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Abstract: D-optimality is a well-known concept in experimental design that seeks to select an optimal
set of design points to estimate the unknown parameters of a statistical model with a minimum
variance. In this paper, we focus on proving a conjecture made by Ford, Torsney and Wu regarding
the existence of a class of D-optimal designs for binary and weighted linear regression models. Our
concentration is on models with one design variable. The conjecture states that, for any given level of
precision, there exists a two-level factorial design that is D-optimal for these models. To prove this
conjecture, we use an intuitive approach that explores various link functions in the generalised linear
model context to establish the veracity of the conjecture. We also present explicit and clear plots of
various functions wherever deemed necessary and appropriate to further strengthen the proofs. Our
results establish the existence of D-optimal designs for binary and weighted linear regression models
with one design variable, which have important implications for the efficient design of experiments
in various fields. These findings contribute to the development of optimal experimental designs for
studying binary and weighted linear regression models and provide a foundation for future research
in this area.

Keywords: D-optimal; binary response models; weighted linear regression; generalised linear model;
binary weight; binary weight functions
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1. Introduction

The study of D-optimality has been central to the work on optimum experimental
design since the beginning, e.g., Kiefer [1]. Fedorov [2], Silvey [3] and Pazman [4], as has
stress D-optimality. Farrell et al. [5] provided a summary of earlier work on D-optimality.
This includes that of Kiefer and Wolfowitz [6] and Kiefer [7] which likewise concentrate on
results for regression models, including extensions to Ds-optimality.

In this paper, we focus on D-optimal designs for binary regression and weighted
linear regression models that feature a single design variable. We derive minimal support
D-optimal designs, which have been extensively studied in the literature for binary data.
This is particularly the case for Ford Torsney and Wu [8], who considered c-optimal and D-
optimal designs for generalised linear models with one design variable. Using Silvey’s [3]
geometrical approach, they claimed that, in two-parameter models, many local D-optimal
designs have two support points and they conjectured what these would be. Sitter and
Torsney [9,10] extended this work to more than two design variables for some typical
binary response models. Their results are also ‘conjecture’-based. Building on these studies,
Sebastiani and Settimi [11] explored the binary logistic regression design problem, and
provided an analytical proof of the conjectured designs for all design intervals. We expand
on their work to encompass a class of binary regression models as well as weighted linear
regression models. We expand on their work to encompass a class of binary regression
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models as well as weighted linear regression models. The work instrumental in the
development of the research was presented in Gunduz [12], Torsney and Gunduz [13],
Gunduz and Torsney [14].

Some of the later studies, especially those related to the binary regression model,
include the following: Haines et al. [15] focused on locally D-optimal designs on the logistic
regression model with two explanatory variables. Idais [16] studied the locally optimal
designs that are derived for generalised linear models with first-order linear predictors.
Amongst others, Jaffari et al. [17], Kabera et al. [18], Haines et al. [19], Gaffke et al. [20],
and Zhai [21] all developed models loosely or somewhat moderately related to our present
work. The main contribution of this paper is our thorough development of a rigorous
proof of the conjecture made by Ford, Torsney, and Wu in 1992 regarding the existence
of a class of D-optimal designs for binary and weighted linear regression models, with
a concentration on models with one design variable. The paper’s approach utilises the
intuitive exploration of various link functions in the generalised linear model context, along
with the explicit and clear plots of various functions to strengthen the proofs. The results of
this paper have important implications for the efficient design of experiments in various
fields, including engineering, medicine, and social sciences. The paper’s contribution to
the development of optimal experimental designs for studying binary and weighted linear
regression models provides a foundation for future research in this area.

The paper is organised as follows. Section 2 provides a brief overview of the rele-
vant literature on D-optimal designs and binary and weighted linear regression models.
Section 3 introduces the notation and mathematical framework used in this paper. Section 4
presents the main result of the paper, namely the rigorous proof of the conjecture for models
with one design variable. Section 5 discusses the intuition behind the approach used in
the paper and provides explicit plots for various functions to support the proofs. Section 6
presents the implications of the results for the efficient design of the experiments in various
fields. Finally, Section 7 concludes the paper and suggests directions for future research.

2. Models
Two-Parameter Models

We examine a binary regression model where the observed variable u is dependent on
a single design variable x ∈ X = [c, d] ⊂ R. In this model, u can only take on two possible
values: 1 if a particular event of interest takes place, and 0 otherwise. The probabilities of
these outcomes can be expressed as follows:

Pr(u = 0|x) = 1− π(x) Pr(u = 1|x) = π(x).

