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ABSTRACT
A query performance prediction (QPP) method predicts the effec-
tiveness of an IR system for a given query. While unsupervised ap-
proaches have been shown to work well for statistical IR models, it
is likely that these approaches would yield limited effectiveness for
neural ranking models (NRMs) because the retrieval scores of these
models lie within a short range unlike their statistical counterparts.
In this work, we propose to leverage a pairwise inference-based
NRM’s (specifically, DuoT5) output to accumulate evidences on
the pairwise believes of one document ranked above the other. We
hypothesize that the more consistent these pairwise likelihoods
are, the higher is the likelihood of the retrieval to be of better
quality, thus yielding a higher QPP score. We conduct our exper-
iments on the TREC-DL dataset leveraging pairwise likelihoods
from an auxiliary model DuoT5. Our experiments demonstrate that
the proposed method called Pairwise Rank Preference-based QPP
(QPP-PRP) leads to significantly better results than a number of
standard unsupervised QPP baselines on several NRMs.

CCS CONCEPTS
• Information systems→Query intent; Information retrieval
query processing.

KEYWORDS
Unsupervised Query Performance Prediction, Neural Ranking Mod-
els, Pairwise Rank Preferences

1 INTRODUCTION
A query performance prediction (QPP) method seeks to estimate
the retrieval quality of an IR model without actually making use
of the relevance assessments. Existing QPP research has mainly
been dominated by unsupervised approaches [9, 16, 18, 23, 26] be-
cause of the two key advantages: first, they are interpretable (e.g.,
applying intuitive heuristics such as the variance of retrieval scores,
as in NQC [18]), and second, unlike supervised approaches they
do not need a training set of queries with available relevance as-
sessments. Supervised QPP approaches mainly involve learning
a relative preference of the effectiveness of queries in a pairwise
manner, using data such as the word embedded vectors of queries
and top-retrieved documents [4, 23] or with transformer-based em-
beddings [1, 6]. Such supervised approaches usually require a large
quantity of training data to reach adequate levels of performance.
To address this limitation, our work solely focuses on unsupervised
QPP approaches that do not require any training examples.

In recent years, it has been shown that supervised neural rank-
ing models (NRMs) outperform their unsupervised counterparts
[3, 7, 8, 10, 11, 21], which implies that it is important to study
whether off-the-shelf QPP approaches can adequately work well
for these supervised data-driven models. Existing research has
shown that an off-the-shelf application of standard unsupervised
QPP estimators on NRMs yields limited QPP effectiveness [5]. The
authors of [5] argue that this can be attributed to the way in which
the retrieval status values (RSVs) are computed in an NRM, i.e.,
via the application of a neural activation function, such as tanh
or sigmoid, which due to their short range ([−1, 1] and [0, 1], re-
spectively) restricts the RSVs to lie within short intervals. In other
words, summing up these neural activation outputs over the query
terms (query lengths being usually small) would yield a small num-
ber, as a result of which standard QPP methods, which leverage
statistics on the top-retrieved scores (usually not bounded within
such small ranges) may not be effective for NRMs.

In this paper, we propose a novel unsupervised QPP approach
specifically tailored to work well for NRMs. Specifically, we propose
an unsupervised method that leverages information from pairwise
rank preferences (a way to obtain these likelihoods is via an NRM
capable of pairwise inference, e.g., DuoT5 [15]). The core hypothesis
is that a query for which an IR system ends up retrieving a rela-
tively high volume of relevant content would also exhibit a higher
agreement of the observed ranking of documents with the predicted
probabilities of relative rank preferences inferred from an auxiliary
pairwise ranking model (e.g., DuoT5). The main contribution of
this work is that we show that even unsupervised approaches can
work effectively well in predicting the query performance of NRMs.

2 PAIRED RANK PREFERENCE-BASED QPP
Wenow formally define our proposed unsupervised predictor, ‘Paired
Rank Preference-based QPP’ (abbreviated as QPP-PRP).

