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In recent years, there has been an unprecedented advancement in in situ 
analytical approaches that contribute to the mechanistic understanding of 
microbial communities by explicitly incorporating ecology and studying their 
assembly. In this study, we  have analyzed the temporal profiles of the healthy 
broiler cecal microbiome from day 3 to day 35 to recover the stable and varying 
components of microbial communities. During this period, the broilers were fed 
three different diets chronologically, and therefore, we have recovered signature 
microbial species that dominate during each dietary regime. Since broilers were 
raised in multiple pens, we have also parameterized these as an environmental 
condition to explore microbial niches and their overlap. All of these analyses were 
performed in view of different parameters such as body weight (BW-mean), feed 
intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset 
of microbes that these parameters have a bearing upon. We  found that gut 
microbial communities exhibited strong and statistically significant specificity 
for several environmental variables. Through regression models, genera that 
positively/negatively correlate with the bird’s age were identified. Some short-
chain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, 
Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain 
pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and 
Enterococcus, negatively correlated with the bird’s age, which indicated a high 
disease risk in the initial days. Moreover, the majority of pathways involved in 
amino acid biosynthesis were also positively correlated with the bird’s age. Some 
probiotic genera associated with improved performance included Oscillospirales; 
UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In 
general, predicted antimicrobial resistance genes (piARGs) contributed at a stable 
level, but there was a slight increase in abundance when the diet was changed. To 
the best of the authors’ knowledge, this is one of the first studies looking at the 
stability, complexity, and ecology of natural broiler microbiota development in a 
temporal setting.
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1. Introduction

The challenge of global food scarcity is paramount, and efforts 
have been directed at agro-based sectors toward high generative 
capacities with the minimum possible resource utilization. In this 
respect, the poultry industry, particularly the broiler farming sector, 
has been playing a pivotal role for decades, with annual growth of 5% 
(FAO, 2017). Broilers are an important food source, specifically due to 
their cheap and high-quality protein content (El-Deek et al., 2020). 
Bird feed conversion efficiency is actuated by gastrointestinal 
microbial species (Kogut, 2019; Sztandarski et al., 2022). Over 900 
bacterial species have been explored so far in the chicken gut, 
comprising commensals and pathogens (Ranjitkar et al., 2016; Binek 
et al., 2017; Fathima et al., 2022).

The advantageous bacterial communities are involved in chicken 
feed digestion, nutrient assimilation and absorption, pathogen 
proscription, and immunity development, contributing to disease 
resistance (Stanley et al., 2012; Park et al., 2017; Borda-Molina et al., 
2018). The commensal microbiota have an evident antagonistic effect 
on pathogenic bacteria by way of colonization conflict, immune 
intonation, and production of antimicrobial molecules such as organic 
acids, bacteriocin, and hydrogen peroxide (Yeoman et al., 2012; Kim 
et al., 2015). This phenomenon of competitive exclusion, first coined 
by Nurmi, is illustrated by the decreased relative load of Helicobacter 
and Campylobacter by increasing the relative load of certain other 
(probiotic) genera (Nurmi and Rantala, 1973; Kaakoush et al., 2014).

The chicken cecal microbial environment is dominated by a high 
abundance of unclassified bacteria and bacterial low abundance reads 
at both the genus and species levels at the early stages of development 
(Proszkowiec-Weglarz et al., 2022). These bacteria are mainly acquired 
through the passage of eggs via the mother hen’s reproductive tract 
(Lee et  al., 2019). Newly hatched chicks are usually exposed to 
environmental and non-avian sources of bacteria; therefore, the gut 
colonization pattern is highly variable and characterized by low 
diversity and high instability that is governed by several environmental 
and host-associated factors (McKenna et al., 2020; Fathima et al., 2022; 
Proszkowiec-Weglarz et al., 2022). The highest microbial diversity has 
been observed in cecal content, holding up to 1011 organisms per gram 
(Huang et  al., 2018). Chicken gut development in commercial 
production systems is relatively specific, as chicks never come into 
contact with adult birds (Polansky et al., 2016).

Recently, the diversity of gut bacterial communities in broiler 
birds was examined, and it was found that 90% of ASVs belonged to 
Firmicutes and Proteobacteria (Li et  al., 2022). The microbial 
community’s complexity increased with age throughout the productive 
lifespan, with maximum stability during the 3rd week and instability 
during the 6th week (Yan et al., 2017; Huang et al., 2018; Feye et al., 
2020). Previously, it has been reported that colonization and 
replacement of certain microbial communities with more stable taxa 
occurs as broiler age advances (Lu et al., 2003; Mohd Shaufi et al., 
2015). In general, age is considered an important factor influencing 
the gut community structure, function, and diversity, with initial 
colonizers as facultative anaerobes followed by strict anaerobes (Zhu 
et al., 2002; Palmer et al., 2007; Oakley and Kogut, 2016).

In our previous study (Ijaz et al., 2018), an in-depth sampling 
regime was used to assess daily changes in microbiota. The study 
highlighted how alpha diversity increases rapidly during the initial 
12 days, as well as how beta diversity converges to a stable solution. 

More importantly, phylogenetic alpha diversity measures such as the 
net relatedness index (NRI) and the nearest taxon index (NTI) showed 
a step response (days 12–20), hypothesizing a window of opportunity 
where a pathogen such as Campylobacter may appear. However, 
beyond diversity estimates, we did not explore the spatial (pens) and 
temporal dynamics and how the structure of microbial communities 
can reveal information about the stability of ecosystems. In the past 
few years, there has been a reinvigorated interest in microbial ecology, 
particularly in view of advancements in null modeling techniques. 
Therefore, to consolidate these new analytical approaches, we  are 
revisiting them (Ijaz et al., 2018) to explore important concepts such 
as microbial niche differentiation (Verster and Borenstein, 2018). There 
are several hypotheses in circulation on how species occupy a certain 
niche (Granot et al., 2017), namely, the early succession hypothesis: 
early successional species are eventually responsible for occupying a 
niche; the abundance hypothesis: abundant species are more likely to 
occupy a niche; and the niche-breadth hypothesis: generalist species are 
more likely to thrive as they are capable of surviving under a wide 
range of conditions. In our original study, the microbial community 
data originated from 12 pens (each with their own environmental 
properties), which makes it a perfect candidate to explore concepts 
such as niche breadth and overlap as well as taxon-environment 
relationships in a recently developed null modeling-based MicroNiche 
framework (Finn et al., 2020).