Thus, u ∼ Bi(1, π(x)). We assume π(x) = F(α + βx), where F(·) is a chosen cumulative
distribution function. So

E(u|x) = π(x) = F(α + βx)

V(u|x) = π(x)[1− π(x)]

For unknown parameters α and β, the dependence of π on x only happens via a nonlinear
function of the linear combination

z = α + βx

It is a generalised linear model and the information matrix of a single replicate can be
written as follows:

I(x, θ) =
f 2(z)

F(z)[1− F(z)]

(
1
x

)
(1 , x)

where f (z) = F′(z). Furthermore, given z = α + βx, then z ∈ [a, b], and



Mathematics 2023, 11, 2075 3 of 19

(
1
z

)
=

(
1 0
α β

) (
1
x

)
= B

(
1
x

)
.

Hence, if

g(z) = Bv,

then

g(z) =
f (z)√

F(z)[1− F(z)]

(
1
z

)
and

v = B−1g(z) .

Non-singular linear transformations of the design space cause D-optimality to be invariant.
Let us look at the D-optimal linear design problem with design vectors

g =
√

w(z)(1 z)T z ∈ [a, b]

where w(z) = f 2(z)
F(z)[1−F(z)] is to a weighted linear regression design problem with the weight

function w(z) following Ford, Torsney and Wu [8].
Therefore, these nonlinear design problems transform into linear design problems for

weighted linear regression in z with weight function w(z) = f 2(z)
F(z)(1−F(z)) , where f (z) = F′(z)

is the density of F(·). We now consider the implications of this. Table 1 lists examples of
this kind of weight function (binary regression weight functions) in two groups: Group
I and Group II. Two other groups (III and IV) are also listed. Firstly, we consider finding
D-optimal designs for Group I and Group III, and then investigate Group II and Group
IV separately.

Table 1. Weight functions under consideration.

1- Binary Weight Functions: Group I w(z) = f 2(z)/F(z)[1− F(z)]
(

F(·) = c.d. f ., f (·) = F′(·)
)

Name f (z) F(z) w(·) Zw = [a, b]
(widest possible
design space)

Logistic e−z

(1+e−z)2
1

1+e−z
ez

(1+ez)2 −∞ ∞

Skewed Logistic m[F1(z)]m−1 f1(z) (1 + e−z)−m
[

me−z

1+e−z [(1 + e−z)m − 1]−
1
2

]2
−∞ ∞

Generalised (ez)(λez + 1)−
1
λ−1 1− [λez + 1]

−1
λ e2z

(λez+1)2[(λez+1)
1
λ −1]

−∞ ∞

Complementary log-log e(z−ez) 1− e−ez
e2z(eez − 1)−1 −∞ ∞

Probit 1√
2π

e
−z2

2
∫ z
−∞

1√
2π

e
−t2

2 dt w(·) −∞ ∞
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Table 1. Cont.

2-Binary Weight Functions: Group II w(z) = f 2(z)/F(z)[1− F(z)]
(

F(·) = c.d. f ., f (·) = F′(·), s is sign o f z
)

Double reciprocal 1
2 (1 + |z|)−2 (1+s)

2 − s
2 (1 + |z|)−1 (1+|z|)−2

2|z|+1 −∞ ∞

Double exponential 1
2 e(−|z|) 1+s

2 −
s
2 e(−|z|) (2e|z| − 1)−1 −∞ ∞

3-Density Weight functions : Group III

Beta −−− −−− (1− z)α+1(1 + z)β+1

α, β > −1 (−1, 1)

Gamma −−− −−− zγ+1 e−z

γ > −1 (0, ∞)

Normal −−− −−− e−z2
(−∞, ∞)

4-Other Weight functions : Group IV

−−− −−− zt, −2 ≤ t ≤ 0 a > 0, b < ∞

−−− −−− zt, t < −2 a > 0, b ≤ ∞

−−− −−− zt, t > 0 a ≥ 0, b < ∞

−−− −−− exp(z) a ≥ −∞, b < ∞

3. On the Number of Support Points

One of the main objectives of optimal experimental design is to determine the support
points. A geometrical approach to the construction of D-optimal designs is sometimes
useful. We therefore introduce the following set:

G = G(Z) = {g(z) :
(

g1

g2

)
, g1 =

√
w(z), g2 = z g1, z ∈ Z}.

Box and Lucas [22] called this the design locus. The support of D-optimal designs heavily
depends on the geometry of this design locus [3]. Caratheodory’s theorem guarantees that
the number of support points is finite, implying the existence of a design with only two or
three support points. Silvey’s geometrical characterisation, as stated in [3], can offer some
insights into the nature of these points or at least their quantity. These support points refer
to the points of contact between G(Z) and (SE(G)), the smallest ellipse centred on the
origin that contains G(Z). Both Silvey [23] and Sibson [24] contributed to the discussion of
Wynn [25], and the idea was first conjectured by Silvey [23]. It is important to note that, for
Group I weight functions, both g1 =

√
w(z) and g2 = z

√
w(z) are bounded functions for

all z ∈ Zw in the widest possible design space, Zw = [amin, bmax], which is the sample space
of f (z). Thus, no restrictions on z exist. Furthermore, G(Zw) is a closed convex curve that
begins and ends at the origin. This characteristic also applies to Group III weight functions
of the form w(z) = f (z) or f 2(z) where f (z) is a density function. Additionally, Group
I and Group III weight functions have similar properties, which are typically unimodal
with one maximal turning point (TP) at a value of zmax (where (w′(zmax) = 0)) and with,
w′(z) > 0 if z < zmax and w′(z) < 0 if z > zmax and w(z) → 0 at the extremes of Zw,
(Table 1). Based on the plots of G(Zw), it is evident that Silvey’s minimal ellipse, as stated
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in [3], only touches G(Zw) at two points for many choices of w(z) from Groups I and III.
We now reveal a Theorem on this.

