

Denholm, K., Baxter-Smith, K., Simpson, R. and Williams, P. (2023) A survey of colostrum management practices on UK dairy farms. *Livestock*, 28(4), pp. 150-159. (doi: <u>10.12968/live.2023.28.4.150</u>)

This is the author version of the work. There may be differences between this version and the published version. You are advised to consult the published version if you wish to cite from it: https://doi.org/10.12968/live.2023.28.4.150

Copyright © 2023 MA Healthcare Limited

https://eprints.gla.ac.uk/296965/

Deposited on 21 April 2023

Enlighten – Research publications by members of the University of Glasgow <u>http://eprints.gla.ac.uk</u>

1 Abstract

This online survey of 248 dairy farms from all 4 UK nations identified areas to optimise calf
health and welfare, with a particular focus on extended colostrum feeding (beyond the first 24
hours of life). Chi squared analysis, Cochran Armitage trend tests and logistic regression
were used to investigate biologically plausible associations between variables. Thematic
analysis was used to construct and refine thematic maps.
There was a significant linear trend between the frequency of blood sampling of calves to

8 monitor serum IgG concentrations and testing of colostrum for IgG concentration (p<0.01).

9 A number of farms (41.53%) pooled colostrum (without pasteurising), which may reduce

10 overall IgG concentration and increase disease transmission risk. Timing of colostrum

11 harvest (within 6 hours of calving) was suboptimal on some (23.39%) farms. Many of the

perceived barriers to extended colostrum feeding were human and physical including tangiblecommodities such as storage and facilities, labour and procedural problems.

14 Key words: Colostrum management, survey, UK, dairy, extended colostrum

15 Introduction

The main pillars of colostrum management are that calves must receive 10-12% of 16 their bodyweight in high quality (>50g/L IgG) colostrum as early as possible after birth 17 18 (Bush and Staley 1980; Stott and Fellah, 1983; Morin et al., 1997; Chigerwe et al., 2008; 19 Beam et al., 2009). Inadequate volume (<10% of the calf's bodyweight), timing (not fed in the first 0-12 h of life) and quality (<50g/L IgG) all reduce absorption of IgG from colostrum 20 into the calf's blood; known as failure of passive transfer (FPT) or, more accurately, failure to 21 22 transfer passive immunity (FTPI). Other colostrum management factors such as poor storage and unhygienic handling also result in FPT in calves (Godden et al., 2012; Gelsinger et al., 23 24 2015).

26	Research has focussed on reducing incidence of morbidity and mortality in dairy
27	calves through optimal calf management strategies (Svensson et al., 2003; Johnson et al.,
28	2011; Windeyer et al., 2014). Colostrum management is the single most important risk factor
29	in determining calf health and survival (Godden et al., 2019) and colostrum management can
30	be used as an all-encompassing term relating to risk factors affecting quality, quantity and
31	timing of colostrum feeding as well as storage and preservation. Current UK literature has
32	explored calf management practices focussing specifically on housing (Mahendran et al.,
33	2021), but not on colostrum management in all 4 UK nations.
34	
35	Colostrum is defined as first milking colostrum only (Quigley et al., 2013) and
36	'transition milk' is the first 2-10 milkings post calving (Davis and Drackley 1998).
37	Anecdotally, there is some confusion amongst producers on the definition of 'colostrum',
38	particularly since the first 96 hours of milkings post calving are withheld from supply due to
39	differing composition which makes it unsuitable for processing. A recent UK survey found
40	that only 32% of farms ensured that both the first and second feed were from the first
41	milking, confirming two feeds of 'true' colostrum (Boulton et al., 2015). Extended colostrum
42	feeding (Brix 22-28%) for up to 14 d has also been shown to have beneficial health effects
43	such as improved growth rates and reduced morbidity due to diarrhoea and pneumonia in
44	neonatal calves (Kargar et al., 2020). It is also recommended on the data sheet of vaccines
45	which rely on passive protection via the mother's milk, such as commercially available
46	multivalent diarrhoea vaccines.
47	

48 Some UK literature has been published on colostrum management. In 2008, 19
49 English dairy farms recorded colostrum management practices as part of a wider study into
50 dairy calf growth rates (Brickell et al., 2008). A larger scale 2020 investigation enrolled 38

51	farms in Scotland, but was more focussed on particular colostrum quality outcomes than
52	wider management strategies (Haggerty et al., 2021). A total of 102 dairy farms in England,
53	Scotland and Wales were surveyed in a face-to-face questionnaire focussing on cost of dairy
54	heifer rearing (Boulton et al., 2015), however Northern Irish farms were not included in this
55	survey. Furthermore, 21 grass based dairy farms in Northern Ireland provided some
56	colostrum management information in 2017, but this is not reflective of the bulk of UK dairy
57	farming systems (Dunn et al., 2017). A large scale survey including all countries in the UK
58	and focussing on colostrum management and extended colostrum feeding is needed.
59	
60	The objective of this survey was to gather some data on colostrum management
61	practices on UK dairy farms. There was particular interest in extended colostrum feeding

62 (feeding colostrum for more than 24 hours) in this survey as a preliminary exploration into farmers' views on the practice with an intention to design further research work on extended 63 colostrum feeding. 64

65

Materials and methods 66

Dairy farmers were invited to participate on the social media platform of a large 67 pharmaceutical company (MSD Animal Health). Data were collected under University of 68 Glasgow ethics licence (number 200210018). A literature review on colostrum management 69 70 and expert opinion (authors and clinical farm animal veterinarians) were used to create a questionnaire on colostrum management practices with a particular focus on extended 71 colostrum feeding (beyond the first 24 h of life). The questionnaire was beta tested with four 72 73 farm animal clinical veterinarians and four dairy farmers in person to 'sense check' questions and subsequently small modifications to the initial questions were made. 74

