread of antibiotic resistance genes. Chem. Eng. J.
- 528 435, 134734.
- 529 39. Urrutia, C., Yañez-Mansilla, E., Jeison, D., 2019. Bioremoval of heavy metals
- from metal mine tailings water using microalgae biomass. Algal Res. 43, 101659.
- 531 40. Wang, J.L., Yin, Y.N., 2017. Principle and application of different pretreatment
- 532 methods for enriching hydrogen-producing bacteria from mixed cultures. Int. J.
- 533 Hydrogen Energy 42, 4804–4823.

534	41.	Wang, Q.Y., Fu, H., Zhang, G.M., Wu, Y., Ma, W.F., Fu, C., Cai, Y.J., Zhong,
535		L.H., Zhao, Y.W., Wang, X.Y., Zhang, P.Y., 2022. Efficient chain elongation
536		synthesis of n-caproate from shunting fermentation of food waste. Bioresour.
537		Technol. 128569.
538	42.	Wong, Y.M., Wu, T.Y., Juan, J.C., 2014. A review of sustainable hydrogen
539		production using seed sludge via dark fermentation. Renew. Sustain. Energy Rev.
540		34, 471-482.
541	43.	Yang, G., Wang, J.L., 2021. Biohydrogen production by co-fermentation of
542		antibiotic fermentation residue and fallen leaves: Insights into the microbial
543		community and functional genes. Bioresour. Technol. 337, 125380.
544	44.	Yang, G., Yin, Y.N., Wang, J.L., 2019. Microbial community diversity during
545		fermentative hydrogen production inoculating various pretreated cultures. Int. J.
546		Hydrogen Energy 44, 13147–13156.
547	45.	Zhao, W.Q., Zhang, J.S., Zhang, H.W., Yang, M.C., Zang, L.H., 2020.
548		Comparison of mesophilic and thermophilic biohydrogen production amended by
549		nickel-doped magnetic carbon. J. Clean. Prod. 270, 122730.
550	46.	Zhu, D., Ma, J., Li, G., Rillig, M.C., Zhu, Y.G., 2022. Soil plastispheres as
551		hotspots of antibiotic resistance genes and potential pathogens. ISME J. 16,
552		521-532.

Figure Captions

Fig. 1 The influence of Cu^{2+} on cumulative hydrogen production during the fermentation process

Fig. 2 The impact of Cu^{2+} on glucose utilization after the hydrogen fermentation

Fig. 3 The impact of Cu^{2+} on liquid metabolites concentrations after the fermentation

Fig. 4 Bacterial community compositions for the control, Cu-500 and Cu-1000 groups at genus level

Fig. 5 Comparison of metabolic functions for the control group and Cu-1000 group using the KEGG database at level 3

Fig. 6 Principle metabolic pathways of fermentative hydrogen production (a); The impact of Cu^{2+} on the abundances of functional genes associated with biohydrogen production as detected by metagenomics sequencing (b)

Tables

Table 1 Kinetic analysis for hydrogen fermentation with different concentrations of Cu^{2+}

M- 1-1	Parameters	Cu ²⁺ concentration (mg/L)					
Wodel		0	5	10	100	500	1000
	P (mL)	187.57	181.14	171.57	168.26	76.18	6.01
Modified	R _m (mL/h)	24.51	17.02	14.10	12.65	3.36	2.05
Gompertz	λ (h)	11.83	9.65	9.68	9.24	18.79	21.03
	\mathbb{R}^2	0.990	0.990	0.996	0.994	0.996	0.999

Sample	Clean reads	Coverage	Shannon	Ace	Chao1
Control	106210	0.999	1.85	325.89	334.32
Cu-500	135228	0.999	0.83	317.58	301.55
Cu-1000	145261	0.999	0.75	226.80	218.89

 Table 2 Bacterial diversity and richness indices for the control, Cu-500 and Cu-1000

 samples

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

