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Abstract

It is frequently assumed in several domains of economics that demand functions are invertible
in prices. At the primitive level of preferences, however, the corresponding characterization has re-
mained elusive. We identify necessary and sufficient conditions on a utility-maximizing consumer’s
preferences for her demand function to be continuous and invertible: strict convexity, strict mono-
tonicity and differentiability in the sense of Rubinstein (2006). We further show that Rubinstein differ-
entiability is equivalent to the indifference sets being smooth, which is weaker than Debreu’s (1972)
notion of preference smoothness. We finally discuss implications of our analysis for demand functions
that satisfy the “strict law of demand”.

∗We are grateful to Hugo Sonnenschein, Phil Reny and the anonymous referees for very useful comments. Any errors are
our own.



1 Introduction

Invertibility of demand is frequently assumed in several domains of economic inquiry that include con-
sumer and revealed preference theory (Afriat, 2014; Matzkin and Ricther, 1991; Chiappori and Rochet,
1987; Cheng, 1985), the estimation of discrete or continuous demand systems that may be non-separable
and non-parametric (Berry, Ghandhi, and Haile, 2013), portfolio choice (Kübler and Polemarchakis,
2017), general equilibrium theory (Hildenbrand, 1994), and industrial organization (Amir, Erickson, and
Jin, 2017). In some of this work (e.g. Berry, Ghandi, and Haile, 2013; Cheng, 1985) the interest has natu-
rally been on conditions that ensure invertibility of the relevant demand function/system. Focusing on a
general neoclassical consumer-theoretic domain, the present paper goes one step further and contributes
to this large literature by providing the first complete characterization of classes of preference relations
that generate consumer demand functions that are invertible in prices.

Certain smoothness conditions on either the demand system directly (e.g. Gale and Nikaido, 1965)
or –closer to our analysis– on the utility function that generates it (e.g. Katzner, 1970) have been known
for a long time to be sufficient for invertibility. However, the more foundational question of whether
it is also possible to identify conditions on a consumer’s preferences that are simultaneously necessary
and sufficient for invertibility has remained unanswered. Perhaps surprisingly, our main result shows
that invertibility of a utility-maximizing consumer’s demand function is characterized by three simple
and behaviourally interpretable textbook conditions on the preferences that generate it: strict convexity,
strict monotonicity and differentiability in the sense of Rubinstein (2006). The latter notion intuitively
requires that for every bundle in the consumption set there exists a vector –which we refer to as the
preference gradient– such that any arbitrarily small movement away from the bundle is in a direction that
results to an improvement for the consumer if and only if the move is evaluated as positive by the vector.

Our characterization pertains to invertible demand functions generated by continuous preference
relations and has two building blocks. The first establishes that strict convexity and strict monotonic-
ity by themselves jointly characterize rational demand functions that have the onto/surjectivity property
whereby for every bundle in the consumption set there are some –possibly non-unique– prices that ra-
tionalize the consumer’s choice of that bundle. This result is of independent interest and although it in-
volves relatively standard arguments, we have been unable to find a statement of it in the literature. The
second building block establishes that, for onto demand functions in this class, the one-to-one/injectivity
property is equivalent to Rubinstein differentiability of the preference relation that generates them. Prov-
ing this second part –and especially that preference differentiability is implied by injectivity– is not as
straightforward and requires the use of novel arguments.

As we demonstrate by example, within the class of continuous, strictly convex and strictly monotonic
preferences, the behaviourally interpretable notion of Rubinstein differentiability is weaker than the
requirement that the preferences admit a smooth or even differentiable utility representation. In fact,
Rubinstein differentiability turns out to be equivalent to a notion of weakly smooth preferences due to
Neilson (1991). This generalizes the original notion of smooth preferences due to Debreu (1972) –which
is equivalent to the existence of a smooth utility representation– by restricting attention to what happens
within any given indifference set, not along the entire indifference relation itself.

From the applications’ point of view, our result provides transparency in –and guidance for– applied
work that assumes demand functions that are invertible in prices. As is often the case in practice, the

1



analyst may assume an invertible demand function directly. Our characterization clarifies that, at the
more primitive level of the generating preferences, the analyst effectively assumes strict convexity, strict
monotonicity and an intuitive notion of differentiability that is weaker than anything that could guaran-
tee proper differentiability of the utility function. In this sense our analysis shows that micro-founding
a model that features invertible demand can be done by imposing the relevant necessary and sufficient
structure directly on preferences, thereby avoiding unnecessarily strong assumptions and maximizing
the model’s domain of application. In particular, the expanded class of preferences that we show can
generate invertible demands includes many that are representable by utility functions which are defined
in a piecewise but non-smooth fashion and, for example, obey homotheticity in some regions but not in
others, thus allowing for the consumer’s marginal rates of substitution to change discontinuously even
as the quantity of all goods increases by the same proportion. This expansion adds to the toolkit of the
applied economist interested in analysing consumer behaviour when preferences may change –possibly
non-smoothly– as income varies.

As an additional note of motivation for our contribution let us now recall that invertibility of the
aggregate demand function in a pure exchange economy is equivalent to uniqueness of Walrasian equi-
librium relative prices. As pointed out in Jerison and Quah (2008) and Hildenbrand (1994), for example,
when the Walrasian market demand function satisfies the “strict law of demand” whereby the vectors of
changes in prices and demanded quantities go in strictly opposite directions following a price change,
the above invertibility condition is satisfied and the equilibrium is unique and stable. Our character-
ization contributes to the behavioural foundations of this analysis as it implies that if an individual
(respectively, market) onto demand function satisfies the strict law of demand, then the consumer’s
(respectively, the representative consumer’s, if one exists) preferences are necessarily strictly convex,
strictly monotonic and differentiable. This implication makes a non-obvious step in the direction of fully
characterizing preference structures generating demand functions that satisfy the strict law of demand,
which remains an open problem.

The remainder of the paper is structured as follows. Section 2 states and decomposes the main
result, and also illustrates it with two examples. The penultimate part of that section focuses on the
special case where preferences are, in addition, homothetic or quasi-linear, and the final part discusses
the implication of our analysis for the behavioural origins of the strict law of demand. Section 3 presents
the proofs of all results that are stated in the main body of the paper. The Online Appendix provides
additional material and results, including domain generalizations and the proofs of various non-obvious
claims that we make in passing while informally discussing some aspects and implications of the results
that are stated in the main body of the paper.

2 Main Result, Decomposition and Implications

We consider a consumption set X that is an open and convex weak subset of Rn
++. For two consump-

tion bundles x and y in X we write x ≥ y and x � y whenever xi ≥ yi and xi > yi for all i ≤ n,
respectively. We also write x > y whenever x ≥ y and x 6= y. The consumer’s preferences are captured
by a continuous weak order % on X, i.e. by a complete and transitive binary relation whose graph is a
closed subset of X × X. Such preferences are convex if, for all x, y ∈ X and any α ∈ [0, 1], x % y implies
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αx + (1− α)y % y, and monotonic if x � y implies x � y. They are strictly convex if, for all x, y ∈ X and
α ∈ (0, 1), x % y implies αx + (1− α)y � y, and strictly monotonic if x > y implies x � y. For any x ∈ X
we let

Ux := {z ∈ X : z % x} and Ix := {z ∈ X : z ∼ x}

denote the weak upper-contour and indifference sets of x, respectively. For A ⊆ X, we let

max
%

A := {x ∈ A : x % y for all y ∈ A}

denote the set of all %-greatest elements in A. Given some set Y ⊆ Rn
++ of income-normalized strictly

positive prices, the budget correspondence B : Y� X is defined by

B(p) := {x ∈ X : px ≤ 1},

where the dot-product p · x for any p, x ∈ Rk and 1 < k ≤ n will be denoted simply by px throughout
the paper. We will say that % generates the demand correspondence x : Y� X if the latter is defined by

x(p) := max
%

B(p).