To identify transient microbial taxa at very narrow ranges of a 
parameter of interest or as a result of disturbances on a temporal scale, 
there is an emphasis on conditionally rare taxa that have a bimodal 
response in terms of abundance (Lynch and Neufeld, 2015). These rare 
taxa provide a reservoir of functions and offer a means toward 
achieving resilience. Beyond this approach, we apply a null modeling-
based specificity measure by Darcy et al. (2022) that is able to pick out 
taxa becoming active at narrow ranges. Our original study (Ijaz et al., 
2018) has three diets, starter (days 0–10), grower (days 11–25), and 
finisher (days 26–35). We  hypothesize that the introduction of 
individual diets should shift the microbiome by either the proliferation 
or disappearance of species and by making some microbes specific. 
This would also offer additional insights into microbial community 
function linked to dietary or environmental changes.

While the above approaches identify individual taxa, we are also 
interested in a minimal subset of taxa that form functional ecological 
groups based on statistical patterns. There is reasonable evidence to 
suggest that simplistic structure in community-level function and 
coarse-grained taxonomic groups arise as a result of nutrient 
availability (Goldford et al., 2018). These taxonomic or functional 
guilds assembled as a result of some outcome predictors have recently 
been studied as an ensemble quotient optimization problem (Shan 
et al., 2022), through which an “ensemble” (a minimal subset of the 
microbial community associated with a categorical or continuous 
outcome) can be extracted.

Working beyond understanding single species and their 
sub-composition, it is also important to understand top-level 
microbial community or ecosystem functioning. The recently 
developed method by Yonatan incorporates interacting traits such as 
commensalism, amensalism, competition, mutualism, and predator–
prey in stability criteria (Allesina and Tang, 2012) without the need to 
generate co-occurrence patterns (Yonatan et al., 2022), as opposed to 
the traditional methods, to suggest the resilience of microbial 
communities against outside influences or disturbances.
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The aim of this study is to explore the stability and assembly 
patterns of chicken cecum microbiota at diverse levels (coarse-grained 
to fine-grained) by revisiting the dataset of Ijaz et al. (2018) through 
the aforementioned novel analytical approaches. Some of these 
incorporate underlying ecology and environment (as discussed 
above); others, such as the generalized linear latent variable model 
(GLLVM) approach (Niku et al., 2019), were not available at the time 
of original publication and offer better predictive modeling for the 
metadata. Furthermore, with recent advancements in predictive 
metabolic modeling tools such as PICRUSt2 (Douglas et al., 2020), by 
virtue of an updated and larger database of gene families and 
functions, we are now better able to explore functional dynamics. 
Therefore, we have also explored the temporal dynamics of functional 
pathways and enzymes, including those related to 
antimicrobial resistance.

2. Materials and methods

A detailed description of the experimental design, sample 
collection, bird’s performance measurements, and sequencing is 
provided in the previous study (Ijaz et al., 2018). Briefly, the study 
comprises cecum microbiome samples of 396 broiler (Ross-308) that 
were allocated to 12 pens (33 broiler chicks/pen) and were fed with a 
three-phase diet, i.e., starter diet (up until day 10), a grower diet (from 
day 11 to day 25), and a finisher diet (from day 26 to day 35). One cecal 
sample was collected daily from each pen (12 samples/day), leading to 
396 samples in total, out of which a total of 17 were removed from the 
final analysis due to poor gDNA quality, giving a final n = 379 samples, 
which were subjected to 16S rRNA amplicon sequencing using a V3–
V4 primer set on an Illumina MiSeq, giving 300 bp paired-end reads.

2.1. Bioinformatics and statistical analysis

We have used the abundance table (p = 18,588 OTUs for n = 382 
samples that include additional negative controls) and representative 
operational taxonomic units (OTUs) from Ijaz et al. (2018) with two 
modifications: (a) we re-classified the taxonomy of the OTUs using 
the recent SILVA SSU Ref NR database release v.138 (Quast et al., 
2012), and (b) we re-generated the rooted phylogenetic tree with the 
QIIME2 framework (Caporaso et al., 2010). Furthermore, we used 
PICRUSt2 (Douglas et al., 2020) within the QIIME environment to 
recover KEGG enzymes and MetaCyc pathway predictions (not done 
in the original publication) for all the samples. For this purpose, 
we used the parameters --p-hsp-method pic --p-max-nsti 2 in qiime 
picrust2 full-pipeline.1 QIIME2 was also used to generate a final 
BIOM file that combined abundance information with the new 
taxonomy, along with the new phylogenetic tree, and the metadata 
were used for the downstream statistical analysis. The metadata 
comprised performance parameters related to each broiler including 
mean body weight (BW_mean), body weight gain (gain), feed intake 
(FI), and feed conversion ratio (FCR). These measurements were taken 
at time points 3–7 days, 8–14 days, 15–24 days, and 25–35 days. 

1 https://github.com/gavinmdouglas/q2-picrust2

Statistical analysis was performed using the R software (R Core Team, 
2013), with the methodology summarized in Figure 1 and the details 
provided in the Supplementary material.

