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Abstract

■ Visual perception and mental imagery have been shown
to share a hierarchical topological visual structure of neural
representation, despite the existence of dissociation of
neural substrate between them in function and structure.
However, we have limited knowledge about how the visual
hierarchical cortex is involved in visual perception and visual
imagery in a unique and shared fashion. In this study, a data
set including a visual perception and an imagery experiment
with human participants was used to train 2 types of voxel-
wise encoding models. These models were based on Gabor
features and voxel activity patterns of high-level visual cortex
(i.e., fusiform face area, parahippocampal place area, and
lateral occipital complex) to predict activity in the early

visual cortex (EVC, i.e., V1, V2, V3) during perception, and
then tested with respect to the generalization of these
models to mental imagery. Our results showed that during
perception and imagery, activities in the EVC could be inde-
pendently predicted by the Gabor features and activity of
high-level visual cortex via voxel-wise encoding models,
which suggested that perception and imagery might share
neural representation in the EVC. We further found
Gabor-specific and non-Gabor-specific patterns of neural
response to stimuli in the EVC, which were shared by per-
ception and imagery. These findings provide insight into the
mechanisms of how visual perception and imagery share
representation in the EVC. ■

Whilst part of what we perceive comes through our
senses from the object before us, another part
(and it may be the larger part) always comes out
of our own head.

William James (1890), The Principles of Psychology

INTRODUCTION

Every day, we are bombarded with an abundance of visual
stimuli, such as colors, textures, and objects, and our brain
then selectively processes the information to generate
visual perception. Therefore, visual perception is a kind
of reflection of the interaction between feedforward sen-
sory input, externally driven by “bottom–up” pathways,
and feedback signals, internally generated from “top–
down” pathways (Hsieh, Vul, & Kanwisher, 2010; Kastner,
De Weerd, Desimone, & Ungerleider, 1998). The typical
internally generated mental process is mental imagery,
which refers to the generation and representation of a
visual image without corresponding feedforward stimuli
from the real world (Andersson, Ragni, & Lingnau, 2019;
Kosslyn & Thompson, 2003; Kosslyn, 1996). What is the
relationship between visual perception and mental imag-
ery? What are the differences and similarities between

the visual experiences generated from both mental
processes?

Considerable empirical evidence from behavioral and
neurobehavioral studies supports the claim that visual per-
ception and mental imagery have similar functions during
sensory processing. For example, when participants were
required to complete a mental image scanning task, a free
view scanning task, and an iconic image scanning task with
measured RT and error rate for each task, it was found that
participants could achieve similar performance between
scanning mental images and visual perception (Borst &
Kosslyn, 2008). Kosslyn and Pearson have proposed that
mental imagery resembles weak perception (Pearson,
2019; Pearson & Kosslyn, 2015), based on the similar
neural mechanism of sensory processing between them
(Maier, Frömer, Rost, Sommer, & Rahman, 2021; Xie,
Kaiser, & Cichy, 2020; Dijkstra, Bosch, & van Gerven,
2019; Cichy, Heinzle, & Haynes, 2012; Reddy, Tsuchiya,
& Serre, 2010; Stokes, Thompson, Cusack, & Duncan,
2009; Borst & Kosslyn, 2008; Ishai & Sagi, 1995). According
to perception anticipation theory (Aitken, Turner, & Kok,
2020; Kok, Jehee, & de Lange, 2012; Sohoglu, Peelle,
Carlyon, & Davis, 2012; Kosslyn & Thompson, 2003),
expectation or prediction may have some impact on the
top–down modulation process of perception (Berger &
Ehrsson, 2013; Diekhof et al., 2011; Pearson, Clifford, &
Tong, 2008). Some fMRI studies have provided evidence
that mental imagery and visual perception share brain
activity patterns in the early visual cortex (EVC, i.e., V1,
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V2, and V3) encoding low-level visual features (Maier et al.,
2021; Kosslyn & Thompson, 2003) as well as the high-level
visual areas encoding category information (Lee, Kravitz,
& Baker, 2012; Stokes et al., 2009; O’Craven & Kanwisher,
2000). In earlier years, researchers used positron emission
topography and repetitive TMS to demonstrate that EVC is
involved in visual imagery (Kosslyn et al., 1999), and recent
research with a multi-method approach (fMRI, TMS, and
transcranial direct current stimulation) suggests that
EVC serves a causative role in visual imagery (Keogh,
Bergmann, & Pearson, 2020).

EVC plays an important role in many cognitive functions
such as perception, memory, attention, and imagination.
The neurons in the EVC not only receive sensory input
and passively transfer to high areas, but also receive more
feedback and lateral information from other areas
(Muckli, Petro, & Smith, 2013; Budd, 1998). Moreover,
the feedforward information from retina to primary visual
cortex is only coordinated with 5% excitatory input
from the LGN (Douglas & Martin, 2007), and only 20% of
neural response in V1 could be explained by retinal input
(Carandini et al., 2005). Consequently, the neurons from
V1 receive more input from other cortical areas than
retinal input.

Advancedmachine learning approaches have been used
in processing fMRI data to provide a novel viewpoint for
exploring the specific shared neural representation
between visual perception and mental imagery (Horikawa
& Kamitani, 2017; Albers, Kok, Toni, Dijkerman, & de
Lange, 2013; Lee et al., 2012; Reddy et al., 2010; Pearson
et al., 2008). Gallant and colleagues first decoded visual
perception by usingGabor features (i.e., spatial frequency,
orientation, position, and phase) of natural images in the
EVC (Kay, Naselaris, Prenger, & Gallant, 2008), and then
they conducted the same decoding analysis of the content
evoked upon imagining specific famous images (Naselaris,
Olman, Stansbury, Ugurbil, &Gallant, 2015), which further
provided insight into the similarity between visual percep-
tion and mental imagery in the EVC. Horikawa and
Kamitani (2017) used features extracted by a deep convo-
lutional neural network to decode brain activity in the
ventral visual stream when participants were observing
and imagining natural images, and these results supported
the claim that visual perception and mental imagery share
neural representation in the hierarchy of the visual system.