We will refer to such a demand correspondence as rational.1 A rational demand correspondence is sur-
jective or onto if, for all x ∈ X there exists p ∈ Y such that x ∈ x(p). If x(·) is single-valued (hence a
demand function), it is said to be injective or one-to-one if for all p, p′ ∈ Y, p 6= p′ implies x(p) 6= x(p′). A
demand function x : Y → X that is both injective and surjective is bijective or invertible. If x(·) has this
property, then the inverse demand given by

p(x) := {p ∈ Y : x = x(p)}

is itself a well-defined bijective function p : X → Y.
In addition to the standard properties of preferences that were introduced above, the problem under

investigation naturally invites the introduction of some notion of preference differentiability or smooth-
ness. The first notion of preference smoothness in the literature was proposed in Debreu (1972), where
a preference relation % on a consumption set X was defined to be smooth of order r, or Cr for short, if the
graph of the indifference relation –that is, the set {(x, y) ∈ X × X : x ∼ y} ⊂ X × X– is a Cr-manifold
on X × X.2 Debreu (1972) showed that a monotonic preference relation on X is Cr if and only if it is
representable by a utility function that itself is Cr, or, equivalently, r times continuously differentiable.
Generalizing Debreu’s notion, Neilson (1991) defined a preference relation on such a set X as weakly

1Even though the budget correspondence remains nonempty- and convex-valued in our framework, it is no longer compact-
valued because we assume that X ⊆ Rn

++. It is therefore no longer an immediate consequence of standard results such as the
Maximum Theorem that the demand correspondence generated by % is well-defined. Nevertheless, as we explain below, the
preference structure that we consider turns out to be sufficiently strong to overcome this technical difficulty because it ensures
that only interior consumption bundles will ever be demanded.

2Letting A ⊆ Rn, a function f : A → Rn is an homeomorphism if it is injective, continuous, and its inverse function is
continuous on f (A). Given an open A ⊆ Rn, a Cr function f : A → Rn is a Cr diffeomorphism if it is an homeomorphism with
a Cr inverse function. A set M ⊆ Rn is a Cr k-dimensional (k ≤ n) manifold if for every x ∈ M there is a Cr diffeomorphism
f : A → Rn (A ⊆ Rn open) which carries the open set A ∩ (Rk × {0n−k}) onto an open neighborhood of x in M. For more
details and some economic-theoretic examples, see Chapter 1.H in Mas-Colell (1985).
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smooth of order r, or weakly Cr, if all its indifference sets Ix are Cr-manifolds on X. Neilson (1991) estab-
lished that this notion of weak smoothness suffices for the resulting Hicksian demand function to be
smooth. We will refer to preferences that are smooth in Neilson’s sense simply as weakly smooth.

More recently, Rubinstein (2006) defined the preference relation% on X to be differentiable if for every
x ∈ X there exists px ∈ Rn \ {0} that makes the equality

{z ∈ Rn : px · z > 0} = {z ∈ Rn : there exists λ∗z > 0 such that x + λz � x for all λ ∈ (0, λ∗z )} (1)

true. To see the intuition, note first that for distinct bundles x and z in X, Rubinstein (2006) defined
z to be an improvement direction at x if there exists λ∗ > 0 such that x + λz � x for all λ ∈ (0, λ∗),
assuming (x + λz) ∈ X. In words, a not necessarily positive vector z is an improvement direction at
bundle x if “steering” x towards z by adding a sufficiently small amount of z to x results in a new
consumption bundle that is strictly preferred to x. In light of this definition, the right hand side of (1)
defines the set of all improvement directions at x. The left hand side of (1) on the other hand defines
the set of all directions z that are evaluated as strictly positive by some vector px that depends on x.
Thus, Rubinstein differentiability of preferences % at bundle x requires the existence of a vector px that
makes the set of all directions that are evaluated as strictly positive by px coincide with the set of all
improvement directions of %. If it exists, such a vector px will be referred to as a preference gradient at x.
An intuitive interpretation for the entries of px is that they represent the consumer’s “subjective values”
of the different goods relative to the reference bundle x: “Starting from x, any small move in a direction that
is evaluated by this vector as positive is an improvement” (Rubinstein, 2006 p. 71). We note, finally, that this
author also showed that, under strict convexity and strict monotonicity of %, partial differentiability of
a utility function that represents % also implies differentiability of that relation.

With the requisite concepts in place, our main result can now be formally stated.

Theorem 1 The following are equivalent for a continuous weak order % on X:
(i). % is strictly convex, strictly monotonic and differentiable.
(ii). % is strictly convex, strictly monotonic and weakly smooth.
(iii). There is a unique, open set Y ⊆ Rn

++ and a unique, continuous, invertible demand function x : Y → X that
is generated by %.

The statement of the theorem is a combination of Propositions 1–3, which are presented separately
in the next section. To give the reader a better understanding of the interaction between the three prefer-
ence axioms and the onto and one-to-one properties of the generated demand function, we decompose
the theorem into its constituent parts and provide an outline of the relevant formal arguments. Before
turning to this, however, an informal overview of our analysis might be instructive.

First, the problem of finding prices that rationalize the demand of a given consumption bundle is,
naturally, a supporting-hyperplane existence question. Continuity and convexity of preferences in our
environment do indeed ensure that such a hyperplane exists. Strict convexity, moreover, guarantees
uniqueness of the demanded bundle at these prices, while strict monotonicity ensures that all prices are
strictly positive. Rubinstein differentiability moreover implies that the (normalized) supporting prices
are unique. This relatively straightforward argument establishes the part of Theorem 1 that claims the
sufficiency of the postulated properties on preferences for the demand function to be invertible. It is
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not obvious that such a demand function is continuous, however, and a more involved argument is de-
ployed to show that continuity of the demand function does indeed follow from preference differentia-
bility. Even more challenging, finally, is to establish the part of the theorem that claims that invertibility
of the demand function necessitates that the generating preference relation is differentiable. This amounts
to showing that a given notion of smoothness for the functional representation of the graph of the indif-
ference sets corresponds to the appropriate notion of smoothness for the preference relation. This turns
out to be a rather abstract and non-trivial task.

2.1 Characterization of Onto Demand Functions

The first part of our decomposition characterizes onto demand functions by means of continuity, strict
convexity and strict monotonicity alone.

Proposition 1 The following are equivalent for a continuous weak order % on X:
(i). % is strictly convex and strictly monotonic.
(ii). There is a set Y ⊆ Rn

++ and an onto demand function x : Y → X that is generated by %.

Although much easier to establish compared to the characterization of one-to-one demand functions
that we offer later on, this result is of independent interest and, to our knowledge, novel. To outline
briefly the intuition behind it, we introduce some additional definitions and notation, which will also be
useful below. For any A ⊂ Rn, we say that p ∈ Rn \ {0} supports A at x if px ≤ pz for any z ∈ A, and
that p supports A at x properly if px < pz for any z ∈ A \ {x}. Take now any x ∈ X. Given continuity
and strict convexity, by the supporting hyperplane theorem there exists p ∈ Rn \ {0} that supports Ux at
x, and hence that x ∈ max% {z ∈ X : pz ≤ px}. Given also strict monotonicity, any such p must, in fact,
be a strictly positive price vector. Therefore, defining the set Y by

Y :=
{

p ∈ Rn
++ : there exists x ∈ X such that x ∈ max

%
B(p)

}
,

the mapping x : Y� X that is constructed by x(p) = max% B(p) is an onto demand correspondence. By
strict convexity, moreover, this must actually be an onto demand function. Conversely, if x : Y → X is an
onto demand function, then strict monotonicity of% readily follows from the strict positivity of prices. In
addition, as x(·) is single-valued and generated by continuous and strictly monotonic preferences, strict
convexity of % follows by the equivalence result in Bilancini and Boncinelli (2010): if a rational demand
correspondence is generated by a strictly monotonic and continuous weak order, then the former is
single-valued if and only if the latter is strictly convex.