3. Results

3.1. Overall complexity-stability patterns at 
a temporal scale

To estimate the interactions and complexity-stability profile of 
microbial communities within broiler guts, we calculated the values 
of effective connectance and effective number of species. Results were 
obtained in the form of a dissimilarity overlap curve for the moving 
window sizes of days 3, 4, 5, 6, and 7. A sudden shift in microbial 
communities observed during the 3rd week is more likely due to a 
change in diet or age of the bird, making communities more complex, 
dense, and unstable. This might result in the emergence or exclusion 
of some genera, thereby revealing the sensitivity of their abundances 
toward each other. High connectance values in the figure showed 
maximum instability in the 4th week, specifically after introducing the 
finisher diet (Figure 2).

To find functionally coherent taxa (ensemble) with stable and 
changed relative abundance, we  applied a novel approach, i.e., 
ensemble quotient optimization (EQO). We identified bacterial genera 
with stable relative abundance and minimum coefficient of variation 
(CV = 0.0399), including major anaerobes as commensals, e.g., 
Oscillibacter, Olsenella, Megamonas, Bifidobacterium, Lachnospiraceae, 
Shuttleworthia, Oscillospiraceae, Blautia, Lachnoclostridium, 
Subdoligranulum, Faecalibactrium, Butyricicoccus, and Lactobacillus 
(Figure 3). We also identified genera with changed relative abundance 
and a high correlation (R = 0.8701) based on statistical variations in age 
(and other environmental factors provided in the 
Supplementary material) and gut microbiome composition (see 
Figure  4). In addition to others, Colidextribacter, Oscillospiraceae; 
NK4A214_group, Intestinimonas, and Ruminococcus were picked out 
as major genera with changed relative abundance throughout the 
productive age of birds (Figure 4).

Next, we applied a regression model, i.e., the generalized linear 
latent variable model (GLLVM), in order to identify genera that 
positively or negatively correlate with bird’s age (Figure 5A). Some 
SCFA-producing bacteria, including Izemoplasmatales, 
Gastranaerophilales, (Eubacterium)_ventriosum_group, and Roseburia, 
are found as top genera in positive correlation with age. Certain taxa, 
such as Sporomusa, Campylobacter, Clostridium_sensu_stricto_1, 
Enterococcus, and the phytopathogen Paenibacillus, negatively 
correlated with bird’s age, indicating a greater risk of disease in the 
initial days.

3.2. Taxonomic and functional structure 
(stable and changing) for different dietary 
regimes (starter, grower, and finisher)

After applying EQO to different dietary regimes, i.e., starter, 
grower, and finisher, genera with stable and changed relative 
abundances were identified. The genera with stable relative abundance 
in the initial 10 days when the starter diet was offered to the birds 
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mostly include genera involved in feed digestion, such as Oscillibacter, 
Clostridia_vadinBB60_group, Flavonifractor, Lachnoclostridium, and 
Faecalibacterium. Broilers were also found to be at higher risk of some 
pathogenic genera, e.g., Escherichia-Shigella, during that time 
(Supplementary Figure S6). As the diet shifted from starter to grower, 
a change in stable genera was noticed, including Tyzzerella, Clostridia_
UCG-014, (Eubacterium)_coprostanoligenes_group, and 
Bifidobacterium (Supplementary Figure S8). In addition to the 
previously mentioned genera, Ruminococcus and (Ruminococcus)_
torques_group also stabilized their abundance when a finisher diet was 
offered (Supplementary Figure S10).

The genera identified with changed abundance in the starter diet 
period were Subdoligranulum, Tyzzerella, Ruminococcaceae; DTU089, 
Oscillospiraceae; UCG-005, and (Eubacterium)_coprostanoligenes_
group (Supplementary Figure S7). As a grower diet was provided, 
Angelakisella, Hydrogenonanaerobacterium, Oscillospirales; UCG-010, 
Butyricicoccaceae; UCG-009, Streptococcus, and Anaerofilum were 
found in varied abundances (Supplementary Figure S9). It is suggested 
that the relative abundance of Megamonas and Enorma decreased 
when a finisher diet was provided (Supplementary Figure S11).

After applying the generalized linear latent variable model 
(GLVVM), Oscillospiraceae; V9D2013_group, and Streptococcus were 
found to be  positively associated with the starter diet period but 
negatively associated with the grower and finisher diet periods. 
Angelakisella and Coriobacteriaceae_UCG-002 are found as top genera 
associated positively with grower diet periods but negatively with 
starter diet periods. Izemoplasmatales are associated positively with 
the finisher diet but negatively with the grower diet. Enorma and 
Victivallis showed positive and negative associations, respectively, with 
grower/finisher diet periods. Moreover, Sporomusa, Oscillospira, and 

Anaerotruncus positively correlated with the starter diet. Similarly, 
Hydrogenoanaerobacterium showed a positive correlation with the 
grower diet. In addition, Campylobacter, Clostridium_sensu_stricto_1, 
and Bacteroides are among the top genera with a positive association 
with finisher diet. Gallibacterium is negatively correlated with the 
starter diet. Butyricicoccaceae; UCG-008, Lachnospiraceae; UC5-1-2E3, 
and Lachnoclostridium are negatively associated with grower/finisher 
diets (Figures 5A,B).

3.3. Performance parameters and their 
association with key microbes and 
functions

To identify the significant genera in terms of their increased or 
decreased abundance in association with performance parameters 
including BW_mean, FI, FCR, and gain, we applied two regression 
models, including CODA LASSO and GLLVM 
(Supplementary Table S1). From both of the analyses, we found key 
probiotic genera positively associated with BW_mean, including 
Paenibacillus, Oscillospiraceae; V9D2013_group, Oscillospirales; UCG-
010, NK4A214_group, UCG-005, Holdemania, Shuttleworthia, 
Bifidobacterium, Colidextribacter, and Butyricicoccaceae; UCG-009. In 
contrast, some pathogenic anaerobes are found to be  in negative 
association with BW_mean, such as Victivallis, Campylobacter, 
Sporomusa, Clostridium_sensu_stricto_1, Anaerofustis, and 
Anaerovoracaceae; Family_XIII_AD3011_group (Figure  4A; 
Supplementary Figure S20).