76	Farmers were asked to complete the questionnaire consisting of 23 'tick box' and 2
77	'free text' responses (see Appendix A for questionnaire) between 6 th March 2022 and 19 th
78	April 2022. Farm size categories were calculated based on a dairy replacement rate of 25%
79	and average UK farm size of 166 animals (AHDB 2021 figures). The survey was created on
80	the software platform GetFeedback (Momentive Inc.) and data were later imported into
81	Microsoft Excel (Microsoft, version 2203). Participation in the survey was voluntary, but
82	participants were incentivised by small rewards such as headtorches and socks from the MSD
83	Animal Health (study funder), data were anonymised prior to analysis.
84	
85	Statistical methods
86	A sample size calculator (Ausvet Epitools, ACT 2617, Australia) was used to
87	determine the required number of respondents. Assuming a prevalence of extended colostrum
88	feeding of 0.2, to estimate the prevalence with a 95% confidence interval (95% CI) and a
89	desired precision of 0.05, 246 respondents were required.
90	
91	Data were checked for missing and incongruous values and imported into Stata
92	(StataCorp LLC version 15) for analysis. Descriptive statistics were explored and frequency
93	tables created for each variable. Chi squared analysis and the Cochran Armitage test for
94	trend (to maximise power for multiple comparisons) were used to investigate biologically
95	plausible associations between the variables (with significance declared at $p < 0.05$).
96	Biologically plausible associations were decided on by the authors based on their experience
97	and published data, and included: pooling and pasteurisation of colostrum; method of feeding
98	and volume of colostrum fed; farm size and calving pattern, farm size and extended
99	colostrum feeding (and potential storage solutions to facilitate this); and number of calves
100	reared and pooling colostrum. Logistic regression models were used to calculate odds ratios

for the frequency of blood sampling with colostrum quality testing as the outcome of interest and to calculate the odds ratio for volume of colostrum fed with oesophageal tube feeding as the outcome of interest. Free text response to the question on transition to milk replacer from colostrum feeding were broadly categorised into 'abrupt transition to milk replacer'; 'whole milk feeding' and 'mix of whole milk and milk replacer feeding'.

106

107 For the two free text response questions ('If it were shown to be beneficial to feed colostrum for the first 5 days, could you practically fit this in your farm system?' and 'Would you need 108 109 to change any processes on-farm to be able to do this, if so what?'), themes in the data were identified and verified by two of the authors independently. Thematic analysis (using 110 methods described by Braun and Clarke (2006)) was used to construct and refine thematic 111 maps. Briefly the authors familiarised themselves with the data; manually generated initial 112 codes; searched for themes; reviewed themes through collaborative discussion, refined and 113 named themes and produced diagrams. 114

115

116 **Results**

Three hundred and thirty individuals clicked on the survey link to start the survey and
248 online questionnaire responses were received (75.2% completion rate). Table 1 shows
the frequency of responses for each question.

120

121 Respondent demographics

Only 207 of the 248 respondents recorded their country of origin. Figure 1 shows the country of origin of the respondents and demonstrates that geographically the entire UK was represented in the sample number (49.8% from England; 24.2% from Northern Ireland, 11.6% from Scotland and 14.5% from Wales). The majority of the farms that responded reared more than 81 calves annually (n=157/248; 63.3%), but there was no relationship (P=0.81) between number of calves reared and calving system (64.1% all-year-round).

128

129 *Missing and incongruous values*

There was one missing response on the frequency of calf blood sampling for FPT and 130 seven missing responses for the volume of colostrum fed to newborn calves. Of the 180 131 132 responses indicating that colostrum was stored frozen, 178 responses were recorded on method of thawing. Twenty- eight respondents (n=28/248; 11.3%) recorded they did not 133 134 store any colostrum, however in the 'volume stored' responses, n=44/248 (17.7%) of respondents recorded this as 'not- applicable'. This discrepancy may have partly been 135 because a further n=17/248 (6.9%) of respondents only stored colostrum at room temperature 136 and did not measure this volume. Other discrepancies in the data included only 10 137 respondents recording that the calf was left to suck the dam in the in 'time to harvest' (time 138 from calving to first colostrum harvest) question and 22 respondents asserting that the calf 139 was left to suck the dam in 'time to feeding' (time from colostrum harvest to feeding to 140 newborn calves) question. Small numbers (n=20/248; 8.1%) of respondents left calves on 141 their dams after birth for first colostrum feeding. All incongruous data was retained in the 142 dataset. 143

144

145 *Volume of colostrum fed and stored*

Five of the seven respondents who left calves on their dams also cited not knowing
the volume of colostrum their calves were ingesting at first feed (see Table 1). Some, *n*=36/248 respondents (14.5%) recorded feeding <2 L of colostrum at first feed, rather than
the required 10-12% of bodyweight.

152

Approximately 40% of respondents reported that the volume of colostrum stored in each batch exceeded 2 L.

153

154 *Extended colostrum feeding*

The majority of respondents fed colostrum (first and second milking) for 48 h or more 155 (n=151/248; 60.9%). Methods of colostrum storage to facilitate this are shown in Table 1. 156 157 Of the 248 respondents, 189 (76.2%) said that if feeding extended colostrum for 5 d was shown to be beneficial that they would be able to practically do this in their farming system. 158 159 A small majority of farmers (n=131/248; 52.8%) said they would not need to make any system changes to accommodate an extended colostrum feeding protocol if it were shown to 160 be beneficial to do so. There was no relationship between farm size (P=0.1-0.3) and calving 161 pattern (P=0.57) and whether or not farmers said they could feed colostrum for 5 d. 162

163

164 *Thematic maps*

Figure 2 shows the final thematic maps relating to required system changes necessary 165 for extended colostrum feeding and Fig. 3 shows themes relating to extra information and 166 support required and barriers to implementing these changes. Physical and animal themes 167 were repeated for both questions, but there were additional human related subthemes for the 168 second free text question as shown in Fig. 3. For the themes shown in Fig. 3, it was 169 170 impossible to separate 'additional information needed' and 'barriers to change' responses because of the way in which the question was framed. Many of the perceived barriers to 171 extended colostrum feeding were human and physical. Physical barriers included more 172 tangible commodities such as storage and facilities, while human barriers included more 173 intangible labour and standard operating procedure problems. There was some scepticism on 174

175	purported advantages of extended colostrum feeding and the inconvenience which may result
176	from implementing changes to management systems to allow for this.