Overall, these studies have collectively shown that
neural representation of the ventral visual cortex during
perception has a hierarchical topological structure, where
the brain activity from high-level visual areas represents
the semantic category of natural images (Naselaris,
Prenger, Kay, Oliver, & Gallant, 2009) and the activity
from the EVC represents low-level visual features (Albers
et al., 2013; Cichy et al., 2012; Lee et al., 2012). The hierar-
chical topological structure was also observed during
mental imagery (Reddy et al., 2010). Despite these find-
ings, it should be noted that many previous studies have
also reported a dissociation of function and structure of

neural substrate between perception and mental imagery
(Spagna, Hajhajate, Liu, & Bartolomeo, 2021; Sirigu &
Duhamel, 2001; Butter, Kosslyn, Mijovic-Prelec, & Riffle,
1997).
In the present study, we attempted to depict the inter-

nal structure of the neural representation during percep-
tion and mental imagery in the EVC. To this end, we
obtained fMRI data from previous human research involv-
ing visual perception and mental imagery (Horikawa &
Kamitani, 2017) and evaluated the neural representation
of the EVC using two types of fMRI-based voxel-wise
encoding models, that is, a stim-to-voxel encoding model
trained on Gabor features of input stimuli and a voxel-to-
voxel encoding model based on the voxel activity in the
high-level visual cortex (HVC; which contains fusiform face
area [FFA], parahippocampal place area [PPA], and lateral
occipital complex [LOC]; Figure 1; see more details in the
Methods section). We first examined whether the stim-to-
voxel encoding model based on Gabor features could cap-
ture the linear mappings between Gabor feature patterns
and neural activity in the EVC. Then, we tested whether
the linear mappings also exist between neural activity in
the high visual cortex and that in the EVC by using the
voxel-to-voxel encoding model. Moreover, we evaluated
the combination of stim-to-voxel and voxel-to-voxel
encoding models by integrating Gabor features of visual
stimuli and high visual information to measure brain activ-
ity in the EVC during visual perception. Based on this, we
further generalized these trained voxel-wise encoding
models from perception to mental imagery. After that, we
investigated the neural relationship between perception
and imagery via combination and separation of the pre-
dicted neural representation patterns in the EVC with the
two types of encoding models. Finally, we divided the vox-
els in the EVC into two groups according to the specificity
and nonspecificity of Gabor features to refine the neural
substrate in both the perception and imagery conditions.

METHODS

Sample Size Justification

The fMRI data sets were provided by the Kamitani Lab
at Kyoto University and Advanced Telecommunications
Research Institute International (ATR) (https://github
.com/KamitaniLab). Five healthy human participants (four
men) joined in all experiments. The sample size of the
current study is based on previous work about encoding
and decoding human brain activity on a voxel-wise level
(Mell, St-Yves, & Naselaris, 2021; Horikawa & Kamitani,
2017; Naselaris et al., 2015; Kay et al., 2008).

Description of Data Sets and Their
Experimental Acquisition

For the original experiment where the data were acquired,
there were 1250 different natural images ( j=1, 2, 3, 4,…,
1250), which were selected from 200 representative
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object categories (c= 1, 2, 3,…, 200). During BOLD-fMRI
scanning, each participant was instructed to view natural
images at the center of the projection screen (visual
perception experiment, two sessions) and to imagine
corresponding objects according to the word cues
presented on the screen (visual imagery experiment,
one test session). There was a training image session
(24 runs) and a test image session (35 runs) in the percep-
tion experiment with the same procedures. A total of 1200
different images ( j=1, 2, 3,…, 1200) from 150 object cat-
egories (eight images used in each category, c=1, 2, 3,…,
150)werepresentedonlyonceinthe training image session.
Fifty different images ( j = 1201, 1202, …, 1250) from 50
new object categories (c = 151, 152, …, 200) were pre-
sented 35 times each in the test image session. In the imag-
ery experiment, each participantwas instructed to read the
redword cue presented on the screen and to then imagine
objects visually with closed eyes after hearing a beep
sound. The word cues were the corresponding names of
50 object categories (c = 151, 152, …, 200) that were
matched to the images presented in the perception test
session, but participants were asked to freely imagine as
many objects from the same category as they could during
each trial. The imagery session consisted of 20 runs,

each containing 25 imagery trials, and each duration
was 10 min 39 sec.

The detailed procedures of MRI data preprocessing and
functional brain region localization can be found in the
original article (Horikawa & Kamitani, 2017). We used six
ROIs extracted from the original article: the EVC (i.e., V1,
V2, and V3) and three high-level visual areas (i.e., FFA,
LOC, and PPA). The original study was approved by the
ethics committee of ATR, and the present data reanalysis
was approved by the authors of the original article.

Gabor Features

We used Gabor features extracted from the 1250 natural
images by a Gabor wavelet pyramid (GWP) model to
encode the activity in the EVC (Ringach, 2002; Jones &
Palmer, 1987). The GWP model could be viewed as an
appropriate method to describe voxel activity in the EVC
(Rainer, Augath, Trinath, & Logothetis, 2001; Lee, 1996;
Jones & Palmer, 1987; Daugman, 1985), which has been
used to describe the dimensions of space (DeYoe et al.,
1996; Sereno et al., 1995; Engel et al., 1994), orientation
(Sasaki et al., 2006; Haynes & Rees, 2005; Kamitani &
Tong, 2005), and spatial frequency (Olman, Ugurbil,

Figure 1. The stim-to-voxel and voxel-to-voxel encoding models. The neural activity of the visual areas when observing and imagining an object. We
used the GWP to filter images to obtain low visual features and then trained the stim-to-voxel encoding models to capture the linear association
of these low visual features and the activity of each voxel in the early visual cortex (EVC, i.e., V1, V2, and V3). At the same time, we trained the
analogous voxel-to-voxel encoding models with neural activity in the HVC (i.e., FFA, LOC, and PPA; take the place of the low visual features) to
predict voxel activity in the EVC. Moreover, we further investigated the neural activity during perception and imagery according to the combination of
stim-to-voxel and voxel-to-voxel encoding models.
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Schrater, & Kersten, 2004; Singh, Smith, & Greenlee,
2000) of natural images. According to a prior study (Kay
et al., 2008), these Gabor features extracted from natural
images by a GWPmodel could be fitted to voxel responses
in the EVC, especially in the primary visual cortex (V1).

In the present study, we first constructed the GWP
model with a series of Gabor filters. Based on Kay et al.’s
(2008) study, we defined the samewavelets with six spatial
frequencies: 1, 2, 4, 8, 16, and 32 cycles per field of view
(192 × 192 mm2). At each frequency, f cycles per field of
view, wavelets were positioned on an f × f grid. At each
grid position, wavelets occurred at eight orientations: 0,
22.5°, 45°, 67.5°, 90°, 112.5°, 135°, and 157.5°, and the
two quadrature phases were 0° and 90°. Therefore, there
were 10,920 ([12 + 22 + 42 + 82 + 162+ 322] × 8 =
10,920) Gabor filters in the GWP model.