2.2 Characterization of (Continuous) Invertible Demand Functions

To examine the second part of our decomposition, for arbitrary x ∈ X consider first the projection of the
indifference set Ix along the ith dimension of Rn

+,

I i
x := {zi ∈ R+ : there exists z−i ∈ Rn−1

+ such that z ∈ Ix},

and define the set

I−i
x := {z−i ∈ Rn−1

+ : there exists zi ∈ R+ such that z ∈ Ix}
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analogously as the projection of Ix on Rn−1
+ , the resulting subspace when the ith dimension is removed

from Rn
+. We can then construct the indifference-projection correspondence li(·|x) : I−i

x � I i
x for good i by

requiring
zi ∈ li(z−i|x) ⇐⇒ z ∈ Ix,

and observe that the graph of this correspondence is the indifference set Ix. As we show in the Online
Appendix, the mapping li (·|x) in our framework is actually a function that is locally convex and thus
also continuous.3 As a result, its local subdifferential ∂li (z−i|x) which comprises the collection of the
function’s local subgradients4 at z−i is non-empty and fundamentally linked to its smoothness: li (·|x)
is differentiable at z−i if and only if ∂li (z−i|x) is a singleton, in which case the unique local subgradient
coincides with the gradient. With regard to interpretation, when li (·|x) is differentiable at z−i the entry
∂li (z−i|x) /∂zj of the gradient ∇li (z−i|x) defines the marginal rate of substitution of good i for good
j 6= i. Indeed, by the Implicit Function Theorem (see also Lemma 5.3 in the Online Appendix), we have

∂li (z−i|x)
∂zj

= −

∂u(z)
∂zj

∂u(z)
∂zi

. (2)

as long as there exists a utility function u : X → R that represents % and is continuously differentiable
at z. The right-hand side of this equation depicts the textbook definition of the marginal rate of substi-
tution of good i for good j, which results though by invoking the Implicit Function Theorem and thus
assumes that the utility function is smooth by being at least continuously differentiable. By contrast, as
we establish below, the left-hand side of (2) exists in a more general environment where preferences are
strictly convex, strictly monotonic and differentiable.

Proposition 2 Suppose that the onto demand function x : Y → X for some Y ⊆ Rn
++ is generated by the

continuous weak order % on X. For any x ∈ X, the following are equivalent:
(i). For some i ≤ n, li (·|x) is differentiable at x−i.
(ii). % is differentiable at x.
(iii). p(x) is a singleton.
(iv). For all i ≤ n, li (·|x) is differentiable at x−i.

Therefore, an onto demand function that is generated by a strictly convex and strictly monotonic contin-
uous weak order% on X is also injective and hence invertible if and only if% is differentiable. Upon let-
ting q−i(x) denote the gradient (equivalently, the unique local subgradient) of the indifference-projection
function li (·|x) for good i ≤ n at x, the preference gradient px coincides with p(x), the inverse demand
at this bundle, and is determined by

q−i(x) = ∇li(x−i|x), (3)

qi(x) =
1

xi − q−i(x) · x−i
, (4)

p(x) =
(
qi(x),−qi(x)q−i(x)

)
, (5)

3Notice that, for any x, z ∈ X with z ∼ x, the mappings li (·|x) and li (·|z) coincide.
4We refer the reader to Section 4 of the Online Appendix for some background on local subgradients and subdifferentials.
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where q−i(x) � 0, qi(x) > 0 and p(x) � 0. Notice that, although taking distinct index goods i and j
in the above system leads to distinct vectors (qi(x), q−i(x)) and (qj(x), q−j(x)), the preference gradient,
p(x), is invariant with respect to the choice of the index good. Moreover, the fact that qi(x) = pi(x) for
the index good i is due to the normalization of income to one.

The non-trivial part in the proof of Proposition 2 is to show that ∂li (x−i|x) is a singleton if and only
if % is differentiable at x. Although the argument for the “only if” direction is technical, we provide
some intuition in our proof (see Sections 3.2–3.3). For the “if” direction on the other hand, the concept
of an ordient that was introduced in Renou and Schlag (2014) may be helpful towards conveying some
geometric intuition. Recall first that for z, x ∈ X with z 6= x, z− x is an improvement [resp. worsening]
direction at x if there exists λ∗ > 0 such that x + λ (z− x) � x [resp. x � x + λ (z− x)] for all λ ∈
(0, λ∗) with x + λ (z− x) ∈ X. Considering now the plane Hp,x := {z ∈ X : pz = px} and the interior
half-planes H+

p,x := {z ∈ X : pz > px} and H−p,x := {z ∈ X : pz < px}, we say that p ∈ Rn \ {0} is an
increasing [resp. decreasing] ordient at x if z− x is an improvement [resp. worsening] direction at x for any
z ∈ H+

p,x [resp. z ∈ H−p,x]. Obviously, p is a preference gradient at x only if it is an increasing ordient at x.
Moreover, as we establish in the Online Appendix, p supports Ux at x only if it is a decreasing ordient at
x. For convex preferences, finally, p supports Ux at x if and only if it is a decreasing ordient at x.

If p is both an increasing and decreasing ordient at x, then it will be referred to as an ordient at x.
Intuitively, if p is an ordient at x, then {H−p,x, H+

p,x} partitions X \ Hp,x into improvement and worsening
directions: z − x with z ∈ X \ Hp,x is an improvement [resp. worsening] direction at x if and only if
z ∈ H+

p,x [resp. z ∈ H−p,x]. Restricting attention hereafter to strictly convex preferences, it is trivial to
check that this partitioning means that Hp,x uniquely separates the sets Ux and X \ Ux locally at x; in
geometric terms, Hp,x is tangential to Ix at x if p is an ordient at x. Moreover, p is a preference gradient at
x only if it supports Ux at x properly –thus, only if it is an ordient at x. Furthermore, % is differentiable
at x only if the collection of vectors that support Ux at x properly is at most a singleton. Hence, % is
differentiable at x if and only if there exists a unique preference gradient at x. Consider now an arbitrary
consumption bundle x ∈ X and let p, p′ ∈ Rn

++ be such that x (p) = x = x (p′). As both p and p′ support
Ux at x, the fact that % is strictly convex implies that both support Ux at x properly. If % is differentiable
at x, therefore, we must have p = p′, while the hyperplane Hp,x must be tangential to the indifference
curve Ix at x.

We move on to analysing invertible demand functions that are, in addition, continuous. Recall that,
following Neilson (1991), we say that a weak order % on X is weakly C1 or weakly smooth if, for all x ∈ X,
Ix is a C1 manifold of dimension n− 1.

Proposition 3 Suppose that the onto demand function x : Y → X for some Y ⊆ Rn
++ is generated by the

continuous weak order % on X. The following are equivalent.
(i). % is differentiable.
(ii). Y is open and x(·) is injective and continuous (thus, a homeomorphism).
(iii). % is weakly smooth.

Therefore, under strict convexity and strict monotonicity, the notions of preference differentiability (Ru-
binstein, 2006) and weak smoothness (Neilson, 1991) are equivalent and fundamentally related to the
continuity of both the direct and inverse demand functions generated by these preferences.
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2.3 Examples

We illustrate our main result with two examples. The first presents a strictly convex, strictly monotonic
and continuous preference relation that is differentiable but non-smooth. As such, it shows that our char-
acterization does indeed expand the class of preference relations that were hitherto known to generate
invertible demand functions. The second example presents a strictly convex, strictly monotonic, con-
tinuous and even homothetic preference relation that is non-differentiable, and hence not even weakly
smooth. In conjunction with Proposition 4 that is stated in the next subsection, this example clarifies that
preference differentiability may fail even in the presence of a rich structure.