Generic form of a QPP Estimator. A QPP estimator is a func-
tion \ which takes as input a query 𝑄 , a list of top-𝑘 retrieved doc-
uments as ranked by an IR model 𝜙 - which we denote as 𝐿𝑘 (𝑄,𝜙)
and outputs a real-valued score, i.e., \ : (𝑄 × 𝜙 × 𝑘) ↦→ R. The
output score \ (𝑄,𝜙, 𝑘) represents an estimate of the quality of the
top-𝑘 list as retrieved by an IR model 𝜙 .

Leveraging Pairwise Likelihoods from an Auxiliary Model.
We propose to make use of the pairwise predictions from a su-
pervised ranking model Z that given a pair of documents (𝐷,𝐷′)
retrieved in response to a query 𝑄 outputs the probability of the
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event that 𝐷 is observed in a ranked list above 𝐷′. A concrete exam-
ple of such a pairwise inference-based ranking model is DuoT5 [15].
Note that the rankingmodel for the pairwise likelihood calculations,
Z , is different from the base ranking model 𝜙 that induces the top-𝑘
ranking, 𝐿𝑘 (𝑄,𝜙), the quality of which is eventually to be estimated.

For each pair of documents (𝐷, 𝐷′), where both 𝐷 and 𝐷′ ∈
𝐿𝑘 (𝑄,𝜙) (for brevity we denote this as 𝐿𝑘 from hereon), the auxil-
iary pairwise inference model Z outputs a parameterized probability
of the form 𝑃

Z

𝐷<𝐷 ′ , i.e., a probability parameterized by the pairwise
model Z indicating the likelihood of the event that 𝐷 is retrieved at
a better rank than𝐷′. In practice, the output of a pairwise inference
model, e.g., DuoT5, is a Sigmoid, which when fed as input a triple
of the form ⟨𝑄, 𝐷, 𝐷′⟩ outputs a value less than 0.5 if 𝐷 is to be
ranked better than 𝐷′ (a value higher than or equal to 0.5 denotes
the complementary event).

In a similar manner, the model outputs a different likelihood if
a triple is fed as input in the reverse order, i.e., when ⟨𝑄,𝐷′, 𝐷⟩ is
used as an input, the pairwise model outputs a likelihood of 𝐷′

being ranked better than 𝐷 . These two likelihoods are usually not
identical, and it is a common practice to take the average value
of these two likelihoods as the estimated belief of 𝐷 being ranked
better than 𝐷′ [15]. Formally,

𝑃
Z

𝐷<𝐷 ′
def
==

1
2
(𝑃 [𝑟 (𝐷) < 𝑟 (𝐷′); Z ] + 1 − 𝑃 [𝑟 (𝐷) > 𝑟 (𝐷′)); Z ]), (1)

where 𝑟 (𝐷) denotes the rank of a document 𝐷 , and 𝑃 [𝑋 ; Z ] repre-
sents the estimated probability of an event 𝑋 using the parameter-
ized likelihoods obtained from the model Z .

QPP Formulation with Pairwise Aggregates. We now de-
scribe howwe use the pairwise probabilities of Equation (1) towards
deriving a QPP estimate. The key idea is that a ranked list is hy-
pothesized to be of good quality if the aggregated beliefs from the
pairwise probabilities from the auxiliary model Z agrees consis-
tently well with an observed ranked list.

As a first step of QPP-PRP, for each document 𝐷 in the top-𝑘
retrieved set, we partition the remaining documents of the top-𝑘
into two non-overlapping sets - i) documents that are ranked worse
than𝐷 , denoted as𝐷bottom, and ii) those that are ranked better than
𝐷 , which we denote as 𝐷top. Now, for the pivot document 𝐷 , the
estimated log-probability of observing documents ranked better
than 𝐷 is given by aggregating the 𝑃Z

𝐷 ′<𝐷 values over each 𝐷′ that
are actually observed to be ranked better than 𝐷 , i.e.,

log 𝑃 (𝐷top |𝐷 ; Z ) =
∑︁

𝐷 ′∈𝐷top

log(1 + 𝑃
Z

𝐷 ′<𝐷 ), (2)