We then applied the constructed GWP model to extract
Gabor features of the stimuli images. The original 500 px×
500 px images were downsampled to 128 px × 128 px
image resolution for the analysis. Accordingly, the features
were defined as

f sð Þ ¼ log WTs
�� ��þ 1
� �

(1)

where f is an F × 1 vector containing the features (F =
10,920, the number of filters used for the model), and W
is a matrix of complex Gabor filters. The variable s indi-
cates the matrix of each image used in the whole experi-
ment,W includes as many rows as the pixels in s, and each
column contains a different Gabor filter; thus, the dimen-
sions of Gabor features were 1282 × 10,920. The features
represent the log of the magnitudes derived from filtering
the image by each filter. These parameters correspond to
those used by Gallant and colleagues (Naselaris et al.,
2015; Kay et al., 2008).

Encoding Models

The neural activity in the EVC when people observe some-
thing could be explained by two sources, namely, the
external low-level visual features and internally high visual
activity. To simulate these two sources of information pro-
cessing, we constructed two types of voxel-wise encoding
models, one from the Gabor features aspect (stim-to-voxel
encoding model) and one from the aspect of neural activ-
ity of HVC (voxel-to-voxel encoding model). These two
sources formed an encoding model of the neural activity
of each voxel in the EVC.

For training the stim-to-voxel encoding model, we
extracted the BOLD-fMRI signals of each voxel in the
EVC related to the 1200 training images ( j = 1, 2, …,
1200) during perception. For each voxel, we regarded
the Gabor features as the input variable and the fMRI
signal activity of the EVC as the output response to train
the voxel-wise encoding models for perception.

According to a prior study, p was defined as the number
of training images, and q was defined as the number of

input channels. The neural activity of each voxel in the
EVC could be modeled as

y ¼ Xhþ c1þ n (2)

where y is the set of neural activity (i.e., the response of
each voxel in the EVC, p×1),X is the set of input channels
( p× q), h is the kernel (q×1), c is the DC offset (1× 1), 1
is a vector of constant ones ( p × 1), and n is the noise
( p× 1). We used the functions from the STRFlab toolbox
(Version 1.45, https://strflab.berkeley.edu/) to automati-
cally estimate the model parameters. The model parame-
ters were estimated with gradient descent based on the
early stopping algorithm to prevent parameters from over-
fitting, and the stopping set consisted of 20% of randomly
selected responses (Kay et al., 2008; Tugnait, 1994). There
was a bootstrap sampling approach for iterative analysis.
This procedure was conducted independently for each
voxel in the EVC; thus, we ultimately obtained an encoding
model for each voxel in V1, V2, and V3 during perception.
For training the voxel-to-voxel encoding model, we

extracted the voxel activity in each high visual area when
participants observed each image in the training session
and regarded each voxel signal as an input feature. This
model is also called a voxel-to-voxel model (Mell et al.,
2021). We also used the same algorithm (i.e., Equation
2) from the stim-to-voxel encoding model to predict the
voxel activity in the EVC during perception. Because there
was no stimulus presented on the screen during the
imagery experiment, we applied the stim-to-voxel and
voxel-to-voxel encoding models trained by perception
data to the imagery test session.
Additionally, to better demonstrate the neural connec-

tion between HVC and EVC, we trained an additional type
of voxel-to-voxel encoding model, which had a reverse
prediction direction (i.e., EVCàHVC). Thismodel utilizes
voxels from the EVC to predict the responses of voxels in
HVC. We employed the same algorithm to train and test
prediction performance as in the previous voxel-to-voxel
encoding model.

Image Identification Analysis

The stim-to-voxel and voxel-to-voxel encoding models
trained with the perception training data set were used
in the identification of images from the testing data set
based on brain activities during perception and mental
imagery, respectively.
In the viewed image identification analysis (i.e., percep-

tion), we used the test session data set of 50 newly viewed
images from 50 different categories ( j = 1201, 1202, …,
1250, c = 151, 152, …, 200) to estimate the performance
of the trained stim-to-voxel and voxel-to-voxel encoding
models. For the stim-to-voxel encoding model, we
extracted Gabor features of each test image and then input
these low-level visual features into the model to predict
the corresponding voxel activity in the EVC. In this way,
each voxel-wise encoding model would produce a
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prediction value for each voxel in the EVC. Each region of
the EVC (i.e., V1, V2, and V3) was viewed as a basic unit, and
thus the predicted brain activity pattern in V1, V2, and V3
could be used for comparison with the real fMRI signal
pattern in the EVC to estimate the performance of the
encoding model. To this end, a Pearson’s correlation coef-
ficient between each pair of the two sets (predicted set
and real set) of the test images (n = 50) was calculated,
and then a 50 × 50 correlation matrix for each participant
was obtained. If the diagonal value of the obtained matrix
was the maximum in each column, it suggested that the
predicted voxel activity pattern matched very well with
the real one for the same image, and we then regarded it
as the correct prediction. Finally, we calculated the ratio of
the number of correct predictions to the total number of
test images (correct predictions/50), which was regarded
as the predictive accuracy.
We used the same procedure to calculate accuracy with

the trained voxel-to-voxel encoding models. The only
difference was the input feature. We regarded the voxel
activity from HVC as the input feature and then predicted
the brain activity of each region of the EVC when partici-
pants were observing each image. Finally, we compared
the predicted responses with the real responses to obtain
prediction accuracies.
In the imagined image identification analysis (i.e.,

mental imagery), there was no stimulus input during
mental imagery, so we adopted the same Gabor features
of the viewed images to estimate the performance of the
stim-to-voxel encoding model. We then compared
the predicted activity in the EVC with the real activity of
the imagery test data. The specific calculation procedures
of prediction accuracy were consistent with those
described above in the perception experiment. The
prediction of the voxel-to-voxel encoding model in the
imagery experiment was conducted in the same way to
obtain corresponding prediction accuracies.