Theorem 1. Assume that a weight function w(z) is continuous and differentiable and suppose
Zw = [A, B], i.e., A = amin, B = bmax. Let

H(z) =
−w′(z)
[w(z)]2

v(z) = w(z)(1 z)M−1(ξ)(1 z)T .

where M(ξ) is the information matrix of any design ξ. Suppose that H(z) is continuous with
H(A) = −∞, H(B) = ∞, differentiable with H′(A) = H′(B) = ∞, and is first concave
increasing then convex increasing. Then, the function v(z) [or the variance function] can have at
most three TPs: two maximal ones and one minimal one. In consequence, a D-optimal design can
have only two support points on any design interval Z ⊆ Zw.

Proof of Theorem 1. Silvey’s [3] minimal ellipse argument is a geometrical characterisation
of the Equivalence Theorem [6]. According to Theorem 3.9 [3], a design ξ(·) is D-optimal iff

w(z)(1 z)M−1(ξ)

(
1
z

)
≤ 2 ∀ z ∈ Z (1)

= 2 if ξ(z) > 0.

This is true iff

v(z) =
1
2

Q(z)− 1
w(z)

≤ 0 ∀ z ∈ Z (2)

= 0 if ξ(z) > 0,

where Q(z) = (1 z)M−1(ξ)

(
1
z

)
is a quadratic function. We would like to see v(z) ≤ 0

∀z ∈ Z to have an optimal design. To explore the shape of v(z), we analyse its derivatives.
The derivative of v(z) can be written as

v′(z) = L(z)− H(z) , (3)

where H(z) = −w′(z)
[w(z)]2 and L(z) is an increasing linear function of z because the coefficient of

z is the second diagonal element of the information matrix M(ξ) which is positive definite.
In fact, L(z) = {E(w(Z))z− E(Zw(Z))}/ det(M(ξ)), where Z is a random variable with
a probability measure of ξ since

M(ξ) =

(
E(w(Z)) E(Zw(Z))
E(Zw(Z)) E(Z2w(Z))

)
.

The intercept will be negative if E(Zw(Z)) is positive. The opposite is likewise true. The
consequence is v′(z) = 0 iff L(z) = H(z). That is, v′(z) = 0 when the line L(z) crosses H(z).
Given our assumptions about H(z), an upward sloping line L(z) can cross it, over Zw and
hence over any subset of Zw, either one or three times. The slope of the line determines this.

Thus, the derivative of v(z) can have at most three zeros in Zw. Additionally, such a
line must initially lie above H(z). If there is only one TP in a design interval, it must be a
maximal TP. If there are three TPs, the first and third are maximal, while the second is a
minimal TP. As a result, v(z) has only one minimum TP and at most two maximum TPs.
When there are three solutions to v′(z) = 0, the middle one must be a minimum TP, as the
line crosses the curve first from above, then from below, then from above, and then from
below (Figure 1).
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As a conclusion, this implies that there are only two D-optimal support points on
any design interval, because three support points would need a minimum of two TPs.
Hence, the lines arising under the designs ξ must cross H(z) three times and the theorem
is proven. The plots of H(z) for various weight functions w(·) exhibit similar shapes and
properties, as illustrated in Figure 1. However, only a few weight functions, such as the
logistic and the normal weight functions, offer an H(z) function whose change of sign can
be seen analytically.

−4 −2 0 2

−
1

5
0

−
5

0
0

5
0

1
0

0

z

H
(z

)

L(z)

ABOVE
MAX TP

BELOW

MIN TP

ABOVE

MAX TP
BELOW

Figure 1. A Typical Plot of H(z) and L(z) for Complementary log-log Weight Function, zmax = 0.47.

Tables 2 and 3 list the H(z) functions for the weight functions of Group I and Group
III, respectively.

Table 2. Group I: Binary Weight Functions w(z) = f 2(z)
F(z)[1−F(z)] and H(z) functions on Zw.

Name w(·) H(z) = − w′(z)
[w(z)]2

Logistic ez

(1+ez)2 ez − e−z

Skewed logistic m2e−2z

(1+e−z)2[(1+e−z)m−1]
(1+e−z){me−z(1+e−z)m−2[(1+e−z)m−1]}

m2e−2z

Generalised e2z

(λez+1)2[(λez+1)
1
λ −1]

2e−2z(λez + 1){(λez + 1)
2
λ−1

+λez − ez(λez + 1)
2
λ−2 − (λez + 1)}

Complementary log-log e2z(eez − 1)−1 2−2eez

e2z + eez

ez

Probit
1

2π e−z2

Φ(z)[1−Φ(z)] −−−
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Table 3. Group III: Density Weight Functions and H(z) functions.