Example 1: strictly convex, strictly monotonic and differentiable but non-smooth preferences (Figure 1).
Consider the weak order % on X = (2e,+∞)× (0, 1) that is represented by the utility function

u (x) :=


ln x1 + ln x2, if x1x2 ≤ e

ln x1

1− ln x2
, otherwise

It is easy to verify that % is continuous, strictly increasing and strictly convex on X. Let S := {x ∈
X : x1x2 ≤ e}. For u ∈ R, the indifference set {x ∈ X : u (x) = u} coincides with the graph of the
function x2 : R++ → R++ that is implicitly defined by x2 := eu/x1 if x ∈ S and x2 := ex−(1/u)

1 if
x ∈ X \ S. Therefore, for any x ∈ X we have l2 (x1|x) = eu(x)/x1 if x ∈ S and l2 (x1|x) = ex−(1/u(x))

1 if
x ∈ X \ S. Moreover, for any x ∈ Ix, we get l′2 (x1|x) = −l2 (x1|x) /x1 = −x2/x1 on S and l′2 (x1|x) =

−u (x)−1 l2 (x1|x) /x1 = −u (x)−1 x2/x1 on X \ S. In particular, since u (x) = 1 when x1x2 = e, it follows
that % is also differentiable on X and, by equations (3) – (5), the gradient of its indifference-projection
function, q(x), and the preference gradient and inverse demand, p(x), at x are given by

q(x) =


(
− x2

x1
,

1
2x2

)
, if x1x2 ≤ e(

− x2(1− ln x2)

x1 ln x1
,

ln x1

x2(1 + ln(x1/x2))

)
, otherwise

and

p(x) =


(

1
2x1

,
1

2x2

)
, if x1x2 ≤ e(

1− ln x2

x1 (1 + ln (x1/x2))
,

ln x1

x2 (1 + ln (x1/x2))

)
, otherwise

Notice, however, that u(·) is not even partially differentiable when x1x2 = e, while the gradient of u(·)
elsewhere is given by

∇u (x) =


(

1
x1

,
1
x2

)
, if x1x2 < e(

1
x1(1− ln x2)

,
ln x1

x2(1− ln x2)2

)
, if x1x2 > e

In fact, note that no utility function that represents % can be differentiable on S0 := {x ∈ X : x1x2 = e}.
To see this, let f (u (·)) be such a utility function, where f : R → R is a strictly increasing and con-
tinuously differentiable transformation. Letting now a sequence (xn) in X converge to x ∈ S0, we have
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f ′(u(xn))∇u(xn) converging to limz↗1 f ′(z)
(

1
x1

, 1
x2

)
from within S, and to

limz↘1 f ′(z)
(

1
x1
· 1

1−ln x2
, 1

x2
· ln x1
(1−ln x2)2

)
from outside of S. But these two limits are distinct. ♦

Example 2: strictly convex, strictly monotonic, homothetic and non-differentiable preferences (Figure 2).
Consider now the weak order % on X = R2

++ that is represented by the utility function

u (x) :=

 x
2
3
1 x

1
3
2 , if x1 ≤ x2

x
1
3
1 x

2
3
2 , otherwise

It is again easily verifiable that this % is continuous, strictly increasing, strictly convex and also homo-
thetic on X. But % is not differentiable anywhere on S0 := {x ∈ X : x1 = x2}, and neither u(·) nor any
other utility function that also represents % is differentiable on this set.5 ♦

Figure 1: Strictly convex, strictly monotonic and differentiable but non-smooth preferences (Example 1)

(a) The utility function is kinked at x1 · x2 = e

2 4 6 8 10

0.2

0.4

0.6

0.8
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(b) The indifference curves are smooth (solid for u = 1)

Figure 2: Strictly convex, strictly monotonic, homothetic and non-differentiable preferences (Example 2)

(a) The utility function is kinked at x1 = x2
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0.0
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1.5
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(b) The indifference curves are kinked at x1 = x2

2.4 The Special Case of Quasilinear or Homothetic Preferences

Recall that a preference relation% on X is homothetic if, for all x, y ∈ X and λ > 0, x % y implies λx % λy.
A homothetic preference relation is representable by a utility function u(·) that is homogeneous of degree

5For another such example with a more complicated functional form, the reader is referred to Hurwicz and Uzawa (1971).
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1, hence satisfying u(λx) = λu(x) for all x ∈ X and λ > 0. Denoting by ei ∈ Rn
+ the vector defined

by ei
i = 1 and ej

i = 0 for j 6= i, recall next that % is quasilinear with respect to good i if x % y implies
x + λei % y + λei and x + λei � x for all λ > 0 and x ∈ X (Mas-Colell, Whinston and Green, 1995).
A preference relation that is quasilinear with respect to good i is representable by a utility function u(·)
with the property that u(x) := xi + v(x−i) for some function v : X−i → R.

The next result clarifies that, within the class of preference relations that satisfy the conditions of
Theorem 1 and are also homothetic or quasilinear, representability of a relation in this class by a con-
tinuously differentiable utility function is equivalent to the differentiability or weak smoothness of that
relation.

Proposition 4 The following are equivalent for a strictly convex, strictly monotonic and continuous weak order
% on X that is quasilinear or homothetic:
(i). % is differentiable.
(ii). % is weakly smooth.
(iii). % is representable by a continuously differentiable utility function.

Example 2 above provides an illustration of this result by presenting preferences that are strictly convex,
strictly monotonic and even homothetic but fail differentiability and hence do not admit a smooth utility
representation.

2.5 The Law of Demand

As mentioned in the introduction, invertibility is a necessary condition for any demand function x :
Y → X that satisfies the “strict law of demand”. This is formally defined by the condition that, for all
prices p, p′ ∈ Y, (

x(p)− x(p′)
)
·
(

p− p′
)
< 0.

A complete, transitive and continuous preference relation that is also homothetic is well-known to gener-
ate a demand function that satisfies the “weak law of demand” where the above inequality is not necessarily
strict (Hildenbrand, 1994). Mitjuschin and Polterovich (1978) (see also Kannai (1989) for an extension)
provided a different sufficient condition for a C1 demand function that is derived from a C2 and strictly
increasing utility function u(·) to satisfy the strict version of the law. In addition to double smoothness,
that condition requires concavity of u(·) and also that

− z · ∇2u(z) · z
z · ∇u(z)

< 4

be satisfied for all z ∈ Rn
++. This condition is not easily interpretable behaviourally. In addition, since

concavity and smoothness of a given utility representation are not ordinal properties, the condition itself
is not ordinal. Despite the existence of this sufficient condition, however, little is known about necessary
conditions on the preferences that generate demand functions that satisfy this law. A novel implication
of our analysis (Propositions 1–2) that makes a contribution in this direction can be stated as follows.

Corollary 2.1 A rational and onto demand function satisfies the strict law of demand only if it is generated by a
strictly convex, strictly monotonic and differentiable or weakly smooth preference relation.
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While the onto-demand requirement is somewhat restrictive and one hopes that it will be relaxed in
future work, it allows for uncovering what appear to be the first behaviourally interpretable necessary
conditions on preferences for a class of demand functions that satisfy this law. We refer the reader to
Aguiar, Hjertstrand, and Serrano (2020) for an independent recent study that contributes further to the
uncovering of the behavioural origins of the law of demand by analysing the case of finite data that are
compatible with demand functions satisfying the weak version of the law.

3 Proofs

Recall that, for x ∈ A ⊆ X and ε > 0, Bε (x) denotes the open ball in Rn with center x and radius ε. In
what follows, we denote also by ||x|| the Euclidean norm of x, and define the index setsN := {1, . . . , n}
as well as

N+
x := {i ∈ N : xi > 0} , N−x := {i ∈ N : xi < 0} .

Moreover, int (A), bd (A) and cl (A) denote, respectively, the interior, boundary and closure of A. Fi-
nally, taking i ∈ N , we let xi and Ai denote, respectively, the projections of x and A on R - the ith
dimension of Rn. By contrast, x−i and A−i will denote, respectively, the projections of x and A on Rn−1

- the resulting subspace when the ith dimension is removed from Rn. Taking also j ∈ N \ {i}, we
will have x−(i,j) denote the projection of x on Rn−2 - the resulting subspace when both the ith and jth
dimensions are removed from Rn.

3.1 Proof of Proposition 1

(i)⇒ (ii). Let x ∈ X. As % is continuous and convex, Ux is closed and convex. Moreover, since %
is strictly monotonic, it must be x ∈ bd (Ux) while int (Ux) 6= ∅. To check the first claim, suppose
to the contrary that x ∈ int (Ux). We have then (xi − ε/2, x−i) ∈ Bε (x) ⊂ Ux for some ε > 0, and a
contradiction obtains because strict monotonicity necessitates that x � (xi − ε/2, x−i). For the second
claim, notice that, X being open, we have Bδ (x) ⊂ X for some δ > 0. Letting then x′ ∈ Bδ (x) be given
by x′i = xi + δ/2 for i ∈ N , strict monotonicity ensures that x′ � x; thus, Bδ/4 (x′) ⊂ Ux.
Given the observations above, it follows from the Supporting Hyperplane Theorem - see for instance
Lemma 7.7 in Aliprantis and Border (2006) - that some p ∈ Rn \ {0} supports Ux at x. In fact, by the
following two lemmas, it must be p ∈ Rn

++ while x ∈ max% {z ∈ X : pz ≤ px}.