Linear and Nonlinear Combination with
Two Voxel-wise Encoding Models

The neural activity in the EVC can be explained by different
contributions, for example, in the current study it might be
derived from stimuli-relevant low visual features and
corresponding activity in the HVC. Based on the compre-
hensive framework proposed by Op de Beeck, Haushofer,
and Kanwisher (2008), there are several possibilities (i.e.,
additive combination and non-additive combination) to
explore how different functional properties can generate
interaction. To examine how these two sources might
interact with one another in the EVC, we applied two
mathematical approaches (i.e., linear and nonlinear
combination) to the predicted voxel responses by the
stim-to-voxel and voxel-to-voxel encoding models (Zhang
et al., 2014). The linear combination was conducted by
calculating the arithmetic mean of the predicted neural
activity patterns from two types of voxel-wise encoding

models. The nonlinear combination was obtained by
calculating the geometric mean of the predicted neural
activity patterns from two types of encoding models.
Taking voxel activity in V1 as an example, the trained
stim-to-voxel and voxel-to-voxel encoding models could
separately predict voxel activity and each voxel in V1 got
two predictions (i.e., one from stim-to-voxel model and
another from voxel-to-voxel model). For each observed
image or imagined stimulus, there were two different
predicted voxel patterns in V1. Next, we combined these
two-sources patterns linearly or nonlinearly to get the
combined voxel activity patterns for each stimulus in the
test session, which were further compared with the real
V1 fMRI signal pattern to show the combined effect of
two sources via stim-to-voxel and voxel-to-voxel encoding
models. We also evaluated the combination effect within
V2 and V3 via the same approach.

Separation of Imagery from Perception

Imagery is considered as a weak perception (Pearson &
Kosslyn, 2015), which means that visual imagery is similar
to visual perception. Based on this view, we further refined
the relationship between the two mental processes by
comparing the neural association of high visual activity
to the EVC. For each test image/category, we acquired
the predicted voxel activity patterns in V1, V2, and V3
during perception and imagery, separately, by the image
identification analysis of the trained voxel-to-voxel encod-
ing model. We then regarded the predicted imagery
activity pattern as a covariate of the predicted perception
activity pattern to remove. Finally, the remaining pre-
dicted activity pattern in perception was compared with
the real fMRI signal pattern in the EVC to make a predic-
tion. To illustrate the effect of this separation, we exam-
ined two other prediction performances for comparison.
One pattern was the shuffled predicted activity pattern
of imagery, and the other was a random activity pattern
consisting of white noise. We regarded them as covariates
to remove from the predicted perception pattern and then
calculated prediction accuracies.

Predictions of Gabor Specificity and
Non-Gabor Specificity

To further elaborate the information content in the activity
of EVC, we labeled the voxels in each region of the EVC
with two opposite names. The names were defined by
the weight values obtained from the process of training
the stim-to-voxel encoding model: Gabor specificity,
which refers to the voxels with useful (nonzero) weight
values, and non-Gabor specificity, which refers to the
voxels with zero weight value. Here, the useful or zero
weight value denoted whether the voxels could encode
the Gabor features. Accordingly, we divided the voxels in
each region of the EVC into two groups: Gabor-specificity
group (i.e., G group) and non-Gabor specificity group
(i.e., N group). After that, we conducted the same
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prediction procedures (image identification analysis and
linear combination analysis) via the voxel-to-voxel encod-
ing model for each group in V1, V2, and V3.

In addition, as a control analysis, we examined the pre-
diction performance for the G group and the N group via
the other type of voxel-to-voxel encoding model (i.e.,
direction: EVC à HVC).

RESULTS

Hierarchical Structure Exists in the EVC

Stimuli-relevant Response to Perception and Imagery

During perception, the performance of the trained stim-
to-voxel encoding model showed that Gabor features
could remarkably predict brain activity patterns in the
EVC. The average accuracies of the five participants were

29% ± 0.13% (chi-square test, χ2(1, n= 50) = 11.76, p=
.0006), 22% ± 0.17% (χ2(1, n = 50) = 8.33, p = .004),
and 18% ± 0.11% (χ2(1, n = 50) = 6.40, p = .01) in V1,
V2, and V3, respectively (see the first feature “Gabor” in
Figure 2A), and all of them were significantly higher than
the change level of 2% (1/50; see the red dash line in
Figure 2A). Interestingly, there was a decreasing trend of
prediction accuracies in the EVC (i.e., V1 > V2 > V3),
except for Participant 1, which had the highest accuracy
for V3 (V3 was 10%, 5/50; V1 was 6%, V2 was 4%). The pre-
dicted accuracies attenuated from V1 to V3, showing that
Gabor feature could explain more voxel activity in V1 and
there might be a hierarchical organization of the EVC with
respect to the representation of Gabor features.
During imagery, the performance of the trained stim-to-

voxel encoding model showed that Gabor features could
not effectively predict brain activities in the EVC under the

Figure 2. Prediction performance with stim-to-voxel and voxel-to-voxel encoding models in the EVC and HVC. (A) Average prediction accuracy of
five participants with two types of voxel-wise encoding models during perception (green bar) and imagery (red bar). The three different levels of green
bars represent the prediction accuracy in the EVC during perception. Another three different levels of red bars represent the prediction accuracy in
the EVC during imagery. The first attributes of the abscissa denote the prediction of Gabor features via the stim-to-voxel encodingmodel, and the other
three attributes denote the predictions of three different high-level visual areas via the voxel-to-voxel encoding models (direction: HVC → EVC).
The red dashed line refers to chance level (2%). (B) Average prediction accuracy of five participants with the other voxel-to-voxel encoding models via
EVC predicting HVC during perception (green bar) and imagery (red bar). This result can be compared with the results from the previous voxel-to-voxel
encoding model. The three different levels of green bars represent the prediction accuracy of the EVC predicting high brain areas during perception.
Another three different levels of red bars represent the prediction accuracy of the EVC predicting high areas during imagery. The three attributes
denote the predictions of three different HVC via the voxel-to-voxel encoding models (direction: EVC → HVC). The red dashed line refers to chance
level (2%). (C) The spatial distribution of 1000 voxels with the order of Pearson’s correlation coefficients in the EVC. The upper row shows the
voxel distribution during perception of five participants, and the row beneath shows the voxel distribution during imagery. The size of the colored dots
was determined by the weight (Pearson’s correlation coefficients). The red dots are voxels in V1; the orange dots are voxels in V2; and the green dots
are voxels in V3. The voxel overlap proportions between perception and imagery for five participants were: 96%, 95%, 76.3%, 84.5%, and 100%.
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same statistical standard with the analysis of perception
data. The average V1 accuracy of the five participants
was 1.6% ± 0.01%, χ2(1, n = 50) = 0.02, p = .88; V2 was
2% ± 0.01%, χ2(1, n = 50) = 0, p = 1.00; and V3 was
3.2% ± 0.02%, χ2(1, n= 50) = 0.14, p= .71 (see the first
feature “Gabor” in Figure 2B). These results revealed that
almost all of the prediction accuracies using the exoge-
nous encoding model with Gabor features in the EVC dur-
ing mental imagery were around the chance level (2%),
with poor prediction performances. Some prior studies
(Naselaris et al., 2015; Cichy et al., 2012) demonstrated
that brain activity in the EVC generated during mental
imagery could be explained by Gabor features. The insig-
nificant results in the present study were likely caused
largely by task-dependent factors. In the imagery experi-
ment, participants were required to freely imagine as
many object images matched with the word cue as possi-
ble (Horikawa & Kamitani, 2017), but we assessed the pre-
diction performance based on a specific image that was
the same as in the perception procedures. Thus, when
using the Gabor features of a specific image as input values
of the model to predict the brain activity triggered by the
many imagined images from the same category, we could
not obtain high prediction performance.
To further explore the extent of brain activity in the EVC