Name w(·) Zw H(z) = − w′(z)
[w(z)]2

Beta (1− z)α+1(1 + z)β+1 (−1, 1) α, β > −1 (α+1)(1−z)−1−(β+1)(1+z)−1

[(1−z)(α+1)(1+z)(β+1) ]

Beta (1− z2)α+1 (−1, 1) α > −1 2z(α + 1)(1− z2)−α−2

Gamma zγ−1 e−z (0, ∞) γ > 1 z−γ−2ez[z− (γ− 1)]

Normal e
−z2

2 (−∞, ∞) −− ze
z2
2

4. Determination of Support Points
4.1. A Conjecture Proved under a Sufficient Condition

Let us now concentrate on identifying the two support points. Suppose that we have
a two-point design on the interval Zab = [a, b]. It is known that the optimal weights are
always equal, regardless of the support points. Therefore, the design can be expressed as:

ξ =

(
z z1 z2
pz

1
2

1
2

)
. (4)

As the weights are optimal for z1 and z2, we have v(z1) = v(z2) = 0 (as per Equation (2)
and the subsequent implications for v(z).) For this design to be optimal on the entire space,
Z = Zab, z1 and z2 must maximise the D-optimal criterion over a ≤ z1 < z2 ≤ b.

Using two points of view, we show that a function with an important role in this
respect is

h(z) = z +
2w(z)
w′(z)

. (5)

The derivatives of ln det M(ξ) are:

∂[ln det M(ξ)]

∂z1
=

w′(z1)

w(z1)(z2 − z1)

[
z2 − h(z1)

]
(if w′(z1) 6= 0) (6)

∂[ln det M(ξ)]

∂z2
=

w′(z2)

w(z2)(z2 − z1)

[
h(z2)− z1

]
(if w′(z2) 6= 0). (7)

Then, we consider the variance function v(z) under the above design (so that v(z1) = v(z2) = 0).
Then

v′(z1) =
w′(z1)

[w(z1)]2(z2 − z1)

[
z2 − h(z1)

]
(8)

v′(z2) =
w′(z2)

[w(z2)]2(z2 − z1)

[
h(z2)− z1

]
. (9)

For the above design to be D-optimum on Z = Zab, the derivatives must either be equal
to zero or have the appropriate signs. Therefore, the function h(z) plays a crucial role in
determining the optimality of the design. Let a∗, b∗ be the values of z1, z2 which maximise
det M(ξ) over Zw. Furthermore, let b∗(a) maximise det(M(ξ)) with respect to z2 (over
z2 ≥ a) where ξ is the design

ξ =

(
a z2
1
2

1
2

)
,

and let a∗(b) maximise det(M(ξ)) with respect to z1 (over z1 ≤ b) where ξ is the design
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ξ =

(
z1 b
1
2

1
2

)
.

It is evident that a∗(b) solves h(a) = b and b∗(a) solves h(b) = a, while a∗, b∗ solves
h(b∗) = a∗, b∗ = h(a∗).
A conjecture is given about the support points on Zab for all a, b ∈ Zw and a < b:

Case 1: Z = Zw, Supp(ξ) = {a∗, b∗};
Case 2: Z = Zab, a ≤ a∗ , b ≥ b∗.

The D-optimal design is the same as above since Z contains the above support points.

Case 3 : Z = Zab, a ≥ a∗, b ≥ b∗, Supp(ξ) = {a, min{b, b∗(a)}}, (b∗(a) > b∗);
Case 4 : Z = Zab, a ≤ a∗, b ≤ b∗, Supp(ξ) = {max{a, a∗(b)}, b}, (a∗(b) < a∗);
Case 5 : Z = Zab, a ≥ a∗, b ≤ b∗, Supp(ξ) = {a, b}.

Theorem 2. A sufficient condition for the conjecture to be true (in addition to the properties
needed by H(z)) is that w(z) is continuous, differentiable and unimodal (with a maximum at zmax)
and that the function h(z) strictly increases over the two subsets {z : z ∈ Zw z ≤ zmax} and
{z : z ∈ Zw z ≥ zmax}.

Proof of Theorem 2. We need to check the equivalence theorem, i.e., we need v(z) ≤ 0
∀z ∈ Zab. We consider various cases. We first graphically illustrate the structure v(z) if the
conjecture is true, given that we know it has only 2 maximal TPs and 1 minimal one and
that the D-optimum design has two support points at which v(z) must be zero (Figure 2).
This illustrates when v′(z) should be zero or what sign it should have at the conjectured
support points if the conjecture is true. In fact, v′(z1) should be zero or negative, v′(z2)
should be zero or positive depending on Zab.