178 Colostrum storage and supply

Storage and supply were cited as barriers to extended colostrum feeding. The 179 majority of respondents used temperature (refrigeration or freezing) to store colostrum with 180 181 only a very small minority using chemical colostrum preservatives. Low temperature preservation was commonly employed by respondents, (n=203/248; 81.9%); but many 182 183 refrigerators and freezers in the current work were not kept cool enough (-20°C for freezing and 4°C for refrigeration). In this work, n=2/42 (4.8%) and n=7/46 (15.2%) of respondents 184 who did record that they checked the temperature of their refrigerator or freezer did not know 185 186 the temperature of the appliance. Water baths which were used most frequently (in 90.6% cases) to thaw colostrum. One farm reported using a microwave to thaw colostrum. 187

188

189 Whole milk or milk replacer feeding

Twenty four of the 248 respondents (9.7%) reported feeding whole milk to calves
between colostrum and milk replacer feeding. A further 67 respondents (27.0%) fed a
mixture of whole milk and milk replacer. Some free text responses cited feeding whole milk
because milk replacer products are costly.

194

The majority of respondents abruptly transitioned calves from colostrum onto milk replacer (n=158/248; 63.7%), usually after the third feed or later (n=192/248; 77.4%).

197

198 *Pooling and pasteurisation of colostrum*

A substantial number of farms (n=103/248; 41.5%) pooled colostrum for calves. Chi squared analysis revealed that there was no significant ($\chi 2$ (1, n = 248) =<0.01, *P*=0.989) association between pooling and pasteurisation with only 10/103 (9.7%) respondents who pooled colostrum also pasteurised it. In total only 9.7% of respondents were pasteurising colostrum. There was also no significant association between pooling and number of calves reared (*P*=0.2-0.4).

205

206 Monitoring of calf health and colostrum quality

207 The majority (72.6%) of respondents stated that calves were never sampled to check immune status or were only sampled 'in the event of a problem' (referring to an outbreak of 208 disease). Perhaps unsurprisingly, respondents were more likely to check colostrum quality if 209 they checked their calf serum measurements. Table 2 shows the frequency of calf blood 210 sampling in relation to colostrum quality monitoring. Compared with farms where calves 211 212 were never blood sampled the odds of checking the quality of colostrum on farms where calves were blood sampled only in the event of a problem was 4.5 (95% CI=2.2-9.3); on 213 farms where calves were blood sampled 1-4 times yearly was 8.0(95% CI=2.7-24.2) and on 214 215 farms where calves were blood sampled >4 times per year was 21.7 (95% CI=2.8 -166.4). The Cochran Armitage test showed a significant trend (p<0.01)216 217

218 Time to colostrum harvest and time to colostrum feeding

A substantial number of farmers (n=190/248; 76.6%) harvested colostrum in the first 6 h after calving (with n=58/248, 23.4% failing to do so). Many respondents (n=207/248(83.5%)) also fed harvested colostrum promptly (within 60 min of birth).

222

223 Method of feeding

Oesophageal tube feeding of colostrum was commonplace either for every calf or for those who refused to drink (51.2%). Table 3 shows the relationship between oesophageal tube feeding and volume of colostrum fed at first feed. Compared with farmers feeding <2L of colostrum, the odds ratio for oesophageal tube feeding where farmers fed 2.5-4L and >4L were 1.7 (95% CI=0.8-3.6) and 4.2 (95% CI=1.3-13.3) respectively. The Cochran Armitage trend test was significant (*P*=0.01).

230

231 Discussion

Many colostrum management risk factors were explored from 248 farms from all 4 UK nations in the current study. While recommendations for colostrum management have not changed in recent years, several issues identified here demand industry attention and should be the focus of any renewed effort to improve UK calf health. In the current study 64.1% of farms were all year round calving, similar to other UK work where 72.7% of farms had an all-year-round calving pattern (Johnson et al., 2017).

In the current work 14.5% of respondents fed under 2L of colostrum at first feed and 238 it was acknowledged by most (71.4%) of the farmers who left calves on their dams that the 239 volume of colostrum consumed is unknown (as is inevitably the case). Low volumes of first 240 feeding colostrum can prohibit passive transfer of IgG molecules and accelerate gut closure 241 such that even if larger volumes are later fed, they may not be adequately absorbed (Stott et 242 243 al., 1979). This is because even a small volume of colostrum will stimulate maturation of the neonatal enterocytes such that they become impermeable to large IgG molecules. In 244 comparable work, the volume of first feed colostrum fed to calves was unknown on 245 approximately half of enrolled farms; the rest gave their calves either $\leq 3 L (27\%)$ or > 3 L246 (27%) (Brickell et al., 2008). In further comparable studies, 54-56% of dairy farmers gave 247 calves over 3 L of colostrum (Haggerty et al., 2020; Baxter-Smith and Simpson 2020). 248

Northern Irish work showed that around 80% of calves were fed >2 L of colostrum at their
first feed (Dunn et al., 2017). In order to supply enough colostrum to the calf to meet passive
transfer requirements, citing low volumes of 2-3 L is arbitrary and inadequate given the 1012% bodyweight requirement. There is room for much improvement in terms of increasing
volume of colostrum offered at the first feed (Besser et al., 1991; Chigerwe et al., 2008;
Boulton et al., 2015;).

255

256 In other work 52% of farms employed oesophageal tubing for feeding colostrum to every newborn calves (Dunn et al., 2017), similar to the current work where oesophageal tube 257 feeding of colostrum was commonplace either for every calf or for those who refused to drink 258 (51.2%) Teat feeding on a bottle has also been well documented on UK farms, but with 83% 259 of farmers (n = 85) employing an oesophageal tube if the calf failed to consume sufficient 260 colostrum during the first feed (Boulton et al., 2015). The advantage of oesophageal tube 261 feeding is that a known volume of colostrum can be delivered to the calf's abomasum in a 262 263 timely fashion, however oesophageal groove closure may not be promoted (Tamate et al., 264 1962). Kaske et al., (2005) concluded that proper use of the oesophageal tube is a useful 265 method to supply adequate colostrum and the failure of oesophageal groove closure appears to be of no clinical consequence. Likewise, (in a study using colostrum replacer) where 266 267 adequate volumes of colostrum were fed, method of feeding was of little consequence, with the caveat that where inadequate volumes were fed, oesophageal tube feeding exacerbated 268 FPT (possibly due to a relatively large proportion of colostrum being deposited into the 269 reticulorumen resulting in delayed release into the abomasum, with consequent reduced 270 apparent efficiency of absorption) (Godden et al., 2009). Chigerwe et al. (2012) found no 271 difference in absorption efficiency and passive transfer prevalence between calves fed via a 272 teat feeder or oesophageal tube. The trend observed between oesophageal tube feeding and 273

volume of colostrum fed at first feed may be because it is more expedient to deliver larger
volumes of colostrum by oesophageal tube than to wait for calves to suck. Published data
indicates that colostrum may be supplied by tube or teat (depending on farmer convenience)
(Godden et al. 2009), but farmers should perhaps be encouraged to use oesophageal tube
feeding to deliver large volumes of colostrum quickly.

