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Abstract: Accurate altimetry is essential for location-based services in commercial and industrial
applications. However, current altimetry methods only provide low-accuracy measurements, par-
ticularly in multistorey buildings with irregular structures, such as hollow areas found in various
industrial and commercial sites. This paper innovatively proposes a tightly coupled indoor altimetry
system that utilizes floor identification to improve height measurement accuracy. The system includes
two optimized algorithms that improve floor identification accuracy through activity detection and
address the problem of difficult convergence of z-axis coordinates due to indoor coplanarity by
applying constraints to iterative least squares (ILS). Two experiments were conducted in a teaching
building and a laboratory, including an irregular environment with a hollow area. The results show
that our proposed method for identifying floors based on activity detection outperforms other meth-
ods. In dynamic experiments, our method effectively eliminates repeated transformations during
the up- and downstairs process, and in static experiments, it minimizes the impact of barometric
drift. Furthermore, our proposed altimetry method based on constrained ILS achieves significantly
improved positioning accuracy compared to ILS, 1D-CNN, and WC. Specifically, in the teaching
building, our method achieves improvements of 0.84 m, 0.288 m, and 0.248 m, respectively, while in
the laboratory, the improvements are 2.607 m, 0.696 m, and 0.625 m.

Keywords: indoor positioning; altimetry; barometer; UWB

1. Introduction

Indoor localization is a key focus of research in artificial intelligence (AI) and the Inter-
net of Things (IoT) as 80% of people’s daily lives are spent indoors. Several technologies
have been developed to achieve accurate indoor localization, including Wi-Fi [1], Bluetooth
(BLE), magnetic sensors [2], ultra-wideband (UWB) [3], and visible light communication [4].
While accurate two-dimensional indoor localization is achievable using these technologies,
there is currently no robust and environment-independent method for measuring indoor
height. Existing studies only provide floor identification or imprecise altimetry, making
it essential to develop precise indoor altimetry. This is especially important in irregular
structures, such as buildings with hollow areas, commonly found in various industrial and
commercial settings. In commercial buildings, precise altimetry is critical for location-based
promotions and advertisements, navigation services in train stations and airports, and
tracking and navigation of patients and equipment in hospitals [5]. For emergency services
such as first aid, rescue, firefighting, and public security, accurate altimetry is necessary, as
the Federal Communications Commission (FCC) requires wireless operators to provide
vertical (or Z-axis) position data. In industrial buildings and facilities, accurate altimetry is
crucial for tracking and navigating vehicles, robots, and personnel. In conclusion, precise
indoor altimetry is essential in both commercial and industrial buildings.
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Existing methods can be divided into two categories based on their ability to provide
accurate height: floor identification and altimetry. The first category is mainly based on
matching algorithms, such as k-nearest neighbours (KNN), by creating an offline database
to match and identify floors in the online phase. Fang Zhao et al. [5] proposed a hybrid
floor identification method that extracts the distribution of wireless access points (APs)
in different floors to identify the initial floor through Bayesian classification. The floor
information obtained from wireless AP distribution is then used to calibrate the barometric
pressure-based floor identification to compensate for variable environmental effects. How-
ever, the anti-interference ability of Wi-Fi signals is weak, especially in complex indoor
environments; particularly in commercial buildings with hollow areas, it is difficult to
guarantee their identification accuracy. Some researchers also used vision-based methods to
detect floors, as described in [6,7]. However, these methods usually require the creation of a
large image database, which is time-consuming and labor-intensive. Moreover, the camera
on smartphones is typically monocular, which limits the accuracy of floor identification.
Finally, barometers are widely applied in floor identification, but their performance can
vary significantly between mobile phones due to equipment heterogeneity. In addition, the
accuracy of barometer-based methods is heavily influenced by environmental factors, and
parameter adjustment can be time-consuming in different environments [8,9].

The second category is mostly based on barometers or TOF-based sensors. In the
indoor positioning competitions of IPIN (indoor positioning and indoor navigation), some
teams studied height estimation methods based on barometers [10–13]. However, these
barometer-based methods are often severely affected by barometric drift, and it is difficult
to maintain positioning accuracy for a long time. To solve the problem of barometric drift,
Bao et al. [14] set up another reference base station to update the reference barometric
pressure in real-time. However, most commercial environments currently do not have extra
reference base stations, and communication between devices may also limit the widespread
adoption of this method. To avoid setting up a new reference base station, Li et al. [15]
fused the estimated altitude based on the barometer and the estimated altitude based on
UWB using the extended Kalman filter to achieve high-precision altitude measurement.
However, the estimated altitude based on UWB is obtained through the triangle center-of-
mass algorithm, which sometimes fails to converge when the indoor UWB base stations
are coplanar, resulting in inaccurate altitude estimation. In addition, J. Geng et al. [16]
used the geometric information of building stairs to estimate height using PDR and a
barometer. Two estimated heights were obtained and then combined using the robust
adaptive Kalman filter (RAKF) algorithm to calculate the optimal height. However, the
barometer and accelerometer sensors in smartphones are known to have low precision,
which makes this method unreliable in providing an accurate height. Additionally, some
methods rely on laser [17] and inertial measurement units (IMUs) [18]. While both can
provide accuracy at the centimeter level, their high cost limits their widespread use.

Overall, the fusion of multiple sensors to achieve high-precision indoor altitude
measurement has gradually become a recognized solution by researchers both domestically
and abroad. Among these many sensors, barometers have always been a hotspot in
the research of traditional indoor altitude measurement, while UWB has also gradually
attracted attention due to its high accuracy, high transmission rate, low power consumption,
and strong multipath resolution. However, altimetry based on UWB faces limitations
caused by indoor anchor-coplanar environments.