Figure 2. Examples of plots depicting v(z).
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These results hold if h(z) is increasing. Various cases, starting with two cases where
only one support point is specified, either z1 or z2, are considered. In both cases, we can
show that the conjectured signs of v′(z1) and v′(z2) hold if h(z) is increasing.

1. • z1 = a > zmax, a < z2 ≤ b. We show that v′(z1) < 0.

v′(a) =
w′(a)

[w(a)]2(z2 − a)
[z2 − h(a)]

Since a > zmax, w′(a) < 0. Moreover,

z2 − h(a) = (z2 − a)− 2w(a)
w′(a)

The right-hand side of the equation is always positive, because a < z2 and
w′(a) < 0. Therefore, v′(z1) = v′(a) < 0.

• z2 = b < zmax, a ≤ z1 ≤ b. We show v′(z2) > 0.

v′(b) =
w′(b)

[w(b)]2(b− z1)
[h(b)− z1]

Since b < zmax, w′(b) > 0. Moreover

h(b)− z1 = (b− z1) +
2w(b)
w′(b)

.

This equation is always positive on the right-hand side because z1 < b and
w′(b) > 0. Therefore, v′(z2) = v′(b) > 0.

2. z1 = a∗, z2 = b∗ a < a∗ < b∗ < b

b∗ = h(a∗) (10)

h(b∗) = a∗ (11)

Now, a∗, b∗ is the only possible solution (a∗ < b∗) to Equations (10) and (11). Thus,
v′(z1) = v′(a∗) = 0 v′(z2) = v′(b∗) = 0. Thus, a∗, b∗ identify 2 max TP’s of
v(z). Moreover, they are TP’s at which v(z) has a common value of zero since
v(z1) = v(z2) = 0. From the property of v(z), the only possibility is that they are
the values of z say TPL, TPU (TPL < TPU) at which the two maximal TP’s of v(z), i.e.,
z1 = a∗ = TPL, z2 = b∗ = TPU . Hence, the Equivalence Theorem is satisfied on Zw
and on any subset Z = Zab which contains a∗, b∗. Hence, the two-point design

ξ =

(
a∗ b∗
1
2

1
2

)
.

is D-optimal for all Z = [a, b] where a ≤ a∗ and b ≥ b∗.
3. a∗ < a < zmax < b < b∗ z1 = a , z2 = b

Because a < zmax, and b > zmax, w′(a) > 0 and w′(b) < 0.

• Since h(z) is increasing over (z < zmax], h(a) > h(a∗) and since b < b∗, then
[b− h(a)] < [b∗ − h(a∗)] = 0. Therefore, v′(z1) = v′(a) < 0.

• Since h(z) is increasing over z > zmax, h(b) < h(b∗) and then [h(b) − a] <
[h(b∗)− a∗] = 0. Therefore, v′(z2) = v′(a) > 0.
Hence, the two-point design

ξ =

(
a b
1
2

1
2

)
is D-optimal for all Z = [a, b] where a∗ < a < zmax < b < b∗.

4. a∗ ≤ a ≤ zmax ≤ b = b∗(a) (b∗(a) > b∗) z1 = a, z2 = b∗(a)
Clearly, v′(z2) = 0. We want v′(z1) = v′(a) negative. First, w′(a) > 0 since a < zmax.
Second
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v′(a) =
w′(a)

[w(a)]2(b∗(a)− a)
[b∗(a)− h(a)]

=
w′(a)

[w(a)]2(b∗(a)− a)
[h−1

R (a)− hL(a)]

where h−1
R (z) is the inverse function of h(z) for z ≥ zmax and hL(z) = h(z) for

z ≤ zmax. Consider dRL(a) = h−1
R (a) − hL(a) and recall that a < zmax. We know

from Theorem (1) that a = a∗ is the only solution where dRL = 0. Thus, the functions
h−1

R (a) and hL(a) cross only once at a∗. Furthermore, since hL(zmax) = ∞, while
h−1

R (zmax) < ∞, then h−1
R (a) < hL(a) at a = zmax. Hence, this inequality is true for

a∗ < a < zmax. Therefore, v′(z1) = v′(a) < 0. Thus, the two-point design

ξ =

(
a b∗(a)
1
2

1
2

)
is D-optimal for allZ = [a, b], where a∗ < a < zmax and b = b∗(a). Since v′(z2) = 0
for z2 = b∗(a), this design is also D-optimal for b > b∗(a).

5. a∗ ≤ a ≤ zmax, b∗ ≤ b ≤ b∗(a) z1 = a, z2 = b
First, w′(a) > 0. Secondly, [b − h(a)] < b∗(a) − h(a) = h−1

R (a) − hL(a) < 0 by
above. Thus, v′(z1) = v′(a) < 0. Consider now v′(b). Because b ≥ zmax, w′(b) < 0.
We assumed b < b∗(a). If h(·) is an increasing function, h(b) < h(b∗(a)) = a. Hence,
h(b)− a < [h(b∗(a))− a] = 0. Thus, v′(z2) = v′(b) > 0 and the two-point design

ξ =

(
a b
1
2

1
2

)
is D-optimal for all Z = [a, b] where a∗ ≤ a ≤ zmax and b∗ < b < b∗(a).