279

280 A substantial number of farms left more than 6 h between calving and first colostrum harvest (23.4%), but this was a better outcome than in Scottish work where approximately 281 282 40% of farmers left more than 6 h between calving and first colostrum harvest (Haggerty et al., 2021). Reschke et al., 2017 demonstrated that a lag time of greater than 6 h between 283 parturition and first milking was a risk factor for poor colostrum quality. Other studies also 284 found that colostrum collected 6, 10, and 14 h after calving had significantly lower IgG 285 concentrations than colostrum collected 2 h after calving (Moore et al., 2005) and that IgG 286 concentration in colostrum decreases by 3.7% for each subsequent hour after calving (Morin 287 et al., 2010), so prompt harvesting after calving is paramount (Ouigley et al., 2013). Further 288 work could explore individual farm circumstances for delayed colostrum harvest including 289 weekends, nights or times of staff shortages. 290

291

The majority of respondents fed first and second milking colostrum for 48 h or more and said they would not need to make any significant management changes to be able to feed colostrum in an extended fashion. In other work, the majority of farms (61%) fed calves colostrum for 1–4 d, but it is not clear whether this was purely first milking (Brickell et al., 2008). It has also been reported that UK calves were fed colostrum for 3.1 ± 1.8 d (range 0.5 to 10 d) (Boulton et al., 2015). Another study showed that 70% of dairy farmers fed colostrum for more than 24 h with 26% feeding it for more than 3 d (Baxter Smith and Simpson 2020), but again first milking was not specified. As mentioned, strictly speaking
colostrum is first milking only and mix of first and second milking colostrum will not be as
high quality as first milking only colostrum (Quigley et al., 2013), however measuring
colostrum quality was beyond the scope of this work.

303

Previous research has explored whether extended colostrum (EC) feeding is beneficial 304 305 beyond the first 24 h of life. Neonatal enterocytes cease active pinocytosis (required to absorb IgG molecules from the gut lumen to calf serum) when the animal is 24 h old (Stott et 306 307 al., 1979; Weaver et al., 2000); however IgG molecules continue to be of benefit in the gut lumen to provide local immunity (Besser et al., 1988). In addition, colostrum is an excellent 308 energy source and provides other beneficial nutrients and proteins including cytokines and 309 310 other immune modulating factors, many of which remain undiscovered or poorly understood (Kargar et al. 2020). A recent publication by Kargar et al. (2020) suggested that extended 311 colostrum feeding may improve weight gain and decrease the incidence of diarrhoea and 312 pneumonia in neonatal calves. Feeding of colostrum beyond the first 24 h of life may also 313 improve growth and maturation of the gastrointestinal tract (Blum and Hammon, 2000; 314 Hernandez-Castellano et al., 2015), as well as promoting establishment of beneficial bacteria 315 (Malmuthuge et al., 2015; Malmuthuge and Guan, 2017); enhancing glucose uptake 316 317 (Hammon et al., 2013) and reducing calf morbidity and mortality (Conneely et al., 2014). 318 Other work has demonstrated that extended colostrum feeding did not improve weight gain but reduced disease occurrence and antibiotic therapy in dairy calves during the preweaning 319 period (Chamorro et al., 2017). As mentioned, pooling colostrum for extended feeding should 320 321 be approached with caution.

Very few farmers in this study used chemical preservatives to preserve colostrum. We hypothesise that if a better storage solution could be introduced in the UK, producers might feel encouraged to feed colostrum or transition milk (milkings 2-8 post calving) for longer. Colostrum supply issues were frequently cited in free text responses so it is hypothesised that farmers may not be able to feed first milking only colostrum for an extended period as production of adequate volumes of first milking colostrum by the dam may be problematic (Conneely et al., 2013; Gavin et al., 2018).

330

331 Colostrum may be preserved using low temperatures or chemical preservatives such as potassium sorbate (keeping IgG concentrations high and bacterial counts low). Chemical 332 preservation is seldom used in the UK but can allow for colostrum to be preserved for up to 7 333 days even at ambient temperatures (Denholm et al., 2017). While the published 334 recommended temperatures for preservation of colostrum are -20°C for freezing and 4°C for 335 refrigeration (Stewart et al., 2005; Denholm et al., 2017; Denholm, 2022), and methods of 336 temperature preservation were commonly employed by respondents; many refrigerators and 337 freezers in the current work were not kept cool enough. This is similar to Irish and Scottish 338 results which showed that around 75% of farmers used low temperatures to preserve their 339 colostrum (Barry et al., 2017; Haggerty et al., 2020); but only 26.5% of farmers had a 340 temperature gauge on their freezers and refrigerators and only about half of these respondents 341 342 checked their temperature gauge regularly. Indeed, another UK based study on 20 farms showed much variability in refrigerator temperatures for storage of vaccines (Williams and 343 Paixao, 2018). Again, there is much room for improvement in terms of education of farmers 344 on preservation of colostrum and options for this. 345

Pooling colostrum is thought to be a more common phenomenon in seasonal calving 347 systems (Denholm et al., 2017). In other UK work Brickell et al. (2008) observed 63% of 348 349 farms fed calves supplemental colostrum (pooled or frozen colostrum) in addition to that from their own dam and Baxter Smith and Simpson (2020) observed that 19% of dairy 350 farmers used pooled colostrum. The large number of respondents pooling colostrum may 351 have been due to overrepresentation of large farms in the sample size (>81 calves reared) and 352 353 to the convenience of feeding multiple calves by pooling colostrum; however it is important to note that pooling colostrum will reduce overall IgG concentration since low 354 355 immunoglobulin, high volume colostrum will be overrepresented in the pool (Weaver et al. 2000). Disease transmission risk is also increased with pooled colostrum, particularly with 356 pathogens such as Johnes disease and Salmonellosis (Nielsen et al., 2008; Mohler et al., 357 2009). Only a small proportion (10.75%) of respondents who were pooling colostrum also 358 pasteurised it. Pasteurisation has been demonstrated to reduce the risk of transfer of 359 pathogens to calves through colostrum feeding by reducing bacterial contamination (which 360 may interfere with IgG absorption from the gut) (Donahue et al., 2012). Typically, colostrum 361 can be heated to 60°C for 60-120 min without changing viscosity or denaturing IgG 362 363 molecules (McMartin et al., 2006).