Some major commensals, including Oscillospiraceae; V9D2013_
group, Oscillospirales; UCG-010, NK4A214_group, UCG-005, 

FIGURE 1

Schematic of the methodology used in this study with the details given in the Supplementary material.
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Butyricicoccaceae; UCG-008, Roseburia, Shuttleworthia, 
Hydrogenoanaerobacterium, Fournierella, and Colidextribacter are 
related to improved gut health and increased FI. We also found some 
probiotic genera negatively associated with FI (improved FCR), 
including Holdemania, Eubacterium_ventriosum_group, 

nodatum_group, hallii_group, Bifidobacterium, Lachnospiraceae; GCA-
900066575, ASF356, Eubacterium_oxidoreducens_group, 
Ruminiclostridium, Allisonella, Lachnospiraceae; UC5-1-2E3, FCS020_
group, Erysipelotrichaceae, Anaerofustis, Butyricicoccaceae; UCG-009, 
and Subdoligranulum (Figure 5A; Supplementary Figure S22).

FIGURE 2

Stability-complexity relationship recovered for different dissimilarity measures and the ways in which the effective number of species n is calculated: 
(A) dissimilarity metric (DM): Jensen–Shannon divergence (RJSD); n: binary counting; (B) DM: Euclidean distance; n: binary counting; (C) DM: 
Spearman correlation; n: binary counting; (D) DM: RJSD; n: richness; (E) DM: Euclidean; n: richness; (F) DM: Spearman; n: richness. Since the method 
requires >35 samples, we have calculated the values on a moving window average for sizes 3, 4, 5, 6, and 7  days shown in the strips. For each window 
size and the chosen parameters, we have identified the days at which there is a drastic change in stability (represented by the triangle pointing up) with 
the values shooting up immediately after, and the days where there is maximum instability (represented by the triangle pointing right).
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Increased abundance of some beneficial genera such as 
Oscillospiraceae; V9D2013_group, Oscillospirales; UCG-010, 
NK4A214_group, UCG-005, Roseburia, Shuttleworthia, Oscillospira, 
Bifidobacterium, Anaerovoracaceae; Family_XIII_UCG-001, 
Fournierella, and Colidextribacter are noticed, resulting in more gain. 
Some commensals are also found to be  negatively related to gain 
(Figure 5A; Supplementary Figure S21).

In terms of FCR, major commensals are found to be in negative 
association, including Paenibacillus, Sporomusa, Roseburia, 
Lachnospiraceae; GCA-900066575, ASF356, (Clostridium)_
methylpentosum_group, and Clostridiaceae; Candidatus_Arthromitus, 
which may result in improved feed efficiency and more weight gain 
(Figure 5A; Supplementary Figure S23).

3.4. Predictive antimicrobial resistance 
evolution and key relationships with 
predictors

To find the contribution of predictive antimicrobial resistance 
genes (piARGs) and other genes for the whole experimental period, 
we  applied Bray–Curtis contribution analysis, doing pairwise 
comparisons (Figures 6A,B). Overall, piARGs contribute at a stable 
level, but there is a slight increase in abundance, particularly when the 
diet is changed. An increase in piARGs abundance can be seen on day 
11 when the grower diet was introduced. In the initial 10 days until the 
starter diet was offered, it was observed using EQO analysis that 

genera like Oscillibacter, Clostridia_vadinBB60_group, Flavonifractor, 
Lachnoclostridium, and Faecalibacterium were found in most 
abundance, and here, we can predict that these genera are involved in 
contributing the piARGs. Similarly, the percentage of piARGs 
increased in the finisher diet period, and during this period, 
Ruminococcus and (Ruminococcus)_torques_group also stabilized their 
abundance, so we can predict that these genera are contributing more 
piARGs. In general, piARG’s contribution increased in the initial 
couple of weeks and then stabilized for the rest of the life span.

Considering performance parameters, i.e., BW_mean, FI, FCR, 
gain, and different pens in which birds were allocated, as environmental 
covariates, the abundance of piARGs considering KEGG orthologs 
(KOs) was analyzed using GLLVM (Figures  7A,B and 
Supplementary Table S2). A total of 34 piARGs were found to have a 
positive correlation with the defined variables, out of which 20 belong 
to the drug group of beta-lactams, including carbapenems, extended-
spectrum cephalosporins, extended-spectrum penicillin, and 
monobactams; 12 belong to aminoglycoside drug groups; and 2 
belong to trimethoprim.

We also identified 24 piARGs with a negative correlation to 
defined variables, out of which 15 belong to the beta-lactam drug 
group, including carbapenem, extended-spectrum cephalosporins, 
extended-spectrum penicillin, and monobactams; 7 belong to the 
aminoglycoside drug group; 1 belongs to trimethoprim; and 1 belongs 
to phenicol-resistant protein.

The piARGs are positively associated with the species that are 
categorized in a group with serious threats by the CDC, which 

FIGURE 3

Stable ensemble returned after running the EQO algorithm in uniform phenotypic variable mode, with (A) showing the fitness value evolution of the 
genetic algorithm in finding these ensembles, highlighting the convergence to a steady state solution, and (B) showing the relative abundance profiles 
with coefficient of variation (CV) values given on the top of the plot. The lower CV value signifies higher stability. Here, we have only used the samples 
when the starter diet was given to the broiler.
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includes multidrug-resistant Acinetobacter, multidrug-resistant 
Pseudomonas aeruginosa, drug-resistant non-typhoidal Salmonella, 
drug-resistant Salmonella enterica serovar Typhi, drug-resistant 
Shigella, and drug-resistant Streptococcus pneumoniae.