In previous height measurement solutions, floor recognition based solely on barome-
ters often required additional reference stations to eliminate the influence of barometric
drift. In contrast, in solutions based on the fusion of multiple sensors, accuracy is of-
ten improved by inputting the estimated height based on different sensors into a filter.
Different from existing research techniques, we have designed a novel indoor altimetry
method based on UWB and barometers, in which the floor recognition module can achieve
accurate floor recognition over a long period of time without relying on additional sensors.
Unlike most fusion solutions, our height measurement system uses the floor recognition
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results based on a barometer to assist the UWB height measurement instead of mixing
estimated heights from different sensors. The contributions can be concluded as follows:

(1) Through analyzing the changes in air pressure during walking horizontally or going
upstairs and downstairs, an activity detection module is added to assist floor identi-
fication, addressing equipment heterogeneity and barometric drift. This module is
designed to be lightweight and can be easily run on commodity smartphones.

(2) After analyzing the observation equation, we identified the mechanism of altimetry
error in indoor anchor-coplanar environments based on iterative least squares (ILS).
We found that the iterative process often has convergence problems due to specific
constraints, which result in errors. To overcome this issue, we improved the altimetry
methods based on ILS by carefully selecting an appropriate initial coordinate and
implementing iterative control to optimize the convergence process.

(3) Unlike most of the existing methods based on multisensor fusion that mix height data
from various sensors, we proposed a scheme that utilizes floor recognition results
to assist UWB height measurement. Our method relies solely on barometers for
floor recognition, and then improves UWB height measurement based on the floor
recognition results using the proposed constrained iterative least-squares method.

(4) To validate the effectiveness of the proposed method, we conducted experiments
in both a teaching building and an office building. We compared the proposed
activity-detection-based floor identification algorithm (ADFI) and the constrained
iterative least-squares-based hybrid altimetry algorithm (CILS-HA) with three other
benchmarks, respectively. The results of the experimental campaign demonstrate that
our method outperforms the other baseline methods in all scenarios.

This paper is structured as follows. Section 2 clarifies the problems of the barometer-
based floor identification method and explains the mechanism of altimetry error based on ILS.
Section 3 proposes a novel altimetry method based on barometers and UWB that is suitable
for indoor anchor-coplanar environments. In Section 4, the performance of the proposed
altimetry method is evaluated. Finally, Section 5 presents the discussion and future work.

2. Theoretical Analysis and Problem Descriptions
2.1. Barometric Drift and Equipment Heterogeneity

Barometric drift is a phenomenon where air pressure changes significantly over time.
We collected the air pressure with four smartphones (Samsung Galaxy S4/Hua Wei Magic
2/Hua Wei P40/Xiaomi 6) in a day, as shown in Figure 1. Obviously, air pressure fluctuated
greatly over the course of a day, resulting in a difference of up to 4.08 m in altitude.
This can cause significant errors in barometer-based altitude measurements.

Figure 1. Air pressure variations during a whole day.
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Additionally, equipment heterogeneity can also cause large errors in altimetry.
To illustrate equipment heterogeneity more clearly, we collected the air pressure with
4 smart phones (Samsung Galaxy S4/Hua Wei Magic 2/Hua Wei P40-1/Hua Wei P40-2)
at the same time, shown in Figure 2. There is a constant difference between the air pres-
sure measurements of different smartphones, even among phones of the same brand.
The difference between different brands is about 2–3 hPa, and between the same brand of
phones is about 0.5 hPa.

Figure 2. Air pressure variations between different smartphones.

Barometer-based altimetry methods are mostly according to Equations (1) or (2) [5,19],
where p is the collected air pressure, p0 is the reference air pressure, and t is the temperature.
These methods rely on a fixed reference air pressure, which can maintain high accuracy for
a short period of time since the change of air pressure is small in a short time (shown in
Figure 2). However, the accuracy will decrease significantly over time due to barometric drift
(as shown in Figure 1). Furthermore, equipment heterogeneity limits the widespread use of
these methods since a fixed reference air pressure is not suitable for different smartphones.

H = 44330× (1− (
100p

p0
)

1
5.255 ) (1)

H = 18400× (1 +
t

273.15
) ln

p0

p
(2)

2.2. Z-Axis Error of ILS in Anchor-Coplanar Environments
2.2.1. Iterative Least Squares

ILS is an algorithm commonly used in positioning systems that involves iteratively
estimating a set of parameters by minimizing the sum of the squares of the differences
between observed and predicted values. The algorithm starts with initializing the system,

obtaining the initial coordinates of the mobile node X =

 x
y
z

 and the locations of anchor

Xanchor =

x1 y1 z1
...

...
...

xn yn zn

, and the ranging results between them D = [d1, d2, . . . , dn], where

n is the number of anchors. The count is set to 0 to start the iteration process. In each



Sensors 2023, 23, 4180 5 of 18

iteration, the observation equation is constructed, based on the ranging results and the
known locations of the anchors, as Equation (3) (Step (5)). d1

...
dn

 =


√
(x1 − x)2 +

√
(y1 − y)2 +

√
(z1 − z)2

...√
(xn − x)2 +

√
(yn − y)2 +

√
(zn − z)2

(3)

The Taylor expansion is then performed on the observation equation to linearize it as
Equation (4).  d1

...
dn

 =

 ρ1
...

ρ2

+


x1−x

ρ1

y1−y
ρ1

z1−z
ρ1

...
...

...
xn−x

ρn

yn−y
ρn

zn−z
ρn

 ·
 ∆x

∆y
∆z

 (4)

where ρi =
√
(xi − x)2 + (yi − y)2 + (yi − y)2, i = 1, 2, . . . , n. Assuming V =

 d1
...

dn

 -

 ρ1
...