By symmetry, the likelihood for 𝐷bottom is given as

log 𝑃 (𝐷bottom |𝐷 ; Z ) =
∑︁

𝐷 ′∈𝐷bottom

log(1 + 𝑃
Z

𝐷 ′<𝐷 ) . (3)

The estimate of Equation (3) should be low because an effective
pairwise inference model would output low values for 𝑃Z

𝐷 ′<𝐷 . This
is because as per the actual observation a document 𝐷′ ∈ 𝐷bottom
is ranked worse than 𝐷 . Intuitively, the odds-ratio of the two com-
plementary events of Equations (2) and (3) thus should indicate a
high level of agreement between the observed and the predicted
rank orders as obtained with Z . This is because in such cases, we
would expect the quantity in Equation (2) to be maximised and the

Figure 1: A visual illustration of the working principle of QPP-PRP;
Left: a query for which the pairwise ranking preferences obtained via
the auxiliary model Z largely conforms with the observed ranking,
Right: depicts the reverse of this situation, where the observed rank
is less consistent with the pairwise rank preferences.

one in Equation (3) to be minimised. Therefore, we aggregate the
beliefs over all 𝐷 ∈ 𝐿𝑘 (𝑄), to compute our proposed QPP score as

QPP-PRP(𝑄) =
∑
𝐷∈𝐿𝑘 (𝑄 ) log 𝑃 (𝐷top |𝐷 ; Z )∑

𝐷∈𝐿𝑘 (𝑄 ) log 𝑃 (𝐷bottom |𝐷 ; Z ) . (4)

RelationwithUncertainty in Ranking Preferences. We also
illustrate the idea visually in Figure 1, where we show the sample
pairwise probability values of the top-𝑘 documents (𝑘 = 10) for
two queries. Each is shown as a matrix, where the (𝑖, 𝑗)th entry
denotes the probability 𝑃Z

𝐷𝑖<𝐷 𝑗
. The gray-scale intensity of the part

of the matrix above the diagonal thus corresponds to the aggregated
beliefs of the numerator of Equation (4). Similarly, the region below
the diagonal represents the aggregated beliefs of the quantity in the
denominator of Equation (4). The agreement of the observed ranks
with the pairwise preferences can thus be visually interpreted with
the relative gray-scale intensities of the regions above and below
the diagonal. For instance, the left plot of Figure 1 represents an easy
query (with higher agreements between the observed and the pre-
dicted ranks) because the upper part and the lower parts of the diag-
onal show high and low intensities, respectively. Similarly, the right
plot of Figure 1 represents a more difficult query (low QPP estimate)
because the lower part of the diagonal being comprised of relatively
high intensity pixels increases the denominator of Equation (4).

In particular, for obtaining the pairwise probabilities of the form
𝑃
Z

𝐷<𝐷 ′ , we make use of the DuoT5 model [15] as a concrete real-
isation of Z . Indeed, DuoT5 has been shown to outperform other
transformer based neural models, such as the DuoBERT [15], most
likely because the T5 transformer model being a generative model
usually works better than a non-generative model, such as BERT.

3 EVALUATION
3.1 Experiment Setup
We investigate the following research questions:

• RQ-1: Are existing unsupervised QPP approaches effective for
NRMs?

• RQ-2: Do the pairwise document ranking order probabilities as
obtained from a pairwise inference model, such as DuoT5, help
improve the QPP effectiveness, as per our hypothesis?

• RQ-3: Do we observe similar trends in QPP effectiveness for
the two modes of NRMs: re-ranking documents retrieved with a
sparse index, and end-to-end retrieval with a dense index?
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3.1.1 Dataset and IR Models. We experiment with the MS MARCO
passage ranking dataset [13], a standard IR collection commonly
used to evaluate the quality of supervised NRMs. We use the TREC
DL’19 and DL’20 topics for our experiments. We employ a number
of different NRMs as the target IR models for QPP evaluation. In
particular, we employ both sparse indexing based re-ranking and
end-to-end approximate retrieval on dense indexes.