In general, the majority of the piARGs belonging to the drug group 
of aminoglycosides (DG01447) are upregulated in the finisher diet 
period and are also positively correlated with most performance 
parameters. In contrast, piARGs belonging to the drug group of 
carbapenems (DG01458) are found to be downregulated in grower 
diet/finisher diet periods and negatively associated with most 
performance parameters. piARGs belonging to extended-spectrum 
cephalosporin (DG01776 and DG01777) and penicillin (DG01780) are 
found to be more abundant in the starter diet period but less abundant 
in the finisher diet period, and they also show a negative correlation with 
the age of the birds. It has been made evident that the drug groups of 
second- and third-generation cephalosporin (DG01775 and DG01776) 
are positively correlated with BW_mean of birds. Extended-spectrum 
cephalosporin (DG01776 and DG01777) and monobactam (DG01454) 
are negatively associated with the grower and finisher diet periods. 
Carbenicillin (DG00519) showed a positive association with the grower 
and finisher diet periods but a negative association with the starter diet 
period. Some KOs belonging to trimethoprim (DG01581), extended-
spectrum penicillin (DG01780), second-generation cephalosporin 
(DG01775), phenicol (DG01576), and cephalosporins (no DG number) 
are positively or negatively associated with some of the pens (e.g., P08).

To determine how age (days) and different performance parameters 
(BW_mean, FCR, FI, and gain) contribute to the functional profiles of 

bacterial communities, we applied the CODA-LASSO regression model 
to recovered metacyc pathways (Supplementary Tables S3, S4). The 
majority of pathways involved in amino acid biosynthesis are found to 
be positively correlated with bird’s age such as L-histidine biosynthesis, 
L-arginine biosynthesis I (via L-ornithine), and the superpathway of 
taurine degradation. Some nucleotide biosynthesis/repair pathways, 
like guanosine ribonucleotides de novo biosynthesis and pyrimidine 
deoxyribonucleotides de novo biosynthesis II, were also found to have 
a positive correlation with the age of birds. Additionally, a 
peptidoglycan biosynthesis pathway and a coumarin biosynthesis 
pathway, most likely conferring some antibiotic resistance, were also 
found among the top positively correlated pathways to age. In contrast, 
pathways related to cofactors/coenzymes biosynthesis like tetrapyrrole 
biosynthesis I (from glutamate), foliate transformations III (E. coli), 
and nicotinamide adenine dinucleotide (NAD) biosynthesis are found 
to be negatively associated with age (Supplementary Figure S19). Age 
progression was positively associated with pathways involved in 
protein, DNA, and peptidoglycan biosynthesis, while pathways related 
to cofactors/coenzymes biosynthesis were negatively associated with 
most of the performance parameters (Supplementary Figures S20–23).

3.5. Environmental niche breadth and 
overlap

From the GLLVM, we  estimated the effect of different 
environments, considering the 12 pens in which birds were allocated 

FIGURE 4

Ensemble (a minimal subset of genera) returned after applying the EQO technique using days as a continuous predictor. (A) Shows the fitness value 
evolution of the genetic algorithm in finding these ensembles, highlighting the convergence to a steady state solution, and (B) shows the sorted 
abundance of the ensembles with a biplot of smooth values of days (right y-axis) and shows the correlation value between the ensemble and days just 
above the plot. This has been performed for all samples.
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(Supplementary Figure S1), on the abundance of major bacterial 
genera. Some commensals are found in positive association with most 
of the pens, including Paenibacillus, Enorma, Roseburia, Olsenella, and 
Megamonas. Similarly, some other commensals such as 
Oscillospiraceae; V9D2013_group, Oscillospirales; UCG-010, 
Bacteroides, Butyricicoccaceae; UCG-008, and Shuttleworthia were 
detected in negative relation to some pens. Some pathogenic genera, 
such as Victivallis and Campylobacter, were also found to be either 
positively or negatively associated with certain pens (Figures 5A,B and 
Supplementary Table S1).

We applied Levin’s BN to find bacterial genera that are generalists or 
specialists, considering pens as different sets of environments. We did 
not find any generalists, but all the above-mentioned genera were found 
as specialists in addition to others. Then, we applied Hulbert’s BN to find 
positive and negative associations between specialist genera and 

environmental properties, i.e., BW_mean, FI, FCR, gain, and days 
(Supplementary Figures S17, S18), within different environments. 
Furthermore, genera were selected from Levin’s BN to calculate Levin’s 
overlap, highlighting some specialists including Gallibacterium, 
Enorma, Coriobacteriaceeae_UCG-002, and Proteus (Figures 8A,B).

To explore if certain genera exist within a narrow range of 
covariates (days, BW_mean, FI, FCR, and gain) and different 
dietary regimes (starter, grower, and finisher), we  used a null 
modeling approach to calculate the “spec” number. This number 
offers a threshold to decide between cosmopolitan (>0) and specific 
(<0) in Figure  9A. Pairwise comparisons of all covariates were 
done to calculate correlation coefficients, indicating a high 
correlation between covariates (Figures  8A,B; 
Supplementary Figures  24–31). We  found that gut microbial 
communities exhibited strong and statistically significant 

FIGURE 5

β -coefficients returned from the GLLVM procedure for covariates considered in this study. The top 100 most abundant genera were considered, 
incorporating both continuous data (BW_mean, day, FCR, FI, and gain) as well as categorical labeling of the samples (pen and diet). Those coefficients 
that are positively associated with the microbial abundance of a particular genus are represented in red color, while those that are negatively 
associated are represented in blue color, respectively. Where the 95% confidence interval of the β -coefficients crosses the 0 boundary, the coefficients 
are insignificant and are represented by a gray color. Since the collation of OTUs was performed at the genus level, all those OTUs that cannot 
be categorized based on taxonomy are collated under “__unknowns__” category. Incorporating a categorical variable in a regression model involves 
dropping one level as a reference when using one-hot encoding, and therefore, the algorithm was run twice: (A) with diet: starter and PenNo: P01 as 
references and (B) with diet: grower and PenNo: P02 as references. For (B), the remaining coefficients are shown in Supplementary Figure S12.
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specificity to several environmental variables, in particular days 
(bird’s age), which implicitly capture the underlying  
dietary regimen. Genera found specific to the starter diet period 

were Brebundimonas, Brevibacillus, Sphingopyxis, Allorhizobium-
Neorhizobium-Paraihizobium-Rhizobium, Paenibacillus, 
Pediococcus, Trachelomonas, and Cupriavidus. Specific genera in 