364 *Study limitations*

Respondents were more likely to be proactive, engaged dairy farmers. Respondents also required access to internet in order to complete the survey; however the Office for National Statistics estimated, in 2018, 89% of adults in the UK used the internet at least weekly and this figure has likely increased since. The data may also have been subject to recall bias. In addition, it is possible that response bias may have led to inaccurate selfreporting in this survey, although there would be no motive for this. Many of the survey questions were 'tick box' to improve the quality of the data collected but this may also haveintroduced an element of bias.

373

Encouraging dairy farmers to become more proactive in monitoring calf health 374 parameters such as serum IgG concentrations seems to be challenging for vets (Barrett et al., 375 2020) and it has been asserted that: "Although good progress has been made in the past 20 376 377 years, there remains a considerable opportunity for many dairy producers to improve their colostrum management practices, resulting in improved short-term and long-term health and 378 379 performance of the animals" (Godden et al., 2019, p. 535). It has been corroborated by other literature that there is an opportunity for more veterinary involvement in on -farm monitoring, 380 since no farms monitored either colostrum quality or passive transfer outside a study by 381 Johnson et al., 2017, and the majority of farms surveyed (57-87%) by Boulton et al. (2015) 382 and Barry et al. (2017) did not check the quality of the colostrum before feeding. 383 Additionally, testing calves for successful passive transfer of immunoglobulins from 384 colostrum via blood test was never performed in 53% of dairy farmers surveyed, (Baxter-385 Smith and Simpson 2020). The trend observed between calf blood sampling frequency and 386 colostrum quality monitoring may be indicative of more frequent veterinary visits to the 387 farms in question however this was not measured in the current survey. 388

389

390 Conclusions

This survey provides an insight into colostrum management practices on UK dairy farms, allowing for identification of gaps and areas for improvement to optimise dairy calf health and welfare. The responses indicate that there are missed opportunities for vets and other dairy professionals to monitor parameters such as calf serum and colostrum IgG concentration and to provide advice on how best to enhance these. Responses also showed

- that there are still some farmers not optimally managing colostrum in terms of storage
- 397 (correct temperature) and timing of harvest post calving and making small changes to these
- 398 management practices could be hugely beneficial. Most of the respondents to this survey
- said that if it were shown to be beneficial, extended colostrum feeding (for 5 d) could be
- 400 implemented into their farming systems with adjustments to labour, equipment and facilities.

References

402 403	AHDB herd statistics 2021: UK and EU cow numbers. Available at: https://ahdb.org.uk/dairy/uk-and-eu-cow-numbers > [Accessed 27 March 2023].
404 405 406	Barrett, D., 2020. Youngstock health: Effective disease prevention today ensuring tomorrow' profitable herd. UK Veterinary Livestock Cattle Supplement 3–24.
407 408 409 410 411	Barry, J., Bokkers, E.A.M., Berry, D.P., de Boer, I.J.M., McClure, J., Kennedy, E., 2019. Associations between colostrum management, passive immunity, calf-related hygiene practices, and rates of mortality in preweaning dairy calves. Journal of Dairy Science 102, 10266-10276.
412 413 414	Baxter-Smith, K., Simpson, R., 2020. Insights into UK farmers' attitudes towards cattle youngstock rearing and disease. Livestock 25, 274–281.
415 416 417 418	Beam, A.L., Lombard, J.E., Kopral, C.A., Garber, L.P., Winter, A.L., Hicks, J.A., Schlater, J.L., 2009. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. Journal of Dairy Science 92, 3973-80
419 420 421 422	Besser, T.E., Gay, C.C., Pritchett, L., 1991. Comparison of three methods of feeding colostrum to dairy calves. Journal of the American Veterinary Medical Association 198, 419–422.
423 424 425 426	Besser, T.E., McGuire, T.C., Gay, C.C., Pritchett, L.C., 1988. Transfer of functional immunoglobulin G (IgG) antibody into the gastrointestinal tract accounts for IgG clearance in calves. Journal of Virology 62, 2234–2237.
420 427 428	Blum, J.W., Hammon, H.M., 2000. Bovine colostrum: more than just an immunoglobulin supplier. Schweizer Archiv fur Tierheilkunde 142, 221–228.
429 430 431 432 433	Boulton, A.C., Rushton, J., Wathes, D.C., 2015. A Study of Dairy Heifer Rearing Practices from Birth to Weaning and Their Associated Costs on UK Dairy Farms. Open Journal of Animal Science 05, 185–197.
434 435 436	Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qualitative Research in Psychology 3, 77–101.
437 438 439 440	Brickell, J.S., McGowan, M.M., Wathes, D.C., 2009. Effect of management factors and blood metabolites during the rearing period on growth in dairy heifers on UK farms. Domestic Animal Endocrinology 36, 67–81.
441 442 443	Bush, L. J., Staley, T.E., 1980. Absorption of colostral immunoglobulins in newborn calves. Journal of Dairy Science 63:672–680.
444 445 446 447	Chamorro, M.F., Cernicchiaro, N., Haines, D.M., 2017. Evaluation of the effects of colostrum replacer supplementation of the milk replacer ration on the occurrence of disease, antibiotic therapy, and performance of pre-weaned dairy calves. Journal of Dairy Science 100, 1378–1387.