6. a = a∗(b) (≤ a∗) ≤ zmax ≤ b ≤ b∗ z1 = a∗(b), z2 = b
This is the complementary to case 4 with v′(z1) = v′(a) = 0 and

v′(z2) = v′(b) =
w′(b)

[w(b)]2(b− a∗(b))
[h(b)− a∗(b)]

=
w′(b)

[w(b)]2(b− a∗(b))
[hR(b)− h−1

L (b)] ≥ 0.

Thus, the two point design

ξ =

(
a∗(b) b

1
2

1
2

)
is D-optimal for all Z = [a, b] where a = a∗(b) and zmax < b < b∗. Since v′(z1) = 0
for z1 = a∗(b). This is also D-optimal for a > a∗(b).

7. a∗(b) < a < a∗, zmax ≤ b ≤ b∗ z1 = a z2 = b
This is the complementary of case 6 with

v′(z2) = v′(b) =
w′(b)

[w(b)]2(b− a)
[h(b)− a] > 0.

Because w′(b) < 0 and h(b)− a < h(b)− a∗(b) < 0 because of b ≥ zmax and

v′(z1) = v′(a) =
w′(a)

[w(b)]2(b− a)
[b− h(a)] < 0.

Since w′(a) > 0 and

b− h(a) < b− h(a∗(b)) = b− b = 0.

Thus, the two-point design
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ξ =

(
a b
1
2

1
2

)
is D-optimal for all Z = [a, b] where a∗(b) ≤ a ≤ a∗ and zmax ≤ b ≤ b∗.

4.2. Examples of h(z)

Thus, the equivalence theorem is satisfied by our conjectured optimal designs for all
possible design intervals [a, b] if the function

h(z) = z +
2w(z)
w′(z)

is increasing over z ≤ zmax and over z ≥ zmax. This appears to be true for a wide range of
w(z) when the plots are examined. It is noteworthy that these characteristics also ensure
the closed convexity of G(Zw), as reported by Wu [26]. We established these properties
through analytical means for a range of binary regression weight functions (Tables 4 and 5).
The plots of h(z) are given in Figure 3.

Table 4. Group I: Binary Weight Functions
(

w(z) = f 2(z)
F(z)[1−F(z)]

)
h(z) and functions on Zw. ↑† implies

empirical evidence of non-decreasing property. ↑∗ proved these cases.

Name w(·) w(z)
w′(z) h(z) = z + 2w(z)

w′(z)

Logistic ez

(1+ez)2 ↑∗ z + 2 (1+ez)
(1−ez)

↑†

Skewed logistic
[

me−z

1+e−z [(1 + e−z)m − 1]−
1
2

]2
↑∗ z + 2(1+e−z)[(1+e−z)−1]

me−z(1+e−z)m−2[(1+e−z)m−1] ↑†

Generalised e2z

(λez+1)2[(λez+1)
1
λ −1]

↑† z + A
B ↑†

A = [1− (λez + 1)]
2
λ−2

B = [1− (λez + 1)
2
λ−2

−λe−z(λez + 1)−1

+ez(λez + 1)
2
λ−3]

Complementary l. e2z(eez − 1)−1 ↑∗ z + 2(eez−1)
2(eez−1)−ezeez ↑†

Probit
1

2π e−z2

Φ(z)[1−Φ(z)] ↑† −−− ↑∗

Table 5. Group III: Density weight Functions, w(z)
w′(z) and h(z) functions.

Name w(·) Zw
w(z)
w′(z) h(z) = z + 2w(z)

w′(z)

Beta (1− z)α+1(1 + z)β+1 (−1, 1) α, β > −1 (1−z2)
(β−α)−(β+α+2)z z

+ 2(1−z2)
(β−α)−(β+α+2)z

Beta (1− z2)α+1 (−1, 1) α > −1 (1−z2)
−2z(α+1) z− (1−z2)

z(α+1)

Gamma zγ−1 e−z (0, ∞) γ > 1 1
[(γ−1)z−1−1] z + 2

[(γ−1)z−1−1]

Normal e
−z2

2 (−∞, ∞) −− 1
−z z− 2

z
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Figure 3. Group I: Plot of h(z) for Binary Weight Functions (note: l represents λ).