FIGURE 6

Bray–Curtis contribution split of KEGG genes to piARGs genes (A) and the rest of the genes (B). For each day, the plot shows N N −( )1 2/  pair-wise 
comparison of samples (N  ≅  12 pens/day). The highlighted area shows when the diets were administered, in chronological order as starter, grower, and 
finisher diets. Tukey’s honest significant difference (HSD) test as a post-hoc test was used to assess if the contribution by piARG KOs was significantly 
different between the days, with the details given in Supplementary Table S5.

FIGURE 7

β -coefficients returned from the GLLVM procedure for covariates considered in this study by considering 50 out of 90 reference piARGs KEGG 
orthologs (KOs) detected in this study using the PICRUSt2 procedure. Those coefficients that are positively associated with the abundance of a 
particular piARG KO are represented in red color, while those that are negatively associated are represented in blue color. Where the 95% confidence 
interval of the β -coefficients crosses the 0 boundary, the coefficients are insignificant and are represented by a gray color. Similar to Figure 4, the 
algorithm was run twice: (A) with diet: starter and PenNo: P01 as references and (B) with diet: grower and PenNo: P02 as references. For (B), the 
remaining coefficients are shown in Supplementary Figure S13. Additional annotations of threat levels, classes, and drug groups; these piARGs are 
categorized.
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the grower diet period include Microbacterium, Allisonella, 
Campylobacter, Rhodococcus, Lysinibacillus, and Mesorhizobium. 
In the finisher diet period, Oscillospiraceae; UCG-007, Bacteroides, 
Gallibacterium, Izemoplasmatales, Incertae_Sedis; DTU014, 

DTU014, DTU014, Romboutsia, Gastranaerophilales, Victivallis, 
Butyricicoccaceae; UCG-008, Oscillospira, Coriobacteriaceae_
UCG-002, and Enteroscipio found as specific genera 
(Supplementary Figures S24, S25).

FIGURE 8

Network of relationships (A) recovered after applying Levin’s BN to find generalists and specialists and Hurlbert’s BN to find positive and negative 
associations with respect to environmental properties. These properties are mean body weight (BW_mean), feed intake (FI), feed conversion ratio 
(FCR), gain, and days calculated on different sets of environments (R  ≅  12 pens). The genera selected from Levin’s BN are further used to calculate 
Levin’s overlap (B), with blue boxes signifying that they are all specialists. See further details in Supplementary Figures S17, S18.
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4. Discussion

At the global level, chicken, being the dominant livestock, has the 
optimal calorie retention when considering feed conversions (Fry 
et  al., 2018). Productivity in terms of weight gain and disease 
resistance is highly influenced by gut bacterial communities. Here, in 
this manuscript, we elucidate the spatial temporal dynamics of broiler 
cecal microbiota development by emphasizing on stability and 
complexity of bacterial species as different diets are introduced in 
their development cycle (from day 3 to day 35). In doing so, we are 
also able to ascertain the niches some of the species occupy and 
establish links between gut bacterial profiles and environmental 
(performance) covariates.

Our results demonstrate that gut communities are majorly 
influenced by the age of birds, highlighting the significance of different 

growth periods in microbial community assembly mechanisms, which 
is also supported by previous studies (Crhanova et al., 2011; Danzeisen 
et al., 2011; Oakley et al., 2014; Mohd Shaufi et al., 2015; Pourabedin 
et al., 2015; Joat et al., 2021; Xiao et al., 2021; Zou et al., 2022). The age 
of birds is found to be the most important factor that may affect the 
stability of microbial communities. Our results suggest that based on 
the interaction of bacterial species, the microbiota starts to become 
unstable at the onset of the 3rd week, with instability gradually 
increasing. Instability is also previously reported beyond the 5th week 
(Lu et al., 2003; Feye et al., 2020; Li et al., 2022), which affects the 
growth performance of the bird. We  explored some ecological 
relationships between microbial communities and found functionally 
coherent taxa with respect to their relative abundances (uniform or 
varied). In the majority of cases, anaerobic bacteria dominated as 
commensals and were identified as members of a stable or uniform 

FIGURE 9

Specificity values Spec shown as a violin plot with the area divided between genera with statistically significant specificity (dark) versus genera without 
(light) for different covariates considered in this study (A). Pairwise Spec correlations (B) with correlation coefficients (R) for each pairwise comparison 
of covariates are shown in this subplot’s upper triangles for the data plotted in the lower triangle of this subplot.
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ensemble, including Oscillibacter, Megamonas, Shuttleworthia, Blautia, 
Lachnoclostridium, Subdoligranulum, Faecalibactrium, Butyricicoccus, 
Lactobacillus, Olsenella, and Bifidobacterium. While some anaerobes, 
such as Oscillospiraceae; NK4A214_group, Intestinimonas, and 
Ruminococcus were found to be part of a changing ensemble with 
varied relative abundances. Most of the genera are involved in 
saccharolytic fermentation and belong to Firmicutes, the dominant 
phylum, which has also been braced by many microbiome studies in 
the preceding decade (Danzeisen et al., 2011; Choi et al., 2014; Xiao 
et al., 2017; Clavijo and Flórez, 2018; Venegas et al., 2019; Mandal 
et al., 2020; Han et al., 2022). Furthermore, genera having a positive 
or negative correlation with age were also highlighted through 
regression models, i.e., GLLVM. Some genera, predominantly short-
chain fatty acids (SCFAs) producers, e.g., Izemoplasmatales, 
Gastranaerophilales, (Eubacterium)_ventriosum_group, and Roseburia 
were found to have increasing species abundance as birds matured, 
and vice versa. Certain taxa, such as Sporomusa, Clostridium_sensu_
stricto_1, and Enterococcus, negatively correlated with the bird’s age. 
These findings indicate that birds are potentially at higher risk of 
disease and death (especially under poor management practices) in 
their initial days, as supported by some studies (Hafez and Attia, 2020; 
Yerpes et al., 2020). Although there are disparities in the reported 
literature, the major factors often implicated in microbial 
compositional changes include rearing periods, genetics, sampling 
sections of gastrointestinal tracts, age, feed, and management practices 
(Lu et al., 2003; Ballou et al., 2016; Ranjitkar et al., 2016; Wang et al., 
2016; Ngunjiri et al., 2019).