during imagery that was explained by Gabor features, we
extracted 1000 voxels from thewhole EVC. First, the values
of Pearson’s correlation coefficients between the pre-
dicted voxel activity and the real activity of each participant
were sorted in descending order, and then we analyzed
the top 1000 values (except for those of the fifth partici-
pant, who had only approximately 700 voxels conforming
to the condition). After that, we depicted the voxel spatial
distribution pattern in the EVC, in which the Pearson’s cor-
relation coefficients were regarded as weights of nodes via
the BrainNetViewer toolbox (https://www.nitrc.org
/projects/bnv/). All the above calculations were performed
with both perception and imagery data. We found that
overlapping distributions of the extracted voxels between
perception and mental imagery were very large: 96% for
Participant 1, 95% for Participant 2, 76.3% for Participant
3, 84.5% for Participant 4, 100% for Participant 5 (where
the number of corresponding voxels in the EVC was 734),
which suggested that spatial distributions were similar
between the two mental processes for each participant.
The median of the average weight of participants during
perception was 0.28 (ranging from −0.09 to 0.81), and
the median during imagery was 0.02 (ranging from
−0.21 to 0.44), which determined the size of the color
nodes in Figure 2C.

Internal Neural Correlation of Visual Cortex during
Perception and Imagery

From the prediction accuracies of the trained voxel-to-
voxel encoding models, we found that the brain activity
patterns in the three high-level visual areas could be used

to successfully predict the brain activity patterns in the
EVC (see the other three features “FFA, LOC, and PPA”
in Figure 2A). FFA and LOC both obtained higher predic-
tion accuracies of more than 40% of V1 during perception
(more than 10% during imagery). Critically, the voxel-to-
voxel encoding models were trained only with the percep-
tion training data, which could be generalized to predict
the brain activity under the mental imagery condition
(e.g., the average accuracies of FFA predictions were
12% ± 0.08%, χ2(1, n = 50) = 3.57, p = .06, in V1;
21% ± 0.09%, χ2(1, n = 50) = 7.85, p = .005, in V2; and
26% ± 0.10%, χ2(1, n = 50) = 10.29, p = .001, in V3.
Comparing the prediction accuracies in the EVC during
perception and imagery, we could find that there was an
increasing trend of the prediction performances (i.e.,
accuracies: V1 < V2 < V3) in both mental processes. This
therefore provided further evidence for the existence of
a gradient hierarchical structure in the EVC, which was
similar between perception and imagery (Figure 2A).

To investigate whether the voxel-to-voxel encoding
model via brain activity from the HVC prediction of voxel
responses in the EVC was potentially influenced by corre-
lated neural activity between high- and low-level visual
regions, we extracted the voxels from the EVC to train
another voxel-to-voxel encoding model and predict the
brain activity in the HVC (Mell et al., 2021; Zhang et al.,
2014). Consistent with previous findings by Zhang and his
colleagues, this voxel-wise encoding model with the reverse
prediction direction successfully predicted brain activities
in the HVC using the voxel responses from V1, V2, and
V3 during both perception (see green bars in Figure 2B)
and imagery (see red bars in Figure 2B) conditions.

We compared the prediction performance of these two
voxel-to-voxel encoding models with completely reverse
prediction directions, that is, HVC à EVC and EVC à
HVC, using a paired t test. In the perception condition,
the prediction accuracy of V1 predicting LOC was signifi-
cantly lower than the prediction performance of LOC
predicting V1, t(4) = −3.27, p = .031. Moreover, the pre-
diction accuracy of V3 predicting LOC and PPA was higher
than the prediction performance of LOC, t(4) = 4.35, p =
.012, and PPA, t(4) = 3.53, p = .024, predicting V3. How-
ever, no significant prediction difference was observed
between the two reverse prediction directions during the
imagery condition (see Table 1 for more statistical details).

Linear Combination Effect between Gabor Features
and High Visual Activity

To better understand how sensory input and high visual
activity interact in the EVC, we explored the combined
effect using the stim-to-voxel and voxel-to-voxel encoding
models. We conducted linear and nonlinear combination
analysis for both perception and imagery data. The results
are shown in Figure 3. In Figure 3A, the different categories
on the x axis denote linear and nonlinear combinations.
For example, FFA + Gabor denote a linear combination
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between FFA features (brain activity was regarded as the
encoding model feature) and Gabor features, and FFA *
Gabor denote a nonlinear combination between FFA fea-
tures and Gabor features. For perception, the results
showed that the linear combination of the two types of
encoding models could effectively improve the prediction
power, and the average accuracies were increased by more
than 15%. However, the average accuracies were mostly
reduced to lower than 10% under the nonlinear combina-
tion condition (the green lines in Figure 3A). There was no
evident linear or nonlinear combination effect in the men-
tal imagery experiment (the red lines in Figure 3A).

Shared Low–High Visual Neural Association
between Perception and Imagery

Visual imagery is a kind of weak visual perception. To sup-
port the claim, we hypothesized that twomental processes

shared the low–high visual neural association. We
separated the voxel activity of mental imagery from that
of perception prediction analysis via removing covariance
during perception. The results are shown in the Figure 3B.
The four different categories on the x axis in Figure 3B
present four different ways to do the separation analysis.
Original means that we used the perception data in the
HVC to predict the voxel activities in the EVC via the
voxel-to-voxel encoding model without removing any-
thing (the same as the above image identification analy-
sis). Imagerymeans that we removed the predicted voxel
activity of imagery from that of perception and then con-
ducted the prediction analysis via the voxel-to-voxel
encoding model. Noise means removing random white
noise from perception data, and then we conducted the
prediction analysis. Scatter means removing scattered
imagery activity pattern from perception data, and then
we conducted the prediction analysis. We found that the
average prediction accuracies in the EVC via removing
voxel responses of imagery from that of perception fell
within a range from 10% to 50%, significantly higher than
the chance level (2%). However, after we removed the
scattered imagery pattern and random white noise from
the perception part, the prediction accuracies of voxel
activity in the EVC were close to the original prediction
performances of high visual activity prediction via the
voxel-to-voxel encoding model. Therefore, these compar-
isons indicated that imagery shared information represen-
tation with perception in the part of neural association
from HVC to EVC.