ρn

, A =


x1−x

ρ1

y1−y
ρ1

z1−z
ρ1

...
...

...
xn−x

ρn

yn−y
ρn

zn−z
ρn

 and ∆ =

 ∆x
∆y
∆z

, the Equation (4) can be trans-

ferred to Equation (5)

V = A · ∆ (5)

V represents the difference between the true distance and the estimated distance.
To ensure the estimate distance is close to the true distance, V needs to be minimized,
which is achieved by VTV = min using the principle of least squares. In the algorithm,
V is calculated at each iteration, and then correction factors ∆ are calculated in different
directions as shown in Equation (6) (as illustrated in (6))

∆ = (AT A)−1 ATV (6)

The initial coordinates are updated using the correction vector as X =

 x
y
z

+ ∆.

The algorithm checks whether the norm of the correction vector is less than a predefined
threshold ε. If it is, the algorithm breaks out of the loop; otherwise, the count is incremented,
and the iteration continues until the maximum number of iterations (N) is reached. The
ILS pseudocode is as follows (Algorithm 1).

Algorithm 1 Traditional Iterative Least Squares

(1) System initialization
(2) Obtain the initial coordinate X, the location of anchors Xanchor and ranging results D
(3) count=0;
(4) While (count<N and ‖∆‖ > ε)
(5) Construct the observation equation D = F(X)
(6) Taylor expansion V = A∆
(7) Calculate the ∆ = (AT A)−1 ATV
(8) Update the initial coordinate X = X + ∆
(9) count++
(10) End while



Sensors 2023, 23, 4180 6 of 18

2.2.2. The Effect of Indoor Anchor-Coplanar Environments on Z-Axis

ILS positioning involves iteratively calculating ∆ and updating the positioning results.
To analyze the effect of the indoor anchor-coplanar environment, the iteration trend of ∆z
needs to be researched. According to ILS, the first derivative of VTV in the z-axis direction
can be expressed as followw:

∂VTV
∂z

= 2((z− z1)(1−
d1

ρ1
) + (z− z2)(1−

d2

ρ2
) + . . . + (z− zn)(1−

dn

ρn
)) (7)

In indoor anchor-coplanar environments, the z-axis coordinates are similar
(z1 = zi = zn), so the Equation (7) can be simplified to Equation (8).

∂VTV
∂z

= 2
n

∑
i=1

(z− zi)

(
1− di√

(xi − x)2 + (yi − y)2 + (zi − z)2

)
(8)

When z− zi = 0 or (xi − x)2 + (yi − y)2 + (zi − z)2 = di , Equation (8) is equal to 0.
Therefore, there are three potential solutions for the z-axis coordinate: z = z̃, z = zi, or
z = 2zi − z̃, as illustrated in Figure 3, where z̃ is the true z-axis coordinate of the unknown
point. This means that in the iteration, the z-axis coordinate will update to approach one of
the three solutions, and when ∆z is less than the threshold, one of the potential solutions
will be generated. Assuming that all the anchors are above the tags, the correct solution
should be the smallest of the three. However, If the initial iteration point z0 is set above the
height of anchors, the positioning settlement will fall into the trap of local optimization, and
the z-axis coordinate may be generated from two solutions other than the correct solution,
resulting in a large error (2–3 m). It is worth noting that this analysis is not only applicable
to completely coplanar base stations, but also to nearly coplanar ones. When the base
station is not completely coplanar, the solution is close to the coplanar solution.

Figure 3. First−order derivative of the objective function in the coplanar direction.

3. Proposed Method
3.1. System Overview

The proposed method consists of two main steps, as shown in Figure 4. Firstly, we
introduce ADFI to achieve precise floor identification. Then, in the second step, we propose
the CILS-HA algorithm, which uses the results of the floor identification algorithm from
Step 1 to complete the initialization process and perform indoor altimetry using UWB
technology. ADFI combines traditional barometer-based altimetry with activity detection
to minimize the impact of equipment heterogeneity and barometric drift. Meanwhile, CILS-
HA enhances the z-axis accuracy by restricting the range of the initial z-axis coordinate and
the step length and direction of the iteration.
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Figure 4. The frame diagram of the proposed method.

3.2. ADFI

To solve the equipment heterogeneity and barometric drift, we propose the ADFI
algorithm. The algorithm utilizes activity detection to distinguish upstairs, downstairs,
and horizontal walking. The clear description of activity detection and its experimental
basis are introduced as follows.

Figure 5 shows the change in air pressure over time (sampling frequency is 5 Hz)
in three behavioural states: going upstairs, downstairs, and horizontal walking. The
fluctuation of air pressure caused by horizontal movement is much smaller than that
caused by vertical movement as shown in Table 1.

Figure 5. Air pressure changes when going upstairs, downstairs, and walking horizontally.

Table 1. The air pressure difference within 2 s under three different activities.

Average
Air Pressure
Differences

Activity

Going Upstairs
(hpa)

Going Downstairs
(hpa)

Horizontal Walking
(hpa)

|p0 − p2| 0.06 0.05 0.01

|p2 − p4| 0.07 0.06 0.02

|p4 − p6| 0.08 0.07 0.01

|p6 − p8| 0.07 0.08 0.01

|p8 − p10| 0.09 0.10 0.01
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According to the above analysis, an activity detection algorithm is proposed, as shown
in Figure 6, that utilizes counting variables count1 and count2, an air pressure difference
threshold θ , time stamp t, air pressure value pt at time t, and air pressure values pstart
and pend, which are recorded at the beginning and end of the going upstairs or downstairs.
When the air pressure difference between the last two seconds exceeds the threshold θ,
count1 is incremented; otherwise, it is reset. When count1 exceeds N1, going upstairs or
downstairs is identified. Similarly, when the air pressure difference between the last two
seconds falls below the threshold θ, count2 is incremented; otherwise, it is reset. When
count2 exceeds N2, the end of going upstairs or downstairs is identified. Then, the pstart and
pend are used to calculate the height, according to Equation (11), where pstart is the reference
air pressure p0 and pend is the collected air pressure p. Finally, based on the estimated
height and the height differences between floors, the floor number can be determined.