In addition to applying EQO to the whole 33 days time window, 
we wanted to know what remained stable during different diet periods. 
We  found the diet to drive changes in microbial communities, 
particularly when they changed. Studies have demonstrated the effect 
of dietary composition along with food particle size on chicken gut 
microbial populations (Apajalahti et al., 2001, 2004). The genera with 
stable relative abundance in the initial 10 days (starter diet period) 
mostly included anaerobic Firmicutes and Bacteroidetes such as 
Oscillibacter, Clostridia_vadinBB60_group, Flavonifractor, 
Lachnoclostridium, and Faecalibacterium. The majority of them were 
previously found to be involved in proteolytic fermentation, producing 
SCFAs, and branched chain fatty acids (BCFAs) (Macfarlane et al., 
1992; Smith and Macfarlane, 1998; Aguirre et  al., 2016). 
We hypothesize that these findings are a consequence of common 
dietary practices at poultry farms where the starter feed is typically 
rich in protein composition (>20%) (Esmail, 2016). Note that, in the 
initial days, birds are found to be at higher risk of being exposed to 
pathogenic genera such as Escherichia-Shigella. When birds are shifted 
to a grower diet, a change in stable genera is noticed, with the major 
inclusion of commensals such as Tyzzerella, Clostridia_UCG-014, 
(Eubacterium)_coprostanoligenes_group, and Bifidobacterium. 
Likewise, some cellulolytic genera, including Ruminococcus and 
(Ruminococcus)_torques_group also stabilized their abundance when 
the finisher diet was introduced. The genera with varied abundance in 
the starter diet period are predominantly SCFA producers, including 
Subdoligranulum, Tyzzerella, Ruminococcaceae; DTU089, 
Oscillospiraceae; UCG-005, and (Eubacterium)_coprostanoligenes_
group. Some commensals as well as pathogens, including Angelakisella, 
Hydrogenonanaerobacterium, Oscillospirales; UCG-010, 
Butyricicoccaceae; UCG-009, Streptococcus, and Anaerofilum, are 
found to have changed abundance during the grower diet period. It 
was also found that the abundances of some commensals, such as 

Megamonas and Enorma, went down when the finisher diet 
was introduced.

To further our understanding of different genera in the context of 
sources of variation, a regression model (GLVVM) was applied to fit 
the abundance of each genus against all sources of variability that 
we observed, primarily focusing on different diets. Strict anaerobes 
like Oscillospiraceae; V9D2013_group were found to be  positively 
associated with the starter diet but negatively associated with the 
grower and the finisher diets. This is in line with studies revealing that 
initial chicken gut colonizers are mostly facultative anaerobes, 
followed by strict anaerobes specifically after day 3 (Rehman et al., 
2007; Stanley et al., 2014). Some anaerobes most likely involved in 
energy production, such as Angelakisella and Coriobacteriaceae_
UCG-002, are found to be the top genera associating positively with 
the grower diet but negatively with the starter diet. This is supported 
by the fact that grower diets are high in energy content as compared 
to the starter diet (Yücel and Taşkin, 2018). Enorma has shown a 
positive association with grower/finisher diets, which was previously 
found to be involved in the production of micronutrients (Khan and 
Chousalkar, 2020; Gong et  al., 2021). Moreover, some probiotic 
anaerobes, including Sporomusa, Oscillospira, and Anaerotruncus, 
were positively associated with the starter diet. A positive association 
of Hydrogenoanaerobacterium with the grower diet was also observed 
in (Clavijo et al., 2022), where they showed a strong association with 
the diet and age of broilers. In addition to some opportunistic 
pathogens like Campylobacter and Clostridium_sensu_stricto_1, 
saccharolytic bacterial genera such as Bacteroides are among the top 
genera with a positive association with the finisher diet. Gamma 
proteobacteria, i.e., Gallibacterium, was found to be  positively 
associated with the grower diet and was previously implicated in many 
avian species (El-Adawy et al., 2018). Additionally, some anaerobic 
genera like Butyricicoccaceae; UCG-008, Lachnospiraceae; UC5-1-2E3, 
and Lachnoclostridium were negatively associated with both grower 
and finisher diets.

Genera that had increased or decreased abundances in association 
with the performance parameters were identified through two 
regression models, i.e., CODA LASSO and GLLVM. We found key 
probiotic genera positively associated with BW_mean, FI, gain, and 
FCR, including Paenibacillus, Oscillospiraceae; V9D2013_group, 
Oscillospirales; UCG-010, NK4A214_group, UCG-005, 
Lachnospiraceae; GCA-900,066,575, ASF356, Holdemania, Roseburia, 
Fournierella, Shuttleworthia, Bifidobacterium, Colidextribacter, and 
Butyricicoccaceae; UCG-009, UCG-008. The majority of these were 
previously associated with improved growth performance in chickens 
as they increased resistance to infections and balanced the gut 
ecosystem (Perić et al., 2010; Amara and Shibl, 2015; Sarangi et al., 
2016; Wang et  al., 2017). In parallel, we  have also found some 
understudied but most likely pathogenic genera in a negative 
association with the growth parameters, such as Victivallis, Sporomusa, 
Clostridium_sensu_stricto_1, Anaerofustis, and Anaerovoracaceae; 
Family_XIII_AD3011_group.