448	
449 450	Chigerwe, M., Tyler, J.W., Schultz, L.G., Middleton, J.R., Steevens, B.J., and Spain, J.N., 2008. Effect of colostrum administration by use of oroesophageal intubation on serum
451 452	IgG concentrations in Holstein bull calves. American Journal of Veterinary Research, 69 (9), 1158–1163.
453 454	Chigerwe, M., Coons, D.M., Hagey, J. V, 2012. Comparison of colostrum feeding by nipple
455 456 457	American Veterinary Medical Association. 241, 104–109.
457 150	Conneely M. Berry, D.P. Murphy, I.P. Lorenz, I. Doberty, M.L. Kennedy, F. 2014
459	Effect of feeding colostrum at different volumes and subsequent number of transition
460	milk feeds on the serum immunoglobulin G concentration and health status of dairy
461	calves. Journal of Dairy Science 97, 6991–7000.
462	Conneely, M., Berry, D.P., Sayers, R., Murphy, J.P., Lorenz, I., Doherty, M.L., Kennedy, E.,
463	2013. Factors associated with the concentration of immunoglobulin G in the
464	colostrum of dairy cows. Animal 7, 1824–1832.
465	
466	Constable, P.D., Ahmed, A.F., Misk, N.A., 2005. Effect of suckling cow's milk or milk
467	replacer on abomasal luminal pH in dairy calves. Journal of Veterinary Internal
468	Medicine 19, 97–102.
409	Davis C.I. Drackley, I.K. 1008. The Development Nutrition and Management of the
470	Voung Calf University Press Ames
471	Toung Can. University Tress, Ames
473	Denholm K.S. Hunnam I.C. Cuttance F.L. McDougall S 2017 Influence of
474	preservation methods on the quality of colostrum sourced from New Zealand dairy
475	farms. New Zealand Veterinary Journal 65, 264–269.
476	
477	Denholm K. A review of bovine colostrum preservation techniques. Journal of Dairy
478 479	Research 89(4), 345-354
480	Donahue, M., Godden, S.M., Bey, R., Wells, S., Oakes, J.M., Sreevatsan, S., Stabel, J.,
481	Fetrow, J., 2012. Heat treatment of colostrum on commercial dairy farms decreases
482	colostrum microbial counts while maintaining colostrum immunoglobulin G
483	concentrations. Journal of Dairy Science 95, 2697–2702.
484	
485	Dunn, A., Ashfield, A., Earley, B., Welsh, M., Gordon, A., Morrison, S.J., 2017. Evaluation
486	of factors associated with immunoglobulin G, fat, protein, and lactose concentrations
487	in bovine colostrum and colostrum management practices in grassland-based dairy
488	systems in Northern Ireland. Journal of Dairy Science 100, 2068–2079.
489	Elizando Solozor, I.A. Javaroo, P.M. Hainrichs, A.J. 2010. Effect of heat treatment of
490	bovine colostrum on bacterial counts, viscosity, and immunoglobulin G concentration
491	Journal of Dairy Science 03, 961, 967
492	
494	Gavin K Neibergs H Hoffman A Kiser IN Cornnesser M A Haredasht S A
495	Martínez-López, B., Wenz, J.R., Moore, D.A., 2018. Low colostrum vield in Jersev
496	cattle and potential risk factors. Journal of Dairy Science 101. 6388–6398.
497	

498	Gelsinger, S.L., Jones, C.M., Heinrichs, A.J., 2015. Effect of colostrum heat treatment and					
499	bacterial population on immunoglobulin G absorption and health of neonatal calves.					
500	Journal of Dairy Science 98, 4640–4645.					
501						
502	Godden, S.M., Haines, D M., Konkol, K., Peterson, J., 2009. Improving passive transfer of					
503	immunoglobulins in calves. II: Interaction between feeding method and volume of					
504	colostrum fed. Journal of Dairy Science, 92(4), 1758-1764.					
505						
506	Godden, S.M., Smolenski, D.J., Donahue, M., Oakes, J.M., Bey, R., Wells, S., Sreevatsan, S.,					
507	Stabel, J., Fetrow, J., 2012, Heat-treated colostrum and reduced morbidity in					
508	preweaned dairy calves: Results of a randomized trial and examination of					
509	mechanisms of effectiveness. Journal of Dairy Science 95, 4029–4040					
510						
511	Godden, S.M., Lombard, J.E., Woolums, A.R., 2019, Colostrum Management for Dairy					
512	Calves, Veterinary Clinics of North America: Food Animal Practice 35, 535–556					
513						
514	Haggerty A Mason C Ellis K Denholm K 2021 Risk factors for poor colostrum					
515	quality and failure of passive transfer in Scottish dairy calves Journal of Dairy					
516	Research 88 337-342					
517						
518	Hammon H.M. Steinhoff-Wagner I. Flor, I. Schönhusen, U. Metges, C.C. 2013					
519	Lactation Biology Symposium: role of colostrum and colostrum components on					
520	glucose metabolism in neonatal calves Journal of Animal Science 91, 685–695					
520						
522	Heinrichs A I Jones C M Heinrichs B S 2003 Effects of mannan oligosaccharide or					
523	antibiotics in neonatal diets on health and growth of dairy calves. Journal of Dairy					
524	Science 86 4064–4069					
525						
526	Hernández-Castellano, L.E., Morales-delaNuez, A., Sánchez-Macías, D., Moreno-Indias, I.					
527	Torres A. Capote J. Argijello A. Castro N. 2015 The effect of colostrum source					
528	(goat vs. sheep) and timing of the first colostrum feeding (2h vs. 14h after birth) on					
529	body weight and immune status of artificially reared newborn lambs. Journal of Dairy					
530	Science, 98, 204–210.					
531						
532	Johnson, K.F., Chancellor, N., Burn, C.C., Wathes, D.C., 2017. Prospective cohort study to					
533	assess rates of contagious disease in pre-weaned UK dairy heifers: Management					
534	practices, passive transfer of immunity and associated calf health. Veterinary Record					
535	Open Access 28, 4(1)					
536						
537	Johnson, K., Burn, C.C., Wathes, D.C., 2011, Rates and risk factors for contagious disease					
538	and mortality in young dairy heifers. Animal Science Reviews 205, 101-113					
539	and mortainty in young dury nemers. A minimar before the views 200, 101 115					
540	Kargar, S., Roshan, M., Ghoreishi, S.M., Akhlaghi, A., Kanani, M., Abedi Shams-Abadi					
541	A R. Ghaffari, M H. 2020. Extended colostrum feeding for 2 weeks improves					
542	growth performance and reduces the susceptibility to diarrhea and pneumonia in					
543	neonatal Holstein dairy calves. Journal of Dairy Science 103, 8130–8142					
544						
545	Kaske, M., Werner, A., Schuberth, HJ., Rehage, J., Kehler, W., 2005, Colostrum					
546	management in calves: Effects of drenching vs. bottle feeding. Journal of Animal					
547	Physiology and Animal Nutrition 89, 151–157.					