Figure 6. Activity detection flow chart.

Real-time updating of the reference air pressure in our proposed algorithm eliminates
the effect of barometric drift. Additionally, as shown in Figures 1 and 2, there are fixed
differences between the air pressure collected by different smartphones, but the changes
in air pressure are almost identical. This means that the estimated heights of different
smartphones based on our proposed method are nearly the same, demonstrating that
equipment heterogeneity has been solved. However, it should be noted that the accuracy
of the estimated height using our ADFI is low due to the low accuracy of the barometers
embedded in smartphones. Therefore, the estimated height can only be used for floor
identification and not for accurate localization.
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3.3. CILS-HA

According to the analysis above, the selection of initial z-axis coordinate is crucial for
the z-axis localization. When the anchors are deployed at similar heights, the potential
z-axis coordinates from ILS are z̃, zi, or 2zi − z̃, sorted from smallest to largest. To ensure
convergence to the correct value, the initial z-axis coordinate should be set below the true
height of the user (z̃), whereas coordinates between z̃ and zi may result in values between
those heights. If the initial coordinate is higher than the anchor height, the potential
coordinates can fall between zi and 2zi − z̃. Therefore, we propose setting the initial
z-axis coordinate as the height of the current floor (z0 = h f loor), provided by ADFI.
When all anchors are below the tag, the highest potential coordinate is correct, and the
initial coordinate should be set above zi. However, when the anchors are on a floor below
the user, the ranging accuracy of UWB is poor due to non-line-of-sight (NLOS), so this
paper selects only the anchors on the current floor to improve accuracy.

In order to further ensure that the z-axis coordinates can converge to the true coordi-
nate z̃, the iteration direction and step size are constrained. As analyzed above, with the
initial coordinate of the z-axis set to the height of the current floor, the z-axis coordinate
will increase monotonically during convergence. However, only constraining the itera-
tion direction may lead to incorrect convergence. According to Equation (9), the iteration
step of ILS is 1, and the size of the iterative update value is determined by the first- and
second-order derivative of the function. When the coordinate convergence is close to the
correct value, the value of the first derivative gradually decreases, and the reciprocal of the
second derivative increases, resulting in a larger ∆. After updating, the estimated coordi-
nate value may be greater than the correct value and cannot converge to the correct value
due to the constrain of iteration direction. To avoid this, the step size is also constrained,
with a step coefficient set as Equation (10) and C a nonnegative constant, considering the
centimeter-level positioning accuracy.

Xk+1 = Xk + (
∂2VTV

∂X2 )−1(
∂VTV

∂X
) (9)

W =

 10−c 0 0
0 10−c 0
0 0 10−c

 (10)

After the adjustment, all three directional components are updated to the centimeter
level, which can be expressed as:

 xk+1
yk+1
zk+1

 =

 xk
yk
zk

+ W


∂2VTV

∂x2
∂2VTV

∂xy
∂2VTV

∂xz
∂2VTV

∂yx2
∂2VTV

∂y2
∂2VTV

∂yz
∂2VTV

∂zx
∂2VTV

∂zy
∂2VTV

∂z2




∂VTV
∂x

∂VTV
∂y

∂VTV
∂z

 (11)

By selecting the initial coordinate and applying the iteration constraints, the z-axis
coordinate can converge to the correct value z̃. The pseudocode of CILS-HA is shown
as follows. In the system initialization (Step (1)), the initial z-axis coordinate is set as the
height of the floor (h f loor). Once achieving ∆, the convergence direction and step size are
constrained (Step (8) to Step (12)).

The proposed method in this paper has two categories for setting the iteration ter-
mination condition: the first is when the difference between the objective function (∆) of
two consecutive iterations is less than a threshold (ε), and the second is when the number
of iterations exceeds the maximum iteration number N. In the algorithm proposed, the
objective function has extreme values, and the iteration can converge by primarily relying
on the first type of iteration termination condition, that is, ∆ < ε. While N is set to 30, actual
tests revealed an average of 15 iterations and a maximum of 18 iterations for 100 sets of
data. As such, the maximum iteration value N is only for risk avoidance and is typically not
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triggered. During the iterative calculation process, ∆ monotonically decreases, leading to X
gradually converging to the final result after ∆ < ε. Determining ε involves considering
four factors: positioning accuracy, number of iterations, system error and noise, and dataset
size and complexity. Since the positioning accuracy requirement is at the centimeter level, ε
must be set to a small value. However, if ε is too small, the algorithm may iterate too many
times, leading to an increased running time. System error and noise are relatively small
due to the antimultipath capability of UWB, while the dataset’s size and complexity are
low. Multiple tests showed that setting ε to e−7 leads to an average of 15 iterations and less
than 1 s of average positioning time, meeting the centimeter-level accuracy requirement.
The pseudocode of the proposed CILS algorithm is shown below (Algorithm 2).