The initial top-1000 documents for the sparse index-based re-
ranking methods were obtained with BM25. We denote such a
sparse index-based NRM as ‘BM25 + X’, where X is the name of the
neural approach used to re-rank the top-1000 retrieved by BM25
(an example of ‘X’ is ColBERT). In particular, as re-ranking models,
we employed models from the following two families.
• Neural Augmentation: This involves augmenting the text of a

document either by boosting the term frequency of important
terms, such as DeepCT [2], or by including additional terms using
a seq2seq transformation, such as docT5query [14]. The models
used in our experiments from this family are the following -
‘BM25 + DeepCT + BERT’, ‘BM25 + docT5query + BERT’ and
‘BM25 + docT5query + ColBERT’ (method ‘X + Aug + Y’ means
that ‘Y’ is used to re-rank the results obtained with ‘X’ after
augmenting the index ‘X’ with ‘Aug’).

• Dense Retrieval: This family consists of the dense retrieval-
based approaches, where a set of top-𝑘 documents is retrieved by
employing approximate nearest neighbor search on dense em-
beddings. In this family, we employ two models - ColBERT-E2E
and ANCE. ANCE [22] is a single representation-based dense
retrieval model that selects the hard negatives globally from the
entire corpus during training. We use the default checkpoint
trained on MS MARCO training data for our experiments. Addi-
tionally, we also employ a contextualized query expansion-based
model, BERT-QE [25], on our dense retrieval baseline, ColBERT-
E2E.

The retrieval outputs of the neural models were obtained from the
runs available at [19] 1.

3.1.2 Baseline QPP Methods. As baselines, we employ two stan-
dard unsupervised QPP approaches that have been reported to work
well in the literature, namely - (i) NQC [18, 24], and (ii) UEF [17],
with NQC as the base estimator. While NQC estimates the retrieval
quality by measuring how skewed is the distribution of the RSVs at
the very top-ranks, UEF involves sampling various sub-sequences
of the top-ranked documents followed by estimating the robustness
of each by computing the perturbations in the rank orders before
and after relevance feedback (e.g., by RLM [12]).

3.1.3 Ablations of QPP-PRP. Our proposed method hypothesises
that leveraging pairwise ranking preference information should
improve QPP estimation. We use one of the most effective pairwise
models, DuoT5 [15], for calculating the pairwise ranking prefer-
ences. In doing so, we implicitly measure the agreement between
DuoT5 and the input ranking. Hence, as an ablation of our proposed
method, we first obtain a list with an NRM 𝜙 , say 𝐿𝑘 (𝜙), and then
re-rank this list by applying DuoT5 (a pairwise re-ranker) to obtain
𝐿𝑘 (Z ). In particular, we employ two methods, namely Kendall’s

1https://github.com/Xiao0728/ColBERT-PRF-VirtualAppendix

𝜏 and RBO [20], to compute the QPP estimate as a rank correla-
tion between 𝐿𝑘 (𝜙) and 𝐿𝑘 (Z ) yielding two ablations, which we
respectively, denote as DuoT5-𝜏 and DuoT5-RBO.

It is worth mentioning that this ablation cannot be applied on
the output of the auxiliary pairwise model Z itself, because the
rank correlation between 𝐿𝑘 (𝜙) and 𝐿𝑘 (Z ) = 1 for all queries if 𝜙 is
identical to Z . Consequently, no ablation effectiveness is reported
on the Duo-T5 results of Table 1 (the gray cells).