548	
549 550	McMartin, S., Godden, S., Metzger, L., Feirtag, J., Bey, R., Stabel, J., Goyal, S., Fetrow, J., Wells, S., Chester-Jones, H., 2006. Heat treatment of bovine colostrum. I: Effects of
551 552	temperature on viscosity and immunoglobulin G level. Journal of Dairy Science 89:2110–2118.
553	
554	MacFarlane, J.A., Grove-White, D.H., Royal, M.D., Smith, R.F., 2015. Identification and
555 556	quantification of factors affecting neonatal immunological transfer in dairy calves in the UK. Veterinary Record 176, 625.
557	
558 559	Mahendran, S.A., Wathes, D.C., Booth, R.E., Blackie, N., 2022. A survey of calf management practices and farmer perceptions of calf housing in UK dairy herds.
560	Journal of Dairy Science. 105, 409–425.
561 562 563	Malmuthuge, N., Chen, Y., Liang, G., Goonewardene, L.A., Guan, L.L., 2015. Heat-treated colostrum feeding promotes beneficial bacteria colonization in the small intestine of
564 565	neonatal calves. Journal of Dairy Science. 98, 8044-8053.
566	Malmuthuge, N., Guan, L.L., 2017. Understanding the gut microbiome of dairy calves:
567 568 569	6005.
570 571	Mohler, V.L., Izzo, M.M., House, J.K., 2009. Salmonella in calves. Veterinary Clinics of North America: Food Animal Practice 25, 37–54.
572	
573 574	Moore, M., Tyler, J.W., Chigerwe, M., Dawes, M.E., Middleton, J.R., 2005. Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. Journal of
575 576	the American Veterinary Medical Association 226, 1375–1377.
577 578 579	Morin, D.E., McCoy, G.C., Hurley, W.L., 1997. Effects of quality, quantity and timing of colostrum feeding and addition of dried colostrum supplement on immunoglobulin G1 absorption in Holstein bull calves. Journal of Dairy Science 80. 747-53
580	Marin D.E. Nelson S. V. Roid E.D. 2010. Effect of colostrol volume interval between
582	calving and first milking, and photoperiod on colostral IgG concentrations in dairy
	cows. Journal of the American Vetermary Medical Association 257, 420-428.
584 505	Nielson S.S. Dierre H. Toft N. 2008 Colostrum and Mills as Disk Easters for Infection
585 586	with Mycobacterium avium subspecies paratuberculosis in Dairy Cattle. Journal of
587	Dairy Science 91, 4010–4015.
588	Office for National Statistics 2018
589	Office for National Statistics, 2018.
590	nups://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/po
591	ulationestimates/bulletins/annualmidyearpopulationestimates/mid2018 (Accessed 8 Moreh 2022)
592	watch 2022)
593	Patel S. Cibbong I. Wother D.C. 2014 Enguing optimal calestrum transfer to much and
594 595 596	dairy calves. Cattle Practice 22, 95–104.

597 598	Quigley, J.D., Lago, A., Chapman, C., Erickson, P., Polo, J., 2013. Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum.					
599 600	Journal of Dairy Science 96, 1148–1155.					
601 602	Reschke, C., Schelling, E., Michel, A., Remy-Wohlfender, F., Meylan, M., 2017. Factors Associated with Colostrum Quality and Effects on Serum Gamma Globulin					
603 604	Concentrations of Calves in Swiss Dairy Herds. Journal of Veterinary Internal Medicine 31, 1563–1571					
605						
606	Sergeant, E.S.G., 2018. Epitools Epidemiological Calculators. Ausvet.					
607						
608	Stewart, S., Godden, S., Bey, R., Rapnicki, P., Fetrow, J., Farnsworth, R., Scanlon, M.,					
609	Arnold, Y., Clow, L., Mueller, K., Ferrouillet, C., 2005. Preventing bacterial					
61U 611	contamination and proliferation during the harvest, storage, and feeding of fresh					
612	bovine colositum. Journal of Daily Science 66, 2371–2376.					
613	Stott, G.H., Marx, D.B., Menefee, B.E., Nightengale, G.T, 1979. Colostral immunoglobulin					
614	transfer in calves I. Period of absorption. Journal of Dairy Science. 62:1632–1638.					
615						
616	Stott, G.H., Fellah, A. 1983. Colostral immunoglobulin absorption linearly related to					
617	concentration for calves. Journal of Dairy Science 66:1319–1328.					
618						
619	Svensson, C., Lundborg, K., Emanuelson, U., Olsson, SO., 2003. Morbidity in Swedish					
620	infactious disassas. Proventive Veteringry Medicing 58, 170, 107					
622	meetious diseases. Fleventive Vetermary Medicine 36, 179–197.					
623	Tamate, H., McGilliard, A.D., Jacobson, N.L., Getty, R., 1962, Effect of Various Dietaries on					
624	the Anatomical Development of the Stomach in the Calf. Journal of Dairy Science 45,					
625	408–420.					
626						
627	Trotz-Williams, L.A., Leslie, K.E., Peregrine, A.S., 2008. Passive immunity in Ontario dairy					
628	calves and investigation of its association with calf management practices. Journal of					
629	Dairy Science 91, 3840–3849.					
630	Weren DM Tales LW VerMeter DC Hesteller DE Derringter CM 2000 Design					
631	weaver, D.M., Tyler, J.W., VanMetre, D.C., Hostetler, D.E., Barrington, G.M 2000. Passive					
632	Medicine 14, 569–77					
634	Wedienie 14, 509–77					
635	Wells, S.J., Dargatz, D.A., Ott, S.L., 1996. Factors associated with mortality to 21 days of life					
636	in dairy heifers in the United States. Preventive Veterinary Medicine 29, 9–19.					
637						
638	Wesselink, R., Stafford, K.J., Mellor, D.J., Todd, S., Gregory, N.G., 1999. Colostrum intake					
639	by dairy calves. New Zealand Veterinary Journal 47, 31–34.					
640						
641	Williams, P.D., Paixão, G., 2018. On-farm storage of livestock vaccines may be a risk to					
642	vaccine efficacy: a study of the performance of on-farm refrigerators to maintain the					
643	correct storage temperature. BIMC veterinary Research. 14, 136.					
044						

Windeyer, M.C., Leslie, K.E., Godden, S.M., Hodgins, D.C., Lissemore, K.D., LeBlanc, S.J.,
2014. Factors associated with morbidity, mortality, and growth of dairy heifer calves
up to 3 months of age. Preventive Veterinary Medicine 113, 231–240.