Lemma 3.1 Let % be a continuous weak order on X. For any x ∈ X, p ∈ Rn \ {0} supports Ux at x only if
x ∈ max% {z ∈ X : pz ≤ px}.

Proof. Let p ∈ Rn \ {0} support Ux at x. We need to show that z ∈ X \ {x} and pz ≤ px implies x % z.
As this is obvious when pz < px, suppose that pz = px and assume to the contrary that z � x; i.e., that
z ∈ Ux \ Ix. Since % is continuous, the latter set is open; thus, Bε (z) ⊂ Ux \ Ix for sufficiently small
ε > 0. Take now z′ ∈ Bε (z) given by z′i := zi +

ε
2 if pi ≤ 0 and z′i := zi − ε

2 if pi > 0, for i ∈ N . Since
p 6= 0, we have pz′ < pz = px, which contradicts, however, that p supports Ux at x.

Lemma 3.2 Let % be a strictly monotonic and continuous weak order on X. For any x ∈ X, p ∈ Rn \ {0}
supports Ux at x only if p ∈ Rn

++.
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Proof. Let (p, x) ∈ Rn \ {0} × X be such that p supports Ux at x. To argue ad absurdum, suppose that
pi ≤ 0 for some i ∈ N . X being open, we have Bδ (x) ⊂ X for some δ > 0. Taking then z ∈ Bδ (x) such
that zi > xi and zj = xj for j ∈ N \ {i}, we get pz ≤ px. As % is strictly monotonic, however, we also
have z � x. Lemma 3.1 gives the desired contradiction.

There exists thus p ∈ Rn
++ with x ∈ max% {z ∈ X : pz ≤ px}. Equivalently (since x ∈ X ⊆ Rn

++), there
exists p̃ := p/px ∈ Rn

++ such that x ∈ max% {z ∈ X : p̃z ≤ 1}. Defining therefore Y as in the main text,
the mapping x : Y� Rn

++ given by x (p) := max% {z ∈ X : pz ≤ 1} is an onto demand correspondence.
That it is also single-valued follows from the strict convexity of %.

(ii)⇒ (i). That %must be strictly monotonic is due to the following result.

Lemma 3.3 Let % be a weak order on X. The onto demand function x : Y → X (Y ⊆ Rn
++) is generated by %

only if the latter is strictly monotonic on X.

Proof. Let x, z ∈ X be such that x ≥ z with x 6= z. Since x (·) is onto, single-valued and generated by %,
there exists p ∈ Rn

++ such that x = x (p). Hence, px ≤ 1 while x � z′ for all z′ ∈ X \ {x} with pz′ ≤ 1.
Notice now that x 6= z, z − x ≤ 0 and p � 0 together imply that p (z− x) < 0. We have therefore
pz < px ≤ 1 and thus x � z.

Given now the strict monotonicity and continuity of % and the single-valuedness of x (·), that % must
be also strictly convex follows from the equivalence result in Bilancini and Boncinelli (2010). �

3.2 Supporting Results for the Proof of Proposition 2

Lemma 3.4 Let the (onto) demand function x : Y → X for some Y ⊆ Rn
++ be generated by the strictly convex

and strictly monotonic continuous weak order % on X. For any (p, x) ∈ Rn
++ × X, the following are equivalent.

(i) p supports Ix at x locally (i.e., there exists ε > 0 such that px ≤ pz for any z ∈ Bε (x) ∩ Ix).
(ii) p supports Ux at x properly.
(iii). x = x (p).

Proof. (ii) ⇒ (i) being trivially true, we will establish first that (i) ⇒ (ii). Take thus any x ∈ X and let
(ε, p) ∈ R++ ×Rn

++ be such that px ≤ pz for any z ∈ Bε (x) ∩ Ix.
We will show first that p supports Bε (x) ∩ (Ux \ Ix) at x properly. To this end, we need to show that
px < pz′ for any z′ ∈ Bε (x) such that z′ � x. Take then any such z′ and let ε := z′ − x. By the strict
monotonicity of %, we must have N+

ε 6= ∅. Notice also that, the claim being obvious if N+
ε = N , we

may take N \ N+
ε to be non-empty. And as the claim is again obvious if εi = 0 for all i ∈ N \ N+

ε ,
we may take in fact that N−ε 6= ∅. Let now µ ∈ [0, 1] and define xµ ∈ Bε (x) by xµ

i := xi + µεi for
i ∈ N \ N−ε and xµ

i := xi + εi for i ∈ N−ε . As N−ε 6= ∅ while x1 = z′, we have x1 � x � x0 again
due to the strict monotonicity of %. The relation being also continuous, there exists µ0 ∈ (0, 1) such that
µ0x1 + (1− µ0) x0 ∈ Bε (x)∩ Ix. The latter point is given though by xi + µ0εi for i ∈ N \N−ε and xi + εi
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for i ∈ N−ε . That is, µ0x1 + (1− µ0) x0 = xµ0 and the claim now follows since

px ≤ pxµ0 = ∑
i∈N\N−ε

pi (xi + µ0εi) + ∑
i∈N−ε

pi (xi + εi)

= ∑
i∈N+

ε

pi (xi + µ0εi) + ∑
i∈N−ε

pi (xi + εi)

< ∑
i∈N+

ε

pi (xi + εi) + ∑
i∈N−ε

pi (xi + εi) = ∑
i∈N

pi (xi + εi) = p (x + ε) = pz′

where the strict inequality is because p ∈ Rn
++ and N+

ε 6= ∅ while the second and third equalities use
the fact that N \N−ε = N+

ε ∪ {i ∈ N : εi = 0}.
Next we will show that p supports also Bε (x)∩ Ix at x properly. To argue by contradiction, suppose that
there exists z′′ ∈ Bε (x) ∩ Ix for which px = pz′′. For any λ ∈ (0, 1) then we have that λz′′ + (1− λ) x �
x, by the strict convexity of %, while p (λz′′ + (1− λ) x) = px. Taking though λ < ε/||x− z′′|| ensures
that λz′′ + (1− λ) x ∈ Bε (x). Which contradicts that p supports Bε (x) ∩ (Ux \ Ix) at x properly.
We have therefore established that p supports Bε (x) ∩ Ux at x properly. But then p must in fact support
Ux at x properly. For otherwise, if there existed z̃ ∈ Ux with pz̃ ≤ px, then for any λ ∈ (0, 1) we would
have λz̃ + (1− λ) x � x while p (λz̃ + (1− λ) x) ≤ px. A contradiction would obtain then because
taking λ < ε/||x− z̃|| ensures that λz̃ + (1− λ) x ∈ Bε (x).
To complete the proof, observe that (ii) ⇒ (iii) is an immediate implication of Lemmas 3.1-3.2. To
establish the contrapositive of (iii) ⇒ (ii), suppose that p does not support Ux at x properly. As it
cannnot support Ix at x locally either (recall the contrapositive of (i)⇒ (ii)), there must exist ε > 0 and
z ∈ (Bε (x) ∩ Ix) \ {x} with pz < px. But then it cannot be that x = max% {z ∈ X : pz ≤ px} = x (p).

Lemma 3.5 Let % be a strictly convex and strictly monotonic, continuous weak order on X. For any (x, z, i) ∈
X× Ix ×N , the mapping li (·|x) : I−i

x → I i
x is a locally strictly convex function with ∂li (z−i|x) ⊆ Rn−1

−− .