Algorithm 2 Constrained Iterative Least Squares

(1) System initialization: Initial coordinate X = (x, y, z), z = h f loow; Step length W
(2) Obtain the location of anchors Xanchor and ranging results D
(3) count = 0;
(4) While (count<N and ‖∆‖ < ε and ‖∆‖ > ε)
(5) Construct the observation equation D = F(X)
(6) Taylor expansion V = A∆
(7) Calculate the ∆ = (AT A)−1 ATV
(8) Update the initial coordinate X = X + W∆
(9) count ++
(10) End while

4. Experiments and Analysis
4.1. Environmental Setup and Data Collection
4.1.1. Environmental Setup

ADFI and CILS-HA were evaluated through two experiments in a teaching building
and a laboratory building. Figure 7a shows the structure of the teaching building, with a
plan of each floor shown in Figure 7b. The building has five floors, with heights between
each floor of 5 m, 4 m, 4 m, and 5 m, respectively. The building is equipped with 44 UWBs,
56 Wi-Fis, and 43 BLEs, allowing for comparison of the proposed ADFI and CILS-HA with
existing Wi-Fi and BLE-based methods. The numbers of UWBs, Wi-Fis, and BLEs on each
floor are similar.

Figure 7. The deployment of teaching building (a) the structure of the teaching building. (b) plan of
each floor.

Figure 8 shows the laboratory building, where Wi-Fi is represented by blue triangles,
BLE by red triangles, and UWB by black circles. Each floor is equipped with 8 Wi-Fis and
10 BLEs, and 4 UWBs are installed on the ceiling of the building. The heights between
each floor are 5.5 m and 2.5 m. Compared to the teaching building, the laboratory building
is more challenging than the teaching building for two reasons: (1) the height difference
between the second and third floors is small, resulting in a smaller air pressure difference
compared to the teaching building; and (2) the middle part of each floor is a hollow area (as
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shown in Figure 8), which leads to less obvious signal differences between floors compared
to the teaching building.

Figure 8. The deployment of laboratory building.

4.1.2. Data Collection for ADFI

For the ADFI experiment, 325 Wi-Fi reference points were set in the teaching building
and 144 Wi-Fi reference points were set in the laboratory to enable comparison with other
Wi-Fi-based methods. During data collection, the tester walked with a mobile phone along
the red line shown in Figures 7 and 8 and collected real-time air pressure and Wi-Fi data.

4.1.3. Data Collection for CILS-HA

In the CILS-HA experiment, the altimetry accuracy of the algorithm was tested using a
fixed smartphone placed on a tripod at a height of 1.3 m. In addition to the Wi-Fi reference
points, BLE reference points were also set up with the same number and positions as the
Wi-Fi reference points. The experiment also involved setting up 48 testing points in the
teaching building and 100 testing points in the laboratory. During data collection, the tester
collected air pressure, UWB, Wi-Fi, and BLE data at the test points on each floor, starting
from the first floor. Each testing point was sampled for 15 s at a rate of 20 Hz.

4.2. Performance of ADFI

To verify the performance of ADFI, we conducted two experimental campaigns
and compared them with three existing algorithms in literature: Bayesian classification-
based floor Identification (BCFI) [5], Viterbi [8], and the adaptive unscented Kalman filter
(AUKF) [20]. BCFI and Viterbi are based on Wi-Fi, and AUKF is based on barometers.

4.2.1. Dynamic Experiment

Figures 9 and 10, respectively, show the dynamic experimental results of the proposed
method and the comparative methods in two different environments. In a short period
of time, the barometric pressure remains relatively constant, so both the AUKF method
and the proposed method can maintain a high accuracy of 99.54% and 99.33%, respectively.
Compared to AUKF, the proposed method incorporates the activity detection based on the
barometric sequence, resulting in a delay of approximately 1.5 s, and thus the accuracy is
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slightly lower. However, compared with the AUKF method, our method does not show
repeated transformations in floor identification results when walking up and downstairs,
as our method incorporates activity detection. The Wi-Fi signal-based methods, including
BCFI and Viterbi, have an accuracy of 100% when walking on the plane in the teaching
building, but drop to 87.33% and 83.64%, respectively, in the laboratory building. Especially
on the second and third floors, due to the close proximity of the floors and the existence of
hollow areas, the signal differences between floors are not obvious, and the Wi-Fi-based
floor identification methods sometimes fail to distinguish signal features. Meanwhile,
BCFI and Viterbi, like the AUKF, also show repeated transformations in floor identification
results when walking up and down stairs, while our method does not, demonstrating
its innovation.

Figure 9. Experiment results in teaching building.

Figure 10. Experiment results in laboratory building.

4.2.2. Static Experiment

We also conducted a static experiment to test the stability of the method and its
ability to eliminate the influence of barometric drift. We placed a phone on the plane of
the second floor and left it stationary for a whole day, collecting Wi-Fi, Bluetooth, and
barometer data and outputting the floor identification results. Figure 11 illustrates the
average accuracy of floor identification achieved by four methods over different time
intervals. Our method achieved a 100% identification accuracy, as it incorporates an activity
detection module that does not perform floor identification when no activity is detected,
resulting in consistent and unchanged output with 100% accuracy. This indicates that when
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the phone is stationary, the floor identification results will not be affected by barometric
drift and remain unchanged. However, it should be noted that this does not guarantee
the real-time identification accuracy of our method to maintain 100%. The accuracy of the
AUKF method based on the barometer can still maintain 100% accuracy within 4–5 h, but
with time passing, the barometer data will change significantly, causing its accuracy to
drop to 0 in a short period. The reason why the accuracy of our proposed method and the
AUKF method can maintain almost 100% within 4 h is that the barometric pressure at the
same location remains relatively constant over a short period of time when they remain
stationary. The accuracy of the other two methods, BCFI and Viterbi, also remains basically
unchanged, as they do not rely on barometer data and are not affected by pressure drift.