Shared Neural Representation in the EVC

To further elaborate the information content of the
voxel activity in the EVC, we divided these voxels into
two groups with Gabor specificity and with non-Gabor
specificity (for more details, see the Methods section).
We then conducted the prediction analysis via the
voxel-to-voxel encoding model with voxel activity from
the HVC to predict voxel activity of these two groups
of voxels in the EVC.
Interestingly, during the procedure of labeling the vox-

els in the EVC, we found a stable topological distribution of
the rates between Gabor specificity and non-Gabor speci-
ficity. Regardless of whether the total number of selected
voxels was 1000, 800, 600, 400, or 200, the ratio of the two
labeled groups was almost 1:2 (see Figure 4).
Comparing the prediction performances of the voxels

from Gabor specificity group (the G group in Figure 5),
non-Gabor specificity group (the N group in Figure 5),
we found that accuracies obtained via the voxel-to-voxel
encoding model with the brain activity from each high
visual area were almost equal in each area of the EVC, in
both the perception and themental imagery conditions. In
addition, the prediction performances of the two groups
were similar to the original performance (i.e., without
grouping, the results from O group in the Figure 5 are

Table 1. Summary Statistics and Significance Results for the
Prediction Accuracy of the Bidirectional Voxel-to-Voxel Encoding
Models

Conditions
Prediction
Direction t df p Value

Perception V1 ó FFA −1.11 4 0.33

Perception V2 ó FFA −0.32 4 0.77

Perception V3 ó FFA 2.08 4 0.11

Perception V1 ó LOC −3.27 4 0.031

Perception V2 ó LOC 1.00 4 0.37

Perception V3 ó LOC 4.35 4 0.012

Perception V1 ó PPA −0.25 4 0.81

Perception V2 ó PPA 0.68 4 0.53

Perception V3 ó PPA 3.53 4 0.024

Imagery V1 ó FFA −0.26 4 0.81

Imagery V2 ó FFA −1.27 4 0.27

Imagery V3 ó FFA 1.48 4 0.21

Imagery V1 ó LOC −0.23 4 0.83

Imagery V2 ó LOC −1.50 4 0.21

Imagery V3 ó LOC 0.17 4 0.87

Imagery V1 ó PPA 0.35 4 0.74

Imagery V2 ó PPA 1.35 4 0.24

Imagery V3 ó PPA 1.46 4 0.21

The results of the paired t test between EVC predicting high visual areas
and high visual areas predicting EVC showed significant differences only
in the perception condition (especially between LOC and V1, V3) but
not in the imagery condition. The bidirectional arrow shows the two
reverse prediction directions (i.e., EVC à HVC and HVC à EVC).
The negative value in the t value column means the accuracy of the
EVC à HVC voxel-to-voxel encoding model is lower than the accuracy
of the HVC à EVC voxel-to-voxel encoding model. The bold font in
the t value and p value columns denotes a statistically significant result.
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the same results of FFA, LOC, and PPA features in
Figure 2A) achieved by the voxel-to-voxel encoding
model. For example, during perception condition, the
average prediction accuracies of FFA features in V1
are 32% ± 0.18% (G group), 39% ± 0.18% (N group),
and 42% ± 0.19% (O group); in V2, the accuracies are
49% ± 0.16% (G group), 51% ± 0.11% (N group), and
55% ± 0.15% (O group); in V3, the accuracies are 51% ±

0.21% (G group), 68%±0.28% (N group), and 68%±0.27%
(O group). See the average prediction results from five
participants in the Figure 5. Likewise, we explored the
combined effect of the stim-to-voxel and voxel-to-voxel
voxel-wise encodingmodels in the EVC for the two groups
of voxels. The results revealed that the prediction perfor-
mances for each group in V1, V2, and V3 via the voxel-to-
voxel encoding model during perception and imagery

Figure 3. Neural prediction performance during perception and mental imagery. (A) The combination effect of the stim-to-voxel and voxel-to-voxel
encoding models via linear and nonlinear combinations, respectively. The left three attributes of the abscissa in each participant line chart represent
the linear combination, and the right counterpart represents the nonlinear combination, respectively. The green line represents the prediction
performance during perception in the EVC, and the red line represents the counterpart during imagery in the EVC. (B) Performance in the separation
of the predicted imagery pattern from the predicted perception pattern. The blue line represents the performance of FFA predicting the EVC; the
green line represents the performance of LOC predicting the EVC; and the red line represents the performance of PPA predicting the EVC. We
conducted four comparisons: original, the voxel activity from HVC during perception to predict voxel responses in the EVC; imagery, the voxel
activity from HVC during perception with removal of the predicted voxel activity of imagery to predict voxel responses in the EVC; noise, the voxel
activity from HVC during perception with removal of the random white noise to predict voxel responses in the EVC; shuffle, the voxel activity from
HVC during perception with removal of the shuffled imagery to predict voxel responses in the EVC.
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were similar and also showed the hierarchical structure in
the EVC (i.e., accuracies: V1 < V2 < V3). These results
further indicated that the independent representation
contents corresponding to Gabor and non-Gabor fea-
tures in the EVC were equally predicted by the voxel
activity from the HVC during perception and imagery.

Moreover, as a control analysis, we used the other voxel-
to-voxel encoding model (direction: EVC à HVC) to per-
form prediction analysis with the G group and the N group
of voxels from the EVC predicting each high-level visual
area. We then compared the prediction performance of
the two groups using a paired t test. The prediction accu-
racies of both groups during the perception and imagery

conditions are shown in Figure 6, whereas the statistical
results are presented in Table 2.
Our findings indicated that the prediction accuracies of

the G group were lower than those of the N group, as evi-
denced by the prediction performance shown in Figure 6
and statistical results (see all t values in Table 2; negative
values indicate lower accuracies for the G group). Further-
more, in the perception condition, the accuracies of
V3 predicting FFA, t(4) = −3.76, p = .020; and LOC,
t(4) = −4.66, p = .010; and of V1 predicting LOC, t(4) =
−2.80, p = .049, in the G group were significantly lower
than those in the N group. In addition, in the perception
condition, the prediction accuracies of EVC (i.e., V1, V2,