Proof. % being a strictly convex and strictly monotonic continuous weak order, it can be represented by
a continuous, strictly monotonic and strictly quasi-concave utility function u : X → R. Consider then
an arbitrary (i, x) ∈ N × X. To see that li (·|x) is a function, take any z ∈ Ix and observe that we cannot
have zi, z′i ∈ li (z−i|x) with zi > z′i. For this would imply that z ∼ x ∼ (z′i, z−i) which is absurd under
strict monotonicity.
We will establish next that I−i

x is locally convex at z−i. To this end, let ε0 > 0 be such that Bε0 (z) ⊂ X.
Let also ∆ := u (x)− u (zi − ε0/2, z−i) = u (z)− u (zi − ε0/2, z−i) > 0, the inequality due to u (·) being
strictly monotonic. The utility function being also continuous, taking a sufficiently small ε1 > 0 ensures
that |u (zi − ε0/2, ·)− u (zi − ε0/2, z−i) | < ∆ on Bε1 (z−i) ⊂ Bε0 (z)−i. And as

||λv−i + (1− λ) y−i − z−i|| = ||λ (v−i − z−i) + (1− λ) (y−i − z−i) ||
≤ λ||v−i − z−i||+ (1− λ) ||y−i − z−i|| < λε1 + (1− λ) ε1 = ε1

we get that

u (zi − ε0/2, λv−i + (1− λ) y−i) < u (z) = u (x) (6)

for any v−i, y−i ∈ Bε1 (z−i)∩ I−i
x and any λ ∈ (0, 1). Take then any v, y ∈ Ix ∩Bε1 (z) and any λ ∈ (0, 1).

Since u (v) = u (x) = u (y), the strict quasi-concavity of u (·) gives

u (x) < u (λv + (1− λ) y) = u (λvi + (1− λ) yi, λv−i + (1− λ) y−i) (7)
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Consider now the [0, 1] → R++ function zi (µ) := µ (zi − ε0/2) + (1− µ) (λvi + (1− λ) yi). This gives
(zi (µ) , λv−i + (1− λ) y−i) ∈ X for any µ ∈ [0, 1]. Moreover, in light of (6)-(7), the intermediate-value
theorem ensures that

∃µ0 ∈ (0, 1) : u (zi (µ0) , λv−i + (1− λ) y−i) = u (x) , (8)

and thus λz−i + (1− λ) y−i ∈ I−i
x , as required.

Observe next that, by the strict monotonicity of u (·), (7)-(8) require that zi (µ0) < λvi + (1− λ) yi; equiv-
alently, that

li (λv−i + (1− λ) y−i|x) < λli (v−i|x) + (1− λ) li (y−i|x) (9)

Hence, li (·|x) is strictly convex on Bε1 (x−i) ∩ I−i
x .

To see finally that the local subgradients of li (·|x) at z−i all lie in Rn−1
−− , let q ∈ Rn−1 be a local subgradient.

We have

li (y−i|x)− li (z−i|x) ≥ ∑
j∈N\{i}

qj
(
yj − zj

)
∀y−i ∈ Bε1 (x−i) ∩ I−i

x (10)

To argue ad absurdum, suppose that qk ≥ 0 for some k ∈ N \ {i}. Define also the function [0, 1]→ Rn
++

by zi (µ̃) := zi − (1− µ̃) ε1/2, zk (µ̃) := zk + µ̃ε1/2, and zj (µ̃) := zj for j ∈ N \ {i, k}. Obviously, any
µ̃ ∈ [0, 1] gives z (µ̃) ∈ Bε1 (x). And since u (z (0)) < u (z) < u (z (1)) due to strict monotonicity, the
intermediate-value theorem ensures the existence of z (µ̃0) ∈ Bε1 (z) ∩ Ix. But then (10) gives

(1− µ̃0) ε1/2 = zi − zi (µ̃0) = li (z−i|x)− li (z−i (µ̃0) |x) ≤ q−i (z−i − z−i (µ̃0)) = −µ̃0qkε1/2 ≤ 0

a contradiction.

Lemma 3.6 Let the (onto) demand function x : Y → X (Y ⊆ Rn
++) be generated by the strictly convex and

strictly monotonic continuous weak order % on X. For any (x, z, i) ∈ X × Ix × N there exists a bijection
pz : ∂li (z−i|x)→ {p ∈ Y : z = x (p)} given by

pz (q−i) := (1,−q−i) / (zi − q−iz−i)

Proof. We will establish first that the mapping in question is a function. To this end, take any (x, z) ∈
X × Ix and recall that, for any i ∈ N , li (·|x) is a locally convex function (Lemma 3.5); thus, the set
∂li (z−i|x), the local subdifferential of li (·|x) at z−i, is non-empty. Letting then q−i ∈ Rn−1

−− be a local
subgradient of li (·|x) at z−i, we can define (uniquely) the quantities

qi := 1/ (zi − q−iz−i) ∈ R++ (11)

p := qi (1,−q−i) ∈ Rn
++ (12)

There exists then ε > 0 such that, for any y ∈ Bε (z) ∩ Ix, we have

pi (yi − zi) = qi (yi − zi) = qi (li (y−i|x)− li (z−i|x))
≥ qiq−i (y−i − z−i) = p−i (z−i − y−i)
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Clearly, p supports Ix at z locally and, thus, it must be that z = x (p) (Lemma 3.4).
To show next that the function in question is onto, take any p ∈ { p̃ ∈ Y : z = x ( p̃)}. Since z = x (p), p
supports Uz at z properly (see again Lemma 3.4); hence, any y ∈ Ix \ {z} gives py > pz. Equivalently,

li (y−i|x) = yi > zi − p−i (y−i − z−i) /pi = li (z−i|x)− p−i (y−i − z−i) /pi

and thus q−i := −p−i/pi ∈ Rn
−− is a subgradient of li (·|x) at z−i. And since pz = 1 (by Walras’ Law),

letting qi := pi suffices for (11)-(12) above to hold.
To show finally that the function is also injective, suppose that p above is the image of two different local
subgradients q−i, q̃−i ∈ ∂li (z−i|x). By (11)-(12) then we have

q̃izi = 1 + q̃i q̃−iz−i = 1− p−iz−i = 1 + qiq−iz−i = qizi

That is, qi = q̃i which implies in turn that q−i = −p−i/qi = −p−i/q̃i = q̃−i.

Lemma 3.7 Let% be a strictly convex weak order on X. The collection of preference gradients at x ∈ X is a subset
of the collection of p ∈ Rn \ {0} that support Ux at x properly.

Proof. Take an arbitrary z ∈ Ux and observe that, % being strictly convex, we have that x + λ (z− x) =
λz + (1− λ) x � x for any λ ∈ (0, 1). Clearly, z− x is an improvement direction at x; thus, p (z− x) > 0
if p is a preference gradient at x.

Lemma 3.8 Let % be a strictly convex and strictly monotonic, continuous weak order on X. Suppose also that %
is differentiable at x ∈ X. Then the collection of p ∈ Rn

++ that support Ux at x properly is a singleton.

Proof. Observe first that the collection of preference gradients at x is a subset of the collection of p ∈ Rn
++

that support Ux at x properly. This is an immediate implication of Lemmas 3.2 and 3.7. Hence, if % is
differentiable at x, the collection of p ∈ Rn

++ that support Ux at x properly is non-empty.
We will prove now the contrapositive statement of the claim. To this end, suppose that p, p̃ ∈ Rn

++ with
p 6= p̃ are such that both support Ux at x properly. Let also p := λp + (1− λ) p̃ for some λ ∈ (0, 1),
and consider the hyperplane Hp,x. For any z ∈ Hp,x we have pz = px. As both p and p̃ support Ux at x
properly, the latter equality implies that x � z for any z ∈ Hp,x \ {x}. The equality means also that at
least one of pz > px and p̃z > p̃x fails to hold. Take then z ∈ Hp,x \ {x}with p (z− x) > 0. For µ ∈ (0, 1)
define also the point zµ = x + µ (z− x). As zµ ∈ Hp,x \ {x}, we have x � zµ. This being moreover the
case for any µ ∈ (0, 1), z − x is a worsening direction at x. Yet we do have p (z− x) > 0, and thus p
cannot be a preference gradient at x. And the same argument shows that p̃ is not a preference gradient
at x either.