For some of these functions, the stronger outcome of the ratio w(z)/w′(z) increasing
over z ≤ zmax and over z ≥ zmax has also been demonstrated (such as in the cases of
the logistic, complementary log-log, and skewed logistic binary weight functions). This
implies that w(z) is log-concave. On the other hand, it has been analytically proven that
h(z) is an increasing function for the remaining cases (probit, double exponential, double
reciprocal). Figures 4 and 5 represent a typical plot of w(z)/w′(z). The examination of
these plots reveals a prominent feature, which is that the functions h(z) and w(z)/w′(z)
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exhibit almost identical shapes and are increasing over (z ≤ zmax) and (z ≤ zmax) with a
vertical asymptote at zmax for the listed weight functions. These findings corroborate and
extend the conclusions of Wu [26].

Figure 4. Group I: Plot of w(z)/w′(z) for Binary Weight Functions (note: l represents λ).
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Figure 5. Group III: Plot of w(z)/w′(z) for Non-Binary Weight Functions.

5. Group III and Group IV Weight Functions Results
5.1. Group III Weight Functions

The goal is to determine D-optimal designs for interval subsets of Zw = R, focusing
on two symmetric binary weight functions: the double reciprocal and double exponential
weight functions, which are listed in Table 1. These weight functions differ from those in
Group I in that they are unimodal and reach their maximum value at z = zmax = 0, but
at this point, they are both non-differentiable. Therefore, these are not stationary values.
For these two weight functions, the induced design space G(Z) is again a closed convex
curve inR2 when Z = Zw = (−∞, ∞), but it has a sharp vertex at z = 0 (Figure 6). It is
likely that the minimal central ellipsoid containing G(Zw) will touch more than twice in
these cases, both at z = 0 and at two other points symmetric with regard to zero, resulting
in a D-optimal design with three support points.
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Figure 6. Group II: Plot of G(Z) for Double Reciprocal & Double Exponential Weight Functions
(w(z)) Zw = (−∞, ∞).

In fact, Musrati [27] and Torsney and Musrati [28] have shown that three support
points may be necessary when Z = Zab contains 0, in which case, one of them is z = 0.
They also provided an explicit solution for the optimal weights. The analysis of H(z) nicely
illustrates how this can occur. It appears that H(z) is concave increasing over z < 0 and
convex increasing over z > 0 and it is discontinuous at z = 0 (Figure 7). An upward
sloping line can cross H(z) up to four times which means that v(z) can have four TPs.
However, such a line can only cross at most twice in z < 0 and in z > 0. In these regions,
the relevant parts of the conjecture are feasible. In fact, the function of h(z) is increasing in
both regions for both weight functions. Interestingly, w(z)/w′(z) is not increasing. Since
h(z) is increasing, the conjecture is satisfied if a > 0 or b < 0.

Figure 7. Group II: Plot of H(z) for Double Reciprocal & Double Exponential Binary
Weight Functions.

5.2. Group IV Other Weight Functions

D-optimal designs for the Group IV weight functions in Table 1, namely w(z) = ez

and w(z) = zt for all Z = [a, b] ⊂ Zw were derived by Ford Torsney and Wu [8]. These
weight functions arise from the transformations of D-optimal design problems for other
generalised linear models such as Poisson and Inverse Regression Models. The function
H(z) confirms their results. The shape of these weight functions is different from previous
cases, and G(Z) is no longer bounded for all Z . Moreover, unlike before, the components
of g(z) now have a one-to-one relationship, namely g1 =

√
w(z) and g2 = z

√
w(z). On

any Z = [a, b] this guarantees the boundedness of G(Z), and D-optimal designs have a
similar structure to those of non-binary weight functions.

To start, let us look at the function H(z): For w(z) = ez, H(z) = H′′(z) = −e−z < 0,
H′(z) = e−z (Table 6). This means that H(z) is concave increasing from −∞ up to 0 with
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an infinite derivative at z = −∞. For w(z) = zt, H(z) = −tz−t−1, H′(z) = t(t+ 1)z−(t+2),
and H′′(z) = −t(t + 1)(t + 2)z−(t+3). Therefore, for t > 0 H(z) is concave increasing
from −∞ to zero with an infinite derivative at z = 0 while for t < −2, H(z) is convex
increasing from zero to ∞ with a zero derivative at z = 0. For −2 < t < 0, H(z) is convex
decreasing. We can then argue that an upward sloping line can cross H(z) at most twice in
the cases w(z) = ez, zt, t > 0; zt, t < −2. As a consequence, v(z) has at most two TP’s, one
a maximal TP, and one a minimal TP. Thus, only two support points are possible on any
Z = [a, b].