Figure 4. Rate of Gabor nonspecificity and global selected voxel number in the EVC. The abscissa number is selected voxel number from the whole
EVC according to the prediction performance rated from high to low and the ordinate number is Gabor nonspecificity voxel number selected by
the weight of by the feature weight with zero value from the stim-to-voxel voxel-wise encoding model. The left column is the selected voxels of three
HVC predicting EVC in perception of five participants, whereas the right column is the corresponding performance in imagery.
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Figure 5. Shared neural representation in the EVC. Here, we present five participants’ average results of three high visual area predictions in Gabor
specificity and non-Gabor specificity voxel groups via the voxel-to-voxel encoding models. The categories on the x axis with the letter P refer to
the perception condition (green bars), and those with the letter I refer to the imagery condition (red bars). GP = Gabor-specificity prediction during
perception (G group); NP = non-Gabor specificity prediction during perception (N group); OP = original high visual area prediction during perception
(O group, i.e., the prediction performance corresponding with Figure 2); GI = Gabor-specificity prediction during imagery (G group); NI = non-Gabor
specificity prediction during imagery (N group); OI = original high visual area prediction during imagery (O group). (A, B, C) Prediction performance
for the HVC in three groups (Gabor specificity, non-Gabor specificity, and original group) with respect to perception and imagery conditions, respectively.
(D) Prediction performances of linear combination in the HVC in three groups with respect to perception and imagery conditions, respectively. OF =
original prediction in the FFA during perception (green) and imagery (red); GF = Gabor specificity prediction in the FFA during perception (green) and
imagery (red); NF= non-Gabor specificity prediction in the FFA during perception (green) and imagery (red).We extract letter “L” and “P” to refer to “LOC”
and “PPA” separately, so other categories on the x axis have the same meaning as those in the FFA.

Figure 6. Prediction performance of Gabor specificity and non-Gabor specificity groups via the voxel-to-voxel encoding model (direction: EVC →
HVC). (A) Prediction performance of the Gabor specificity group during perception (green bars) and imagery (red bars) via the voxel-to-voxel
encoding model. (B) Prediction performance of the non-Gabor specificity group during perception (green bars) and imagery (red bars) via the voxel-
to-voxel encoding model.
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and V3) predicting PPA in the G group were significantly
lower than those in the N group (V1 à PPA: t(4) =
−2.99, p = .040; V2 à PPA: t(4) = −3.96, p = .017;
V3 à PPA: t(4) = −2.83, p = .047).

DISCUSSION

Using the trained stim-to-voxel and voxel-to-voxel encod-
ing models to predict the fMRI signal in the EVC, this
study compared the encoded information content related
to visual perception and mental imagery in the visual
system. The results revealed the existence of neural rep-
resentations with Gabor specificity and non-Gabor spec-
ificity that were shared between perception and visual
imagery, respectively, which helped us to understand
the neural underpinnings between the two similar mental
processes.

Before this current work, research has applied multivar-
iate pattern analysis to investigate the relationship
between perception and imagery (Albers et al., 2013;
Tong, 2013; Lee et al., 2012; Harrison & Tong, 2009) and

to show the complexity of interaction within the visual cor-
tex. However, MVPA is limited in its ability to decompose
brain activity patterns into distinct sources of variation,
and how to measure the represented content remains
largely unclear. This study used voxel-wise encoding
models (Naselaris et al., 2015; Thirion et al., 2006) to refine
the shared neural representation between visual percep-
tion and mental imagery. The results provided excellent
prediction performance with using the voxel activity in
the HVC to predict the voxel responses in the EVC in both
perception and imagery conditions via the voxel-to-voxel
encoding model, in which the voxel-wise relationship
among visual areas cannot be observed with other mathe-
matical models, such as the convolutional neural networks
(Mell et al., 2021). Moreover, the prediction performance
of another voxel-to-voxel encodingmodel with the reverse
direction (i.e., EVCàHVC) showed that the neural repre-
sentation of visual stimuli in the high-level visual areas
could be predicted by the voxel activity in the EVC, further
supporting the idea that the voxel-to-voxel encoding
models reflect and emphasize the neural correlation of
the HVC and the EVC. The statistical comparisons of the
bidirectional voxel-to-voxel encoding models indicated
that, in the perception condition, the voxel activity of
LOC was found to be better suited to predict the voxel
responses in V1, rather than the other way around. This
result might indicate that some additionally different
information flows from LOC to primary visual cortex.
However, there is no such significant difference in the
imagery condition. This distinction is an important
dimension for differentiating perception and imagery
and warrants further attention in the future research.
In addition, we found a linear combination effect of the

interaction between low-level visual features and internal
high visual activity in the EVC, which was consistent with a
previous finding (Zhang et al., 2014). Furthermore, we
regarded imagery activity as a covariate and removed it
from the internal activation part of perception to conduct
an in-depth exploration of the representation mechanism
of perception. The results showed that the neural associ-
ation from HVC to the EVC during perception could be
partly explained by that during imagery, but another unex-
plained part is unique for perception. More importantly,
we could easily divide the voxels in the EVC into a Gabor
specificity group and a non-Gabor specificity group based
on the strategy of voxel-wise encoding model. These
results indicated that the Gabor specificity and non-Gabor
specificity neural representations were shared between
visual perception and imagery. Importantly, in the control
analysis, we observed differences between the G and the
N groups, with the N group demonstrating superior per-
formance in predicting brain activity in the HVC using
the other voxel-to-voxel encoding model (i.e., direction:
EVC à HVC). Specifically, the voxels of the N group in
V3 could better explain voxel response in the HVC than
the prediction performance of the voxels from the
G group, supporting the existence of a hierarchical

Table 2. Summary Statistics and Significance Results for the
Prediction Accuracy between the Gabor Specificity Group and
the Non-Gabor Specificity Group via the Voxel-to-Voxel Encoding
Models (Direction: EVC à HVC)

Conditions
Prediction
Direction t df p Value

Perception V1 à FFA −2.06 4 0.11

Perception V2 à FFA −1.70 4 0.16

Perception V3 à FFA −3.76 4 0.020

Perception V1 à LOC −2.80 4 0.049

Perception V2 à LOC −1.81 4 0.14

Perception V3 à LOC −4.66 4 0.010

Perception V1 à PPA −2.99 4 0.040

Perception V2 à PPA −3.96 4 0.017

Perception V3 à PPA −2.83 4 0.047

Imagery V1 à FFA −1.29 4 0.27

Imagery V2 à FFA −2.45 4 0.070

Imagery V3 à FFA −2.03 4 0.11

Imagery V1 à LOC −1.22 4 0.29

Imagery V2 à LOC −2.18 4 0.10

Imagery V3 à LOC −1.73 4 0.16

Imagery V1 à PPA −1.58 4 0.19

Imagery V2 à PPA −2.16 4 0.10

Imagery V3 à PPA −1.43 4 0.23

The arrow direction shows the prediction direction (i.e., EVC à HVC).
The negative value in the t value column means the accuracy of the
G group is lower than the accuracy of the N group. The bold font in
the t value and p value columns denotes a statistically significant result.
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structure in the EVC and suggesting that V3 is closer in
function to the high-level visual areas.
Different from the nonlinear and modular representa-