3.3 Proof of Proposition 2

Clearly, % is necessarily strictly convex and strictly monotonic (Proposition 1). Notice also that (iv) ⇒
(i) obtains trivially while (iii)⇒ (iv) follows immediately from Lemma 3.6. That (ii)⇒ (iii), moreover,
follows from Lemmas 3.8 and 3.4. We only need to show, therefore, that (i)⇒ (ii).
To argue ad absurdum, let li (·|x) be differentiable at x−i but suppose that % is not differentiable at x.
Take q−i ∈ Rn−1

−− to be the unique subgradient of li (·|x) at x−i. By Lemma 3.6, letting qi := 1/ (xi − q−ix−i)
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and p := qi (1,−q−i) ∈ Rn
++ the latter vector supports uniquely Ux at x (Lemma 3.4); it is thus the unique

candidate for a preference gradient at that point (Lemma 3.7). Our hypothesis therefore is that p is not a
preference gradient of % at x; equivalently, that there exists d ∈ Rn \ {0} which is not an improvement
direction for % at x even though pd > 0.
To arrive now at a contradiction, we consider the hyperplane on which we move when departing from x
in the direction of d. First, we establish that this hyperplane is given by a strictly positive vector (denoted
by p̃ (ρ0) below), and supports properly locally at x members of Ix that obtain when departing from x
in directions that are arbitrarily close to d but put less weight on the dimensions in which d is negative
(i.e., when departing from x in directions that approach d from the northeast when i = 2 = n). Next,
we observe that the weight on the dimensions in which d is negative decreases with the distance from
x (i.e., the angle between d and the direction in which the supported member of Ix lies shrinks as we
approach x from the northeast when i = 2 = n). This, however, leads to an impossibility. For, q−i being
the unique subgradient of li (·|x) at x−i, the hyperplane Hp,x must fit between Hp̃(ρ),x and the supported
members of Ix; yet pd > 0 necessitates that Hp,x lies below Hp̃(ρ),x as we depart from x in the direction
of d.
Our formal argument proceeds in the above steps as follows.
Step 1. Let ε0 > 0 be such that Bε0 (x) ⊂ X while li (·|x) is strictly convex on Bε0 (x)−i ∩ I−i

x . Let also
rd := ε0/||d|| so that x + rd ∈ Bε0 (x) for any r ∈ (0, rd). Under the strict convexity of %, the hypothesis
that d is not an improvement direction for % at x necessitates that x � x + rd for any r ∈ (0, rd). More-
over, p ∈ Rn

++ and pd > 0 together imply thatN+
d 6= ∅. And since x � x+ rd, by the strict monotonicity

of %, it must be also N−d 6= ∅. Take then i ∈ N−d and let p̃ := (pi/2, p−i) ∈ Rn
++, which gives of course

(p− p̃) d < 0. Define next the [0, 1] → Rn function p̃ (ρ) := p− (1− ρ) p̃. Since p̃ (0) d < 0 < p̃ (1) d,
there exists ρ0 ∈ (0, 1) that gives p̃ (ρ0) d = 0 where p̃ (ρ0) = ((1 + ρ0) pi/2, ρ0 p−i) ∈ Rn

++. Define also
the (0, rd)× [0, 1]→ Rn

++ function

x (r, µ)j =

{
xj + rdj j ∈ N \N−d
xj + (1− µ) rdj j ∈ N−d

By the strict monotonicity of%, and sinceN \N−d ⊇ N
+
d 6= ∅, this gives x (r, 1) � x � x + rd = x (r, 0).

Letting hence u : X → R be a utility function for %, we have u (x (r, 0)) < u (x) < u (x (r, 1)) and the
Intermediate-Value Theorem ensures the existence of µr ∈ (0, 1) such that u (x (r, µr)) = u (x). By the
strict monotonicity of %, moreover, the mapping r 7→ µ (r) = µr is a function. And as

p̃ (ρ0) (x (r, µ (r))− x) = r

 p̃ (ρ0) d− ∑
j∈N−d

p̃ (ρ0)j µ (r) dj

 = −rµ (r) ∑
j∈N−d

p̃ (ρ0)j dj, (13)

we have just established the existence of a function µ : (0, rd) → (0, 1) such that x (r, µ (r)) ∈ Ix with
(13) satisfied everywhere on its domain.
Step 2. The function µ (·) is strictly increasing everywhere on its domain. To show this arguing ad ab-
surdum, let r < r′ and suppose that µ (r) ≥ µ (r′). Then, 1 − µ (r) ≤ 1 − µ (r′) and, by the strict
monotonicity of %, it must be li

(
x (r, µ (r′))−i |x

)
≥ li

(
x (r, µ (r))−i |x

)
. Moreover, the function li (·|x)
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being strictly convex, r < r′ implies also that6

li
(
x (r′, µ (r′))−i |x

)
− li (x−i|x)

r′
>

li
(
x (r, µ (r′))−i |x

)
− li (x−i|x)

r
Putting these observations together, we get that(

1− µ
(
r′
))

di =
x (r′, µ (r′))i − xi

r′

=
li
(

x (r′, µ (r′))−i |x
)
− li (x−i|x)

r′

>
li
(

x (r, µ (r′))−i |x
)
− li (x−i|x)

r

≥
li
(

x (r, µ (r))−i |x
)
− li (x−i|x)

r
= (1− µ (r)) di

which is, of course, absurd given that di < 0.
Step 3. Observe next that, q−i being the gradient at x−i of the (locally) convex function li (·|x), for any
direction v−i ∈ Rn−1 the quantity

[li (x−i + εv−i|x)− xi] /ε = [li (x−i + εv−i|x)− li (x−i|x)] /ε, ε ∈ (0, ε0/||v−i||) (14)

approaches q−iv−i from above as ε↘ 0.7 Formally,

∀∆ > 0, ∃ε∆ ∈ (0, ε0/||v−i||) : li (x−i + εv−i|x)− xi < ε (∆ + q−iv−i) ∀ε ∈ (0, ε∆)

Let then v−i = d−j and ∆ := − (1− ρ0) (1− µ (rd/2)) di/ (2ρ0). Since rd = ε0/||d|| ≤ ε0/||d−i||, there
exists ε1 ∈ (0, rd/2) such that, for all ε ∈ (0, ε1),

ρ0qi (x (ε, µ (ε))i − xi) = ρ0qi
(
li
(

x (ε, µ (ε))−i |x
)
− xi

)
≤ ρ0qi

(
li
(

x (ε, 0)−i |x
)
− xi

)
= ρ0qi (li (x−i + εd−i|x)− xi)

< ερ0qi (∆ + q−id−i)

= −
(

1− ρ0

2

)
qi

(
1− µ

( rd

2

))
εdi + ρ0qiq−iεd−i

< −
(

1− ρ0

2

)
qi (1− µ (ε)) εdi + ρ0qiq−iεd−i

= −
(

1− ρ0

2

)
qi (1− µ (ε)) εdi + (1− µ (ε)) ρ0qi ∑

j∈N−d \{i}
qjεdj + ρ0qi ∑

j∈N+
d

qjεdj

+ µ (ε) ρ0qi ∑
j∈N−d \{i}

qjεdj

=

(
1− ρ0

2

)
pi (xi − x (ε, µ (ε))i) + p̃ (ρ0)−i

(
x−i − x (ε, µ (ε))−i

)
− εµ (ε) ∑

j∈N−d \{i}
p̃ (ρ0)j dj,

6Given K ∈ N \ {0} and a strictly convex function f : S → R defined on an open and convex set S ⊆ RK , a vector v ∈ RK ,
and ε ∈ R \ {0}, the ratio [ f (x + εv)− f (x)] /ε is a strictly increasing function of ε (see Theorem 6.2.15 in de la Fuente (2000)).

7The limit as ε ↘ 0 of the quantity in (14) above is the directional derivative of li (·|x) at at x−i in the direction of the
vector v−i. The limit exists because the function is convex on Bε0 (x)−i ∩ I−i

x ; it coincides with the quantity q−iv−i because the
function is in addition differentiable at x−i (see Section 4 in the Online Appendix for more details). That the quantity in (14)
approaches the limit from above follows from the observation in the preceding footnote.
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where the first and third inequalities above are due to the monotonicity of % and µ (·), respectively. For
any ε ∈ (0, ε1), therefore, we have

εµ (ε) ∑
j∈N−d \{i}

p̃ (ρ0)j dj <

(
1 + ρ0

2

)
pi (xi − x (ε, µ (ε))i) + p̃ (ρ0)−i

(
x−i − x (ε, µ (ε))−i

)
= p̃ (ρ0) (x− x (ε, µ (ε))) = εµ (ε) ∑

j∈N−d

p̃ (ρ0)j dj,

the last equality due to (13). This implies though that p̃ (ρ0)i di > 0, which is, of course, absurd. �

The following result supports parts of the argument in the proofs for Propositions 3–4. In what follows,
we say that a weak order % on X is weakly C1 at x ∈ X if Ix is a C1 manifold of dimension n− 1 locally
at x, i.e. if there exists ε > 0 such that Bε (x) ∩ Ix is a C1 manifold of dimension n− 1. Recall also that
a function f : A → R (A ⊆ Rk open) is continuously differentiable (equivalently, C1) at x ∈ A if it is
continuously differentiable on Bε (x) ⊂ A for some ε > 0.