Figure 11. The identification accuracy of four methods in a whole day.

4.3. Performance of CILS-HA

We conducted a positioning experiment in both the teaching building and laboratory
building to verify our theoretical analysis of Z-axis error in anchor-coplanar environ-
ments. We compared the traditional ILS-based positioning accuracy of the three axes (x,
y, z), and the results are shown in Table 2. The accuracy of the z-axis was significantly
worse than that of the x-axis and y-axis when the anchors were installed with a similar
height difference in an indoor environment, demonstrating the correctness of our analysis.
The accuracy difference between the two scenarios was due to the UWB signals from
anchors to tags being blocked by glasses and concrete walls in the laboratory building,
resulting in a serious NLOS effect.

Table 2. Comparison of positioning accuracy in the x, y, and z axes in the teaching building and laboratory.

Axes X (m) Y (m) Z (m)

Teaching building 0.181 0.227 1.404
Laboratory building 0.932 1.077 3.743

To evaluate the performance of our proposed method, we compared it with two
existing methods: 1-D CNN (based on BLE) [21] and WC (based on Wi-Fi fine-time-
measurement) [22], as well as the traditional ILS. Figure 12 shows the positioning error at
each testing point in the teaching building. Although the traditional ILS achieves similar
positioning accuracy at some testing points, there are still ten errors of more than 1 m, which
is due to the anchor-coplanar environment. In contrast, the proposed method achieves
positioning errors of less than 0.5 m at all testing points. Furthermore, compared with CNN
and WC, the proposed method achieves lower errors at most points.
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Figure 12. Positioning error of each point in teaching building.

Figure 13 shows the positioning error at each testing point in the laboratory. However,
as in the teaching building, our proposed method maintains the fewest errors among these
methods. Notably, compared to CNN and WC, the number of errors greater than 2 m is
smaller, demonstrating the robustness of our proposed method. Compared to the teaching
building environment, the laboratory environment is more confined, but there are more
wireless signal devices such as Wi-Fi, Bluetooth, and UWB deployed on each floor, and
there is also more metal equipment, resulting in more interference and severe multipath
effects. Therefore, the UWB ranging error in the laboratory environment is larger than that
in the teaching building environment.

Figure 13. Positioning error of each point in laboratory.

Table 3 presents the Z-axis positioning errors of the four methods in the teaching
building. The proposed method yielded a mean error (ME) of 0.101 m, which is better
than ILS, CNN, and WC by 0.84 m, 0.288 m, and 0.248 m, respectively. Moreover, the
proposed method produced a root-mean-square error (RMSE) that was 1.162 m, 0.266 m,
and 0.252 m smaller than ILS, CNN, and WC, respectively. Meanwhile, Table 4 shows
the Z-axis positioning errors of the four methods in the laboratory. The proposed method
attained an ME of 0.947 m, which is better than ILS, CNN, and WC by 2.607 m, 0.696 m,
and 0.625 m, respectively. The proposed method also achieved an RMSE that was 3.491 m,
0.496 m, and 0.361 m smaller than ILS, CNN, and WC, respectively. These results indi-
cate that the proposed method surpassed the other three methods in terms of accuracy.
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Remarkably, in the NLOS environment, ILS, CNN, and WC had an increase of 2.603 m,
1.254 m, and 1.223 m, respectively, in their ME, while the proposed method only increased
by 0.846 m. Likewise, the RMSE of ILS, CNN, and WC increased by 3.477 m, 1.378 m, and
1.284 m, respectively, whereas the proposed method’s RMSE increased by only 1.148 m.
These findings support the conclusion that the proposed method is more robust than the
other three methods in NLOS environments.

Table 3. Accuracy of four methods in teaching building.

Algorithm 50% 70% 80% ME (m) RMSE (m)

Proposed Method 0.071 0.112 0.169 0.101 0.144
ILS 0.481 0.754 1.918 0.941 1.306

CNN 0.332 0.536 0.625 0.389 0.410
WC 0.266 0.472 0.549 0.349 0.396

Table 4. Accuracy of four methods in laboratory.

Algorithm 50% 70% 80% ME (m) RMSE (m)

Proposed Method 0.820 1.022 1.369 0.947 1.292
ILS 3.250 4.184 4.967 3.554 4.783

CNN 1.519 1.710 1.907 1.643 1.788
WC 1.546 1.653 1.714 1.572 1.653

Figure 14 displays the error bars for the proposed method, ILS, CNN, and WC in both
the teaching building and laboratory. The error bar for the proposed method is shorter
than those of the other three methods, indicating that the standard deviation (STD) of the
proposed method is smaller. This suggests that the performance of the proposed method is
more stable than that of the other methods.

Figure 14. Positioning error of four methods in teaching building and laboratory.

Figure 15a,b depict the cumulative probability of the proposed method, ILS, CNN,
and WC. In the teaching building, 80% of the proposed method’s errors are less than 0.169,
whereas the corresponding values for ILS, CNN, and WC are less than 1.918, 0.625, and
0.549, respectively. In the laboratory, 80% of the proposed method’s errors are less than
1.369, while the corresponding values for ILS, CNN, and WC are less than 4.967, 1.907,
and 1.714, respectively. These results demonstrate that the Z-axis positioning errors of the
proposed method are smaller than those of ILS, CNN, and WC.
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Figure 15. CDF of four methods (a) in teaching building. (b) in laboratory.

Finally, assessing the time efficiency of the proposed method is crucial. Compared
to the traditional ILS, our method requires more iterations due to the step length con-
straint. The proposed method takes an average of 15 iterations, whereas ILS takes about 6.
Figure 16 illustrates the time consumption of the proposed method. The majority of epochs
take between 0.7 s and 0.9 s, and 11 epochs take more than 0.9 s, but all are completed in
less than 1s, satisfying the real-time positioning requirement.