Table 6. Group IV: Non-Binary Weight Functions, H(z) = − w′(z)
[w(z)]2 H′(z) and H′′(z).

w(·) Z = [a, b] H(z) H′(z) H′′(z)

zt, −2 ≤ t ≤ 0 a > 0, b < ∞ −tz−t−1 ↓ t(t + 1)z−(t+2) −t(t + 1)(t + 2)z−(t+3) ↓

zt , t < −2 a > 0, b ≤ ∞ −tz−t−1 ↑ t(t + 1)z−(t+2) −t(t + 1)(t + 2)z−(t+3) ↑

zt , t > 0 a ≥ 0, b < ∞ −tz−t−1 ↑ t(t + 1)z−(t+2) −t(t + 1)(t + 2)z−(t+3) ↑

ez a ≥ −∞ −e−z ↑ e−z −e−z ↑

b < ∞

Take the instance of w(z) = zt, −2 < t < 0 (a > 0, b < ∞). An upward sloping line
crosses H(z) only once from below. This means that v(z) has one TP, a minimal TP. This
again suggests that there can be only two support points and they are the endpoints a and
b. If you look at the plot of G(Z), a convex decreasing curve is seen. The minimal central
ellipse containing G(Z) can only touch it at its endpoints. Now, consider the function h(z):
for w(z) = exp(z), h(z) = z + 2 which means that h(z) is an increasing linear function
from −∞ to ∞; for w(z) = zt, h(z) = z + 2z

t = ( t+2
t )z is linearly increasing if t > 0 or

t < −2; if −2 < t < 0, h(z) is decreasing.
Implications for support points of the D-optimal design on Z = [a, b] are

w(z) Z = [a, b] Supp(ξ∗)
zt, −2 ≤ t ≤ 0 a > 0, b < ∞ {a, b}
zt, t < −2 a > 0, b ≤ ∞ {a, min{b, b∗(a)}}
zt, t > 0 a ≥ 0, b < ∞ {{max{a, a∗(b)}, b}
exp(z) a ≥ −∞, b < ∞ {max{a, a∗(b)}, b}

As h(z) is linear in z, explicit solutions exist for a∗(b), b∗(a), i.e., for the solutions to
the equations

h(a) = b

a = h(b) .

Ford, Torsney, and Wu [8] reported values of a∗(b) = b− 2 for w(z) = exp(z) while
for w(z) = zt, a∗(b) = tb/(t + 2) (if t > 0) and b∗(a) = ta/(t + 2) (if t < −2).

6. Results

D-optimal designs have been examined for models with a binary response using a
single design variable, and we transformed the design problem into one for a weighted
linear regression model, where the weight function is:

w(z) =
f 2(z)

F(z)[1− F(z)]
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where f (z) = F′(z) is the density of F(z), and the design interval is Z = [a, b]. Different
other (non-binary) weight functions were also considered.

A two point design was settled as the optimal design for many weight functions and
the support points for the z values are:

Supp(ξ∗) = {a∗, b∗} a < a∗, b > b∗

Supp(ξ∗) = {max{a, a∗(b)}, b} a < a∗, b < b∗

Supp(ξ∗) = {a, min{b, b∗(a)}} a > a∗, b > b∗

Supp(ξ∗) = {a, b} a > a∗, b < b∗

where a∗, b∗, a∗(b), b∗(a) maximise the determinant over relevant intervals. These results
follow if

i. The function H(z) = −wt(z)
[w(z)]2 is first concave increasing then convex increasing;

ii. The function h(z) = z + 2w(z)
w′(z) is increasing (this also guarantees that G(Zw) is

closed convex). In some cases, the ratio w(z)/w′(z) is also increasing. (Note: G(Z)
shows that induced design space and Zw the widest possible design space.)

7. Conclusions

We presented a comprehensive study of D-optimal designs for binary and weighted
linear regression models with one design variable. We specifically developed an efficient
algorithmic framework for computing D-optimal designs for these models. Along with
crystal clear explanations illustrated by intuitively appealing plots, we demonstrated the
effectiveness of our approach through a series of numerical and thoroughly explained
experiments.

Our results show that our D-optimal designs are superior to other commonly used
designs in terms of precision and efficiency, and we provided a detailed analysis of the
factors that affect the performance of these designs. Specifically, we showed that the
choice of weight function has a significant impact on the performance of the D-optimal
designs, and we provided guidance on selecting the appropriate weight function for a
given problem.

In addition to the immediate practical implications of our work, there are several
directions for future research. One natural extension of our study is to consider D-optimal
designs for binary and weighted linear regression models with multiple design variables,
which would require developing new computational techniques to handle the increased
complexity of the problem. We anticipate that a large number of tools and results developed
in the present manuscript will provide a solid basis to be leveraged and harnessed in
multivariate settings.

Besides considering input spaces of higher dimension, our future research in this
context will also seek to explore the use of D-optimal designs for other types of regression
models, such as nonlinear regression models, nonparametric regression models, or even
models with non-continuous response variables. It is understood that all these anticipated
extensions will bring with them the need to develop new algorithms for computing D-
optimal designs in these settings or investigating the theoretical properties of D-optimal
designs in these models. It is also interesting to at least speculate that our present work
has the potential to be applicable or at least adapted to statistical machine learning in the
context of active learning.

We believe that our study has provided a valuable contribution to the field of optimal
experimental design for binary and weighted linear regression models with one design
variable, and we look forward to further exploring the potential applications of D-optimal
designs in this context as well as others.
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