tion of the human brain (Op de Beeck et al., 2008), our
results (in Figure 3A) showed perceptual representation
in the EVC with a linear way by combing the stim-to-voxel
and voxel-to-voxel encoding models. This kind of linear
combinationmight indicate that the neural representation
related to the visual features and the high visual activity
could be independent in the EVC. In addition, in the sep-
aration analysis, we found that mental imagery shared an
underlying neural association from high visual activity to
that in the EVC with visual perception, which was consis-
tent with the assertion that cortical interaction is an essen-
tial part of brain processing (Morgan, 2018).
The further linear representation results (Figure 5D)

showed the same prediction performances between
Gabor specificity and non-Gabor specificity voxels via the
voxel-to-voxel encoding model. Our results here may
imply that the high visual activity effectively and equally
measured the two groups of voxel activity in the EVC dur-
ing perception and imagery using the encoding model.
Furthermore, our results demonstrated that the neural
association from high visual activity to EVC could be
explained by Gabor features and non-Gabor features,
independently. A previous study using encoding models
and representational similarity analysis quantitatively
showed that the semantic content of an image mainly
predicted the activity of voxels in the EVC (V1, V2, and
V3) and these features were essentially depictive but also
propositional (Naselaris et al., 2009). These findings might
imply that the activity of early visual areas could not only
depict an object preserving visual features but also
naturally reflect semantics of the object to some extent.
However, it is still unclear how the representation of infor-
mation in EVC is essentially depictive and can implement
symbolic functions naturally. In the present study, we
showed that there are two parallel activation modes in
the EVC of the brain, one that corresponds to the visual
features and the other that is nonvisual, which means that
this mode may further reveal different information repre-
sentation modes of the EVC to some extent. It should be
noted that there have been debates about the essence of
mental imagery, mainly focusing on the relationship
between depictive representation and propositional
representation in our brain. The dual-coding theory (Clark
& Paivio, 1991) emphasized that there were two distinct
subsystems in our brain specialized for dealing with differ-
ent types of representations. The present findings might
also imply that the two types of representations could be
compatible in the early stages of the visual ventral stream
with different neural activity. Of course, this problem
needs to be further clarified. On the one hand, the types
of voxels in EVC should be further differentiated, espe-
cially on aspect of the Gabor-specificity voxels, which were
sensitive to visual characteristic changes of external visual
stimuli. This problem can be further examined with the

help of external stimuli, such as the changes in back-
ground brightness, so as to reveal its impact on mental
imagery ability and its neural basis. On the other hand,
the different EVC activity models observed in this study
need to be further combined using technology with higher
time resolution to further reveal the timing of their differ-
ent processes (Xie et al., 2020; Dijkstra, Mostert, de Lange,
Bosch, & van Gerven, 2018), so as to better understand
these different activity modes and their interactions,
which provides a new perspective for us to further under-
stand the relationship between imagery and perception,
as well as the individual differences of mental imagery.

The results of the current research may be applied to
improve future technology. The clear and elaborate repre-
sentation mechanism offers an alternative possibility con-
cerning applying and updating an artificial intelligence
system with consciousness. In addition, the shared and
independent neural representation mechanism may lead
us toward a deeper understanding and explanation of
abnormal phenomena of brain information processing,
such as those found in hallucinations and schizophrenia.
These results could then in turn lead to more effective
and reasonable treatments. The current study included
some limitations that should be addressed in future work.
First, we did not obtain significant results when using the
stim-to-voxel encoding model with Gabor features to pre-
dict the voxel response in the EVC during visual imagery,
which was presumably primarily caused by the imagery
experimental design. In the future, one could revise the
experimental design by using specific imagery items for
participants (Naselaris et al., 2015) to improve the model
performance. Second, some researchers argue that visual
imagery engages the left fusiform gyrus instead of the EVC
(Spagna et al., 2021); perhaps we could take other brain
regions into consideration. This current research also
leads to avenues for future research, for example, aphan-
tasia (Keogh, Pearson, & Zeman, 2021), a new special
research topic, should be investigated and compared with
normal visual perception and imagery to further explore
brain representation. In addition, application of the
voxel-wise encoding models afforded us an opportunity
to explore the shared and independent representation
mechanism between visual perception and mental
imagery; and thus, in the future, new techniques and
methods need to be developed and the questions of
dynamic neural representation (Dijkstra et al., 2018) and
visualization of the independent representation need to
be addressed.

In conclusion, the present study first showed that
during perception, there is a linear combination of Gabor
features and high visual activity in the EVC, which was
shared by mental imagery. We further demonstrated that
Gabor specificity and non-Gabor specificity neural activity
were shared in the hierarchy of the visual system during
both visual perception and mental imagery. These obser-
vations provide new insights into the underlying neural
substrate between visual perception and imagery.
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Code and Data Accessibility

The code for generating the GWP is freely available online
(https://www.mathworks.cn/matlabcentral/fileexchange
/60088-gabor-wavelet-pyramid). The code for the encod-
ing models is based on the STRFlab toolbox, which is
accessible at https://strflab.berkeley.edu/. The prepro-
cessed data and relevant code are publicly available on
the website of the Kamitani Lab (https://github.com
/KamitaniLab/GenericObjectDecoding), and the raw fMRI
data are available from OpenNeuro (https://openneuro
.org/datasets/ds001246). All calculation processes were
run on MATLAB R2017a on a Windows operating system.
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Diversity in Citation Practices

Retrospective analysis of the citations in every article pub-
lished in this journal from 2010 to 2021 reveals a persistent
pattern of gender imbalance: Although the proportions of
authorship teams (categorized by estimated gender iden-
tification of first author/last author) publishing in the Jour-
nal of Cognitive Neuroscience ( JoCN) during this period
were M(an)/M = .407, W(oman)/M = .32, M/W = .115,
and W/W = .159, the comparable proportions for the arti-
cles that these authorship teams cited were M/M = .549,

W/M = .257, M/W = .109, and W/W = .085 (Postle and
Fulvio, JoCN, 34:1, pp. 1–3). Consequently, JoCN encour-
ages all authors to consider gender balance explicitly when
selecting which articles to cite and gives them the oppor-
tunity to report their article’s gender citation balance. The
authors of this article report its proportions of citations by
gender category to be as follows: M/M= .650,W/M= .250,
M/W = .075, and W/W = .025.
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