Furthermore, since as per the visual example of Figure 1, an
anti-symmetric matrix of pairwise rank preferences indicates high
retrieval quality, as a different ablation we simply compute how
symmetric a matrix is by employing the following standardmeasure
of anti-symmetry of a matrix:AS = ( |𝐴+𝐴𝑇 |− |𝐴−𝐴𝑇 |)/(|𝐴+𝐴𝑇 |+
|𝐴 −𝐴𝑇 |). This value if smaller indicates a better retrieval quality.
We call this method AS; this is an ablation of QPP-PRP because it
only checks for the lack of symmetric properties of the pairwise
preference matrix without taking into account which part of the
matrix (the part above or below the diagonal) is comprised of larger
values as checked by our method (Equation (4)).

3.1.4 Parameters and Evaluation Measures. We follow the standard
setup for QPP experiments of conducting a 30-fold evaluation on
50:50 splits [18, 23, 24]. For each fold, the training set was used to
tune the hyper-parameter common to all the QPP methods - the
number of top-documents. This was tuned via grid search on the
set {10, 20, 30, 40, 50}. To evaluate QPP, we use the Pearson’s-𝑟 and
Kendall’s-𝜏 , denoted as P-𝑟 and K-𝜏 , respectively, as prescribed in
the literature [18, 23]. The QPP evaluation considers AP@50 for
deriving the ground-truth ordering of the queries2.

3.2 Results and Discussion
Main observations. Table 1 presents a comparison between

the different QPP methods for the different NRMs investigated. In
relation to RQ-1, it is observed that off-the-shelf QPP approaches
(baselines NQC and UEF), despite performing well on BM25, do not
perform well on NRMs (except for BM25+MonoT5+DuoT5). This
observation is consistent with those reported in [5].

Second, in relation to RQ-2, it is observed that QPP-PRP sig-
nificantly outperforms the unsupervised baselines NQC and UEF,
which shows that our hypothesis of making use of the pairwise
rank preferences is indeed beneficial. Moreover, the rank perturba-
tion based ablation methods DuoT5-𝜏 and DuoT5-RBO, although
worse than QPP-PRP is, in fact, mostly better than the baselines,
NQC and UEF. This also shows that the ranking order of DuoT5
with respect to a target IR model can itself be a good indicator of
QPP effectiveness. The poor performance of the ablation method
AS is attributed to its inability to discern whether it is the upper
part of the pairwise probability matrix that is comprised of high
values. This is, in fact, addressed by our method QPP-PRP, via the
odds-ratio of Equation (4).

Interestingly, the effect of QPP-PRP on DuoT5 itself is not that
effective because it is likely that the method of relative rank prefer-
ences can only reliably estimate the robustness of any other retrieval
model, i.e., relative to DuoT5. In relation to RQ-3, we observe that
the trends are similar even for end-to-end dense NRMs.

2Implementation available at: https://github.com/smilingashutosh/QPP-PRP

https://github.com/Xiao0728/ColBERT-PRF-VirtualAppendix
https://github.com/smilingashutosh/QPP-PRP
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Table 1: QPP effectiveness for both sparse-reranked (top-half) and dense (bottom-half) neural models on TREC-DL (’19 and ’20) topics. The
best results in each group are bold-faced, and the best results across the groups are underlined. A ‘∗’ alongside a baseline or an ablation indicates
that QPP-PRP (ours), is significantly better than the corresponding method (𝑡-test with 95% confidence).