Lemma 3.9 Let % be a strictly convex, strictly monotonic, continuous weak order on X. For any (x, z, i) ∈
X× Ix ×N , % is weakly C1 at z if and only if li (·|x) is C1 at z−i.

Proof. Take arbitrary x ∈ X and i ∈ N . For the “if” direction, let li (·|x) be C1 at z−i and observe that
the graph of a Cr function f : A → Rm (A ⊆ Rk open, r ∈ N) is a Cr (n-dimensional) manifold –see
Section 1.H.1 in Mas-Colell (1985). The graph of li (·|x) being the indifference set Ix, the latter is clearly
a C1 manifold at z.
For the “only if,” let Ix be a C1 manifold at z. There exists ε > 0 and a C1 regular function ξ : Bε (z)×
Bε (z)→ R such that Bε (z)∩Ix = ξ−1 (0) (see for instance Section 1.H.2 in Mas-Colell (1985)). It follows
then from the implicit-function theorem that the mapping li (·|x) is a well-defined C1 regular function
on Bε0 (z) ∩ I−i

x for some ε0 ∈ (0, ε).

3.4 Proof of Proposition 3

In light of Lemma 3.9 that (iii)⇒ (i) follows from Proposition 2. To show next that (ii)⇒ (iii) observe that,
x (·) being injective, p (·) is a function. For any (x, z, i) ∈ X × Ix ×N , therefore, li (·|x) is differentiable
at z−i (Proposition 2) with the gradient defined from the singleton p (z) by equation (12):

∇li (z−i|x) = −p−i (z) /pi (z) (15)

Moreover, since x (·) is in fact an homeomorphism, p (·) is continuous at z so that li (·|x) is C1 at z−i. The
claim follows once again from Lemma 3.9.
To establish finally that (i)⇒ (ii), we will make use of the following result.

Lemma 3.10 Let the onto demand function x : Y → X for some Y ⊆ Rn
++ be generated by the continuous weak

order % on X. For any p ∈ Y, x (·) is continuous at p if % is differentiable at x (p).

Proof. Observe first that% is necessarily strictly convex and strictly monotonic (Proposition 1). Take an
arbitrary p ∈ Y and let x = x (p). Choose also ε > 0 sufficiently small so that Bε (x) ⊂ X. Consider the
problem max% {z ∈ cl (Bε/2 (x)) : p′z ≤ 1} for p′ ∈ Rn

++. By Proposition 1, there exists Ỹ ⊆ Rn
++ and an
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onto solution function x̃ : Ỹ → Bε/2 (x). For any p′ ∈ Ỹ, moreover, the constrained set is compact - being
but the intersection of the compact sets cl (Bε/2 (x)) and {z ∈ Rn

+ : p′z ≤ 1}. Thus, by Berge’s Maximum
theorem (see for instance Theorems 7.2.1-7.2.2 in de la Fuente (2000)), x̃ (·) is continuous on Ỹ - which is
open since the function is onto an open set.
We will show next that Ỹ ⊆ Y while x̃ (·) is the restriction of x (·) on Ỹ. To this end, observe that the
arbitrary p′ ∈ Ỹ supports Ux̃(p′) at x̃ (p′). For if there exists z ∈ Ux̃(p′) with p′z ≤ p′ x̃ (p′), then any
λ ∈ (0, 1) would give zλ = λz + (1− λ) x̃ (p′) � x̃ (p′) while p′zλ ≤ 1. As though limλ→0 zλ = x̃ (p′),
for any ε > 0, we have that zλ ∈ Bε (x̃ (p′)) for sufficiently small λ. Yet, a small enough ε ensures that
Bε (x̃ (p′)) ⊂ Bε/2 (x), contradicting the optimality of x̃ (p′). Recall now Lemma 3.1. The fact that p′

supports Ux̃(p′) at x̃ (p′) implies that x̃ (p′) ∈ max% {x ∈ X : p′x ≤ 1}. As the latter set though is the
singleton x (p′) while x (·) is onto, it cannot but be x̃ (p′) = x (p′) and p′ ∈ Y.
Notice finally that, since x̃ (·) is onto Bε/2 (x) and coincides on its domain with x (·), there exists p′′ ∈ Ỹ
such that x̃ (p′′) = x = x (p′′). However, % being differentiable at x, we cannot have x (p′′) = x = x (p)
unless p′′ = p (recall Proposition 2). This establishes that Ỹ = Y while x̃ (·) coincides with x (·). The
claim now follows.

By the preceding lemma, for any x ∈ X, if % is differentiable at x then x (·) is continuous at the unique
(recall Proposition 2) p ∈ Y: x = x (p). Given this and the Invariance of Domain Theorem, the claim
follows.8 �

3.5 Proof of Proposition 4

In light of Proposition 3, we need to show that (ii) ⇔ (iii) With respect to (iii) ⇒ (ii), by the implicit
function theorem (or by Lemma 5.3 in the Online Appendix), u (·) being C1 at x implies that li (·|x) is
also C1 at x−i for any i ∈ N . The claim then is due to Lemma 3.9. It remains thus to establish that (ii)⇒
(iii).

Homothetic preferences. As is well-known, a strictly convex, strictly monotonic, continuous and homo-
thetic weak order % on X ⊆ Rn

++ admits a continuous, strictly monotonic, strictly quasiconcave and
homogenous of degree one utility representation u : X → R++.9 Given these properties, u (·) is in fact
concave on X.10 The claim is due to the following result.

Lemma 3.11 Let the strictly convex and strictly monotonic continuous weak order % on X be represented by the
concave utility function u : X → R. For any (x, z, i) ∈ X × Ix ×N , u (·) is C1 at z if and only if % is weakly
C1 at z.

Proof. For the “only if” direction, recall the Implicit Function Theorem (or Lemma 5.3 in the Online
Appendix): if u (·) is C1 at z then li (·|x) is also C1 at z−i. The claim follows from Lemma 3.9. For the

8Letting A, B ⊆ Rn with A open, the Invariance of Domain Theorem - see Brouwer (1912) - states that a function f : A→ B
being injective and continuous suffices for it to be an homeomorphism and for f (A) to be open.

9Letting A ⊆ Rn
+, a strictly monotonic and homogenous of degree one function f : A → R gives f (x) < f (λx) = λ f (x),

for any λ > 1 and any x ∈ A \ {0}. Clearly, it must be that f (x) > 0 for any x ∈ A ∩Rn
++.

10See Theorem 1 in Prada (2011): letting A ⊆ Rn
+, if a function f : A → R is quasiconcave, increasing and homogenous of

degree γ with 0 < γ ≤ 1 then it is concave.
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“if” direction, observe first that u (·) being concave, −u (·) is convex. The subdifferential ∂ (−u (z))
therefore will be non-empty. Yet any −p ∈ ∂ (−u (z)) gives u (z)− u (z′) ≥ p (z− z′) for any z′ ∈ X; i.e.,
0 ≤ u (z′)− u (z) ≤ p (z′ − z) for any z′ ∈ Uz. That is, any p ∈ ∂ (u (z)) supports Uz at z, which implies
in turn that ∂ (u (z)) ⊂ Y (see Lemmas 3.2 and 3.4). By Proposition 3 then, % is weakly C1 at z only if
∂ (u (z)) is a singleton and ∂ (u (·)) = p (·) is continuous at z.

Quasi-linear preferences. A quasilinear, strictly convex and strictly monotonic continuous weak order on
X is represented by a utility function u : X → R given by

u (x) = xi + v (x−i) , i ∈ N (16)

for some continuous, strictly increasing and strictly quasiconcave function v : X−i → R. Hence, li (·|x) =
xi + v (x−i)− v (·) and the claim follows immediately from Lemma 3.9.11 �
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