Variable	Category	Frequency	Percentage
Number of calves reared annually	<20	13	5.24
	21-40	25	10.08
	41-60	27	10.89
	61-80	26	10.48
	>81	157	63.31
Calving pattern	All year round	159	64.11
	Spring block	31	12.50
	Autumn block	49	19.76
	Autumn and spring	5	2.02
	Other*	4	1.61
Volume of colostrum fed at first feed	<2 L	36	14.52
	2.5-4 L	183	73.79
	>4.5 L	22	8.87
	Unknown	7	2.82
Method of feeding of colostrum	Stomach tube (all calves)	71	28.63
	Stomach tube (if not feeding independently)	56	22.58
	Teat feeder	94	37.90
	Bucket	7	2.82
	Leave calf to suck dam	20	8.06
How long is colostrum from milkings 1 and 2 fed to newborn calves	24 h	97	39.11
	48 h	79	31.85
	3-5 d	68	27.42
	>5 d	4	1.61
Method of transition from colostrum to milk replacer	Abrupt transition	158	63.71
-	Whole milk fed	21	8.47
	Mix of whole milk and milk replacer	67	27.02
	Whole milk on cows	2	0.81
When is milk replacer first introduced?	After first feed	13	5.24
•	After second feed	43	17.34
	After third feed or later	192	77.42
Is colostrum quality checked using a colostrometer or Brix refractometer?	Yes	121	48.79
	No	64	25.81

649	Table 1 . Responses from an online survey of dairy farmers in the UK (248 responses) on their colostrum management feeding practices.

	Sometimes	63	24.81
Are calves blood sampled to check for immune status?	Never	99	39.92
	Only in the event of a problem	81	32.66
	1-4 times per year	41	16.53
	>4 times per year	26	10.48
	Unknown	1	0.4
Is colostrum pooled for calves?	Yes	103	41.53
	No	145	58.47
Method of feeding in first week of life	Individual feeders	180	72.58
	Group feeders	60	24.19
	Automatic feeder	8	3.23
Could you feed colostrum for 5 d if it was shown to be beneficial?	Yes	189	76.21
	No	59	23.79
Time from calving to colostrum harvest	1-6 h	190	76.61
-	6.5-12 h	40	16.13
	12.5-18 h	5	2.02
	18.5-24 h	2	0.81
	>24 h	1	0.40
	Calf suck from dam	10	4.03
Time from harvest to feeding	<30 min	151	60.89
	30-60 min	56	22.58
	61-120 min	11	4.44
	>120 min	8	3.23
	Calf suck from dam	22	8.87
Storage	Freezer	104	41.94
-	Fridge	20	8.06
	Fridge and freezer	54	21.77
	Room temperature	17	6.85
	No storage	28	11.29
	Freezer and room temperature	19	7.66
	Fridge and room temperature	3	1.21
	Fridge and freezer and room temperature	3	1.21
Volume of batch of colostrum stored	<1 L	17	6.85
	1.5-2 L	86	34.68
	2.5-3 L	69	27.82

	251	22	10.00
	>3.5 L	32	12.90
	Not applicable	44	17.74
Temperature of fridge checked at least once weekly	Yes	42	16.94
	No	37	14.92
Temperature of freezer checked at least once weekly	Yes	46	18.55
	No	134	54.03
Temperature of fridge (°C)	<u>≤</u> 4	29	69.05
	3-5	2	4.76
	>4	9	21.43
	Unknown	2	4.76
Temperature of freezer (°C)	-2 to -19	37	80.43
	<-19	2	4.35
	Unknown	7	15.22
How do you thaw colostrum for feeding?	Microwave	1	0.56
	Water bath	163	90.56
	Room temperature	14	7.78
	Unknown	2	1.11
Pasteurise colostrum	Yes	23	9.27
	No	224	90.32
	Sometimes	1	0.40
Chemical preservatives for colostrum	Yes [⊤]	3	1.21
1	No	245	98.79
		-	

*Summer and summer and winter calving herds ^TOf these farmers 2 used formic acid and 1 used potassium sorbate

Table 2. Table showing the frequency of calf blood sampling on farms where colostrum quality was checked and where colostrum quality was
 not checked with a Brix refractometer or colostrometer.

		Frequency of calf blood sampling					
		Never	Only in event of problem	1-4 times/year	>4 times/year	Total	
Quality of colostrum checked	No	46	13	4	1	64	
	Yes	53	68	37	25	183	
Total		99	81	41	26	247	

Table 3. Table showing the volume of colostrum fed at first feed on farms where colostrumwas fed by oesophageal tube and where it was fed in some other way.

	Volume of colostrum fed at first feed						
		<2 L	2.5-4 L	>4.5 L	Total		
Stomach tube	No	22	87	6	115		
	Yes	14	96	16	126		
Total		36	183	22	241		

Figure legends

Fig. 1. Total number of survey respondents from each region of the country (n=207).

Fig. 2. Final thematic map showing three main themes and eight subthemes for system
changes needed to implement an extended colostrum feeding protocol on UK dairy farms.
Farmers were asked: 'If it were shown to be beneficial to feed colostrum for the first 5 d,
could you practically fit this in your farm system?' and 'Would you need to change any
processes on-farm to be able to do this, if so what?' Farmer quotes are included underneath
each of the categories to which they pertain.

Fig. 3. Final thematic map showing additional human associated subthemes for information
and support needed (including any barriers to change) in order to implement an extended
colostrum feeding protocol on UK dairy farms. Farmers were asked: 'What information or
support would you need to be able to do this on your farm? OR what barriers do you envisage
to implementing it?' Farmer quotes are included underneath each of the categories to which
they pertain.