QPP Evaluation

Baselines Ablations Ours

NQC UEF AS DuoT5-𝜏 DuoT5-RBO QPP-PRP

IR Model AP@50 P-𝑟 K-𝜏 P-𝑟 K-𝜏 P-𝑟 K-𝜏 P-𝑟 K-𝜏 P-𝑟 K-𝜏 P-𝑟 K-𝜏

Sp
ar
se

Re
-r
an
ke
d

BM25 0.2571 0.4669 0.2528 0.3789 0.2223 -0.1938* -0.1469* 0.2253* 0.2349* 0.2623* 0.2259 0.2896 0.2135
+BERT 0.3591 0.3462* 0.1282* 0.3746* 0.1245* 0.1930* 0.1159* 0.4356* 0.3118 0.3962* 0.2723* 0.5213 0.3160
+MonoT5 0.3871 0.2985* 0.0766* 0.3432* 0.1173* 0.3011* 0.2103* 0.4297* 0.2736* 0.3188* 0.1793* 0.5256 0.3790
+DeepCT+BERT 0.3585 0.3543* 0.0916* 0.3700* 0.0776* 0.2426* 0.1600* 0.4400* 0.3085* 0.3760* 0.2515* 0.4745 0.3170
+docT5query+ColBERT 0.3797 0.4259* 0.2520* 0.3437* 0.1556* 0.2144* 0.1525* 0.4886* 0.3495 0.5099* 0.3402* 0.5205 0.3560
+docT5query+BERT 0.3651 0.2382* -0.0266* 0.3028* -0.0167* 0.2515* 0.1759* 0.4581* 0.3345* 0.4326* 0.2927* 0.6143 0.4160
+MonoT5+DuoT5 0.3621 0.4084 0.2253 0.3747 0.1828* 0.2243* 0.1491* 0.3256 0.2157

D
en
se ColBERT-E2E 0.3497 0.2492* 0.2111* 0.1989* 0.1770* 0.2129* 0.1132* 0.3467* 0.2922* 0.3120* 0.2356* 0.4383 0.3026

ANCE 0.2963 0.1837* 0.1622* 0.1523* 0.1454* 0.1190* 0.0893* 0.3563 0.2839 0.3264* 0.2320* 0.3381 0.2411
ColBERT-E2E+BERT-QE 0.3613 0.2455* 0.2070* 0.1796* 0.1505* 0.2298* 0.1196* 0.2953* 0.2554* 0.3051* 0.2331* 0.4677 0.3171
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Figure 3: Effect of variations in 𝑘 (the number of top documents)
on QPP-PRP and the best performing baselines (Table 1).
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Figure 2: Pairwise probabilities (𝑃Z

𝐷<𝐷′ ) of the top 50 documents for
four sample queries both with high and low AP@50. (a) and (b): the
QPP-PRP matrix on BM25+MonoT5 (sparse); (c) and (d): the pairwise
probabilities for a dense NRM (ColBERT-E2E).

Per-query analysis. We now illustrate the matrix of pairwise
rank preferences on sample queries from the TREC-DL dataset
(a schematic was earlier shown in Figure 1). Figures 2a and 2b
plot the pairwise rank preference on the top-50 results obtained
with BM25+MonoT5 (sparse index) for two sample queries - one
for which MonoT5 yields good retrieval quality, and the other for
which the retrieval quality is not effective (see the AP@50 values).
A visual inspection of Figure 2a reveals that the top-right part of
the matrix is brighter than the bottom-left part, which shows that
a query for which a target IR model leads to a consistent matrix
of rank preferences also leads to higher retrieval effectiveness. On
the other hand, in Figure 2b, no such emergent pattern is seen and
QPP-PRP estimator in this case yields a low value. This means that
the QPP estimate, in this case, is also accurate because the AP value

measured for this query is indeed low. In Figures 2c and 2d, a similar
trend is observed for the end-to-end NRM, ColBERT-E2E.

Sensitivity analysis. We now investigate the sensitivity of the
QPP-PRP model with respect to the number of top documents (𝑘)
used to compute the QPP estimate. Figure 3 shows that our proposed
QPP-PRP performs consistently better than the best performing
baseline (as per Table 1) for a range of different values of 𝑘 for both
the best performing sparse-reranking and dense NRMs.

Concluding Remarks. In this paper, we proposed an unsu-
pervised QPP approach specifically targeted to act effectively on
neural models, where the similarity scores are distributed over a
short range. Our proposed model alleviates this limitation by lever-
aging the pairwise rank preference probabilities obtained from a
pairwise inference model, such as DuoT5. Our experiments demon-
strated that our proposed QPP method significantly outperforms
other state-of-the-art unsupervised QPP approaches.

In future, we may investigate ways of using the information
from pairwise rank preference likelihoods as a part of a supervised
model to further improve results.
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