Figure 16. Time consumption of proposed method.

5. Discussion and Future Work

Indoor altimetry plays a critical role in commercial and industrial buildings.
However, despite the maturity of indoor 2D positioning, accurate smartphone-based
indoor 3D altimetry methods are still lacking. To address this, our paper proposes a
hybrid barometer and UWB technology-based altimetry method. We optimize the floor
identification method using barometers and the iterative ILS method. To evaluate the per-
formance of our two methods, tests were conducted in a teaching building and a laboratory.
The experimental results show that our activity detection-based floor identification method
outperforms other methods, effectively eliminating repeated transformations during the
up- and downstairs process in dynamic experiments and the effect of barometric drift in
static experiments. Additionally, our proposed altimetry method based on constrained ILS
achieves improved positioning accuracy of 0.84 m, 0.288 m, and 0.248 m in the teaching
building compared to ILS, 1D-CNN, and WC, respectively, and 2.607 m, 0.696 m, and
0.625 m in the laboratory.

For future work, we plan to further integrate the proposed indoor altimetry with
plane positioning to form a complete 3D positioning system. Currently, many scholars
have carried out a lot of work in UWB-based 2D positioning [23], using various machine
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learning algorithms to reduce the impact of non-line-of-sight and clock drift on UWB
positioning [24,25]. Precise indoor height measurement technology can provide sufficient
prior information for 2D positioning, such as excluding some UWB base stations with
poor signal quality from other floors. Through this tightly coupled approach, it may be
possible to further improve the positioning accuracy of UWB and achieve ubiquitous
indoor positioning.

Author Contributions: Conceptualization, Y.W.; methodology, M.S.; software, M.S.; validation, M.S.
and N.Z.; formal analysis, M.S.; investigation, M.S.; resources, M.S.; data curation, N.Z.; writing—
original draft, M.S.; writing—review and editing, C.S.; visualization, M.S.; supervision, Y.W. and
H.S.; project administration, Y.W.; funding acquisition, Y.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China under Grant 2022YFE0102600, 2016YFB0502102, and by China Sponsorship Council grant
number CSC 202106420051.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: The study did not involve humans.

Data Availability Statement: The data used in this paper were obtained through measurements by
the authors. No publicly available data are cited, and data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, S.; Wang, Y.; Si, M. A Two-Step Fusion Method of Wi-Fi FTM for Indoor Positioning. Sensors 2022, 22, 3593. [CrossRef]

[PubMed]
2. Sarcevic, P.; Csik, D.; Odry, A. Indoor 2D Positioning Method for Mobile Robots Based on the Fusion of RSSI and Magnetometer

Fingerprints. Sensors 2023, 23, 1855. [CrossRef]
3. Larrad, I.R.; Berardinelli, G.; Madsen, O. Evaluation and Comparison of Ultrasonic and UWB Technology for Indoor Localization

in an Industrial Environment. Sensors 2022, 2, 2927.
4. Meng, X.; Jia, C.; Cai, C.; He, F.; Wang, Q. Indoor high-precision 3D positioning system based on visible-light communication

using improved whale optimization algorithm. Photonics 2022, 9, 93. [CrossRef]
5. Zhao, F.; Luo, H.; Zhao, X.; Pang, Z.; Park, H. HYFI: Hybrid floor identification based on wireless fingerprinting and barometric

pressure. IEEE Trans. Ind. Inform. 2015, 13, 330–341. [CrossRef]
6. Cheng, H.; Chen, H.; Liu, Y. Topological indoor localization and navigation for autonomous mobile robot. IEEE Trans. Autom. Sci.

Eng. 2014, 12, 729–738. [CrossRef]
7. Liu, Y.; Jiang, D.; Xu, C.; Sun, Y.; Jiang, G.; Tao, B.; Tong, X.; Xu, M.; Li, G.; Yun, J. Deep learning based 3D target detection for

indoor scenes. Appl. Intell. 2022, Accepted. [CrossRef]
8. De Cock, C.; Joseph, W.; Martens, L.; Trogh, J.; Plets, D. Multi-floor indoor pedestrian dead reckoning with a backtracking particle

filter and viterbi-based floor number detection. Sensors 2021, 21, 4565. [CrossRef]
9. Li, B.; Harvey, B.; Gallagher, T. Using barometers to determine the height for indoor positioning. In Proceedings of the

International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–7.
10. Torres-Sospedra, J.; Jiménez, A.R.; Moreira, A.; Lungenstrass, T.; Lu, W.C.; Knauth, S.; Mendoza-Silva, G.M.; Seco, F.; Pérez-

Navarro, A.; Nicolau, M.J.; et al. Off-line evaluation of mobile-centric indoor positioning systems: The experiences from the 2017
IPIN competition. Sensors 2018, 18, 487. [CrossRef]

11. Renaudin, V.; Ortiz, M.; Perul, J.; Torres-Sospedra, J.; Jiménez, A.R.; Perez-Navarro, A.; Mendoza-Silva, G.M.; Seco, F.; Landau, Y.;
Marbel, R.; et al. Evaluating indoor positioning systems in a shopping mall: The lessons learned from the IPIN 2018 competition.
IEEE Access 2019, 7, 148594–148628. [CrossRef]

12. Potorti, F.; Park, S.; Crivello, A.; Palumbo, F.; Girolami, M.; Barsocchi, P.; Lee, S.; Torres-Sospedra, J.; Ruiz, A.R.J.;
Perez-Navarro, A.; et al. The IPIN 2019 indoor localisation competition—Description and results. IEEE Access 2020,
8, 206674–206718. [CrossRef]

13. Potortì, F.; Torres-Sospedra, J.; Quezada-Gaibor, D.; Jiménez, A.R.; Seco, F.; Pérez-Navarro, A.; Ortiz, M.; Zhu, N.; Renaudin, V.;
Ichikari, R.; et al. Off-line evaluation of indoor positioning systems in different scenarios: The experiences from IPIN 2020
competition. IEEE Sens. J. 2021, 22, 5011–5054. [CrossRef]

14. Bao, L.; Li, K.; Li, W.; Shin, K.; Kim, W. A Sensor Fusion Strategy for Indoor Target Three-dimensional Localization based
on Ultra-Wideband and Barometric Altimeter Measurements. In Proceedings of the 2022 19th International Conference on
Ubiquitous Robots (UR), Jeju, Republic of Korea, 4–6 July 2022; pp. 181–187.

http://doi.org/10.3390/s22093593
http://www.ncbi.nlm.nih.gov/pubmed/35591286
http://dx.doi.org/10.3390/s23041855
http://dx.doi.org/10.3390/photonics9020093
http://dx.doi.org/10.1109/TII.2015.2491264
http://dx.doi.org/10.1109/TASE.2014.2351814
http://dx.doi.org/10.1007/s10489-022-03888-4
http://dx.doi.org/10.3390/s21134565
http://dx.doi.org/10.3390/s18020487
http://dx.doi.org/10.1109/ACCESS.2019.2944389
http://dx.doi.org/10.1109/ACCESS.2020.3037221
http://dx.doi.org/10.1109/JSEN.2021.3083149


Sensors 2023, 23, 4180 18 of 18

15. Li, J.; Wang, Y.; Chen, Z.; Ma, L.; Yan, S. Improved Height Estimation Using Extended Kalman Filter on UWB-Barometer 3D
Indoor Positioning System. Wirel. Commun. Mob. Comput. 2021, 2021, 7057513. [CrossRef]

16. Geng, J.; Xia, L.; Xia, J.; Li, Q.; Zhu, H.; Cai, Y. Smartphone-based pedestrian dead reckoning for 3D indoor positioning. Sensors
2021, 21, 8180. [CrossRef]

17. Pyo, Y.; Hasegawa, T.; Tsuji, T.; Kurazume, R.; Morooka, K. Floor sensing system using laser reflectivity for localizing everyday
objects and robot. Sensors 2014, 14, 7524–7540. [CrossRef] [PubMed]

18. Bai, N.; Tian, Y.; Liu, Y.; Yuan, Z.; Xiao, Z.; Zhou, J. A high-precision and low-cost IMU-based indoor pedestrian positioning
technique. IEEE Sens. J. 2020, 20, 6716–6726. [CrossRef]

19. Xia, H.; Wang, X.; Qiao, Y.; Jian, J.; Chang, Y. Using multiple barometers to detect the floor location of smart phones with built-in
barometric sensors for indoor positioning. Sensors 2015, 15, 7857–7877. [CrossRef]

20. Yu, Y.; Chen, R.; Chen, L.; Zheng, X.; Wu, D.; Li, W.; Wu, Y. A novel 3-D indoor localization algorithm based on BLE and multiple
sensors. IEEE Internet Things J. 2021, 8, 9359–9372. [CrossRef]

21. Yang, S.; Sun, C.; Kim, Y. Indoor 3D localization scheme based on BLE signal fingerprinting and 1D convolutional neural network.
Electronics 2021, 10, 1758. [CrossRef]

22. Cao, H.; Wang, Y.; Bi, J. Smartphones: 3D indoor localization using Wi-Fi RTT. IEEE Commun. Lett. 2020, 25, 1201–1205. [CrossRef]
23. Chiasson, D.; Lin, Y.; Kok, M.; Shull, P. Asynchronous Hyperbolic UWB Source-Localization and Self-Localization for Indoor

Tracking and Navigation. IEEE Internet Things J. 2023, Early Access.
24. Poulose, A.; Han, D.S. UWB indoor localization using deep learning LSTM networks. Appl. Sci. 2020, 10, 6290. [CrossRef]
25. Sung, S.; Kim, H.; Jung, J.I. Accurate Indoor Positioning for UWB-Based Personal Devices Using Deep Learning. IEEE Access

2023, 11, 20095–20113. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2021/7057513
http://dx.doi.org/10.3390/s21248180
http://dx.doi.org/10.3390/s140407524
http://www.ncbi.nlm.nih.gov/pubmed/24763253
http://dx.doi.org/10.1109/JSEN.2020.2976102
http://dx.doi.org/10.3390/s150407857
http://dx.doi.org/10.1109/JIOT.2021.3055794
http://dx.doi.org/10.3390/electronics10151758
http://dx.doi.org/10.1109/LCOMM.2020.3044714
http://dx.doi.org/10.3390/app10186290
http://dx.doi.org/10.1109/ACCESS.2023.3250180

	Introduction
	Theoretical Analysis and Problem Descriptions
	Barometric Drift and Equipment Heterogeneity
	Z-Axis Error of ILS in Anchor-Coplanar Environments
	Iterative Least Squares 
	The Effect of Indoor Anchor-Coplanar Environments on Z-Axis


	Proposed Method
	System Overview
	ADFI
	CILS-HA

	Experiments and Analysis
	Environmental Setup and Data Collection
	Environmental Setup
	Data Collection for ADFI
	Data Collection for CILS-HA

	Performance of ADFI
	Dynamic Experiment
	Static Experiment

	Performance of CILS-HA

	Discussion and Future Work
	References