In addition to finding positive and negative associations between 
microbial species and the continuous predictor variables, a specificity 
analysis was performed. This unraveled proliferation of microbes 
within a narrow “specific” range, e.g., bird’s age, coincided with time 
periods when the diets were introduced and are in line with the 
literature (van der Wielen et al., 2002; Hiett et al., 2013; Cui et al., 
2017). Note that some of the variables had a very strong correlation, 
and thus species that were found to be specific to mean body weight 
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are likely to be similar to those found to be specific to days. Indeed, 
the same is true for other parameters, albeit to a lesser extent. Genera 
that were found to be specific to the starter diet, albeit when birds were 
of low weight, were non-fermenting aerobic autotrophs such as 
Brebundimonas, Brevibacillus, Sphingopyxis, and Cupriavidus (García-
Romero et al., 2016; Ryan and Pembroke, 2018; Amaresan et al., 2020; 
Jahn et  al., 2021). Other genera were either obligate aerobes or 
anaerobes and were found to be specific to the grower diet when the 
birds had already gained weight. These are Microbacterium, Allisonella, 
Campylobacter, Rhodococcus, Lysinibacillus, and Mesorhizobium. 
Furthermore, Oscillospiraceae; UCG-007, Bacteroides, Gallibacterium, 
Izemoplasmatales, Incertae_Sedis; DTU014, DTU014, DTU014, 
Romboutsia, Gastranaerophilales, Victivallis, Butyricicoccaceae; UCG-
008, Coriobacteriaceae_UCG-002, and Enteroscipio were found to 
be specific to the finisher diet.

Next, we  wanted to see if there was a selection of predictive 
antimicrobial genes (piARGs) in the observed range. We found that 
bacterial community structure predicts the growth performance of the 
broiler, but in parallel, these communities are also contributing to 
antimicrobial resistance. As we have reported above, Firmicutes are the 
major phyla found in the gut microbial communities, and 
we hypothesize that they may be the major contributor of piARGs as 
depicted earlier (Juricova et al., 2021; Li et al., 2022; Xu et al., 2022). It 
has been observed in our results that most of the piARGs belonging 
to aminoglycosides (DG01447) were positively associated with the 
finisher diet period and also with the majority of the performance 
parameters, such as body weight. In a similar manner, we  also 
observed that piARGs belonging to carbapenems (DG01458) were 
negatively associated with the grower/finisher diets and also with 
performance parameters. When the diet changed from starter to 
grower on day 11, a slight increase in piARGs was observed, indicating 
the effect of the feed change. A similar trend was observed on day 26 
when the diet was switched to finisher, followed by a slight decrease in 
the 5th week. In general, the abundance of piAGRs remained stable 
throughout the experimental period. This is in line with recent studies 
that piARGs contribution is a continuous process effectuated by 
microbial communities themselves but is invariably influenced by the 
use of specific antimicrobials during the growth period (Thomas et al., 
2017; Skarżyńska et al., 2020; Li et al., 2022). Since the diets were 
proprietary and we had no information about which antibiotics were 
used, with these results, we can only hypothesize that the predicted 
piARGs give sufficient evidence to suggest the above antibiotics were 
used. Our results indicate that the abundance of piARGs is influenced 
by the change in bacterial community structure, which we witnessed 
on days 11 and 26. It has been reported that the use of antimicrobials 
during the growth of broilers changes the gut microbial communities 
and enhances their resistance (Allen and Stanton, 2014; Xiong 
et al., 2018).

Overall, piARGs (specifically belonging to ß-lactams and 
aminoglycosides) abundance increased with the age of broilers, which 
may be linked with the increased microbial richness, as supported by 
previous studies (Butaye et al., 1999; Ozaki et al., 2011; Temmerman 
et al., 2022). piARGs belonging to carbapenems (DG01458) are found to 
decrease with the age of birds and are also negatively associated with the 
majority of the performance parameters. Our results are in agreement 
with the studies performed in the broiler in which it has been observed 
that ARGs decrease with age (Linton et al., 1982; Gaire et al., 2021). Many 
studies suggest that using antimicrobials as growth promoters or 
prophylaxis during the growth and production periods ultimately 

contributes to the resistance against the same antimicrobial class (Luiken 
et al., 2019; Gupta et al., 2021; De Cesare et al., 2022). As the diet used in 
this study was proprietary and we were not able to obtain information 
regarding antibiotic supplementation within the feed, it is not possible to 
determine whether the ARG enrichment observed with the diet was due 
to a change in bacterial communities because of protein content variation 
or due to antibiotic supplementation. However, it has been observed that 
AGP discontinuation in feed leads to decreased antibiotic selection 
pressure, and the resultant antibiotic resistance profiles of intestinal 
bacteria change rapidly (Wang et al., 2020). Antibiotic alternatives in 
broiler production include phytogenics, organic acids, prebiotics, 
probiotics, enzymes, and their derivatives. Antibiotic alternatives have 
been reported to increase feed intake, stimulate digestion, improve feed 
efficiency, increase growth performance, and reduce the incidence of 
diseases by modulating the intestinal microbiota and immune system, 
inhibiting pathogens, and improving intestinal integrity (Ayalew et al., 
2022). However, how these interventions modulate the resistance within 
the chicken gut needs to be explored further.

We also explored how age and different performance parameters 
contribute to the functional profiles of bacterial communities through 
the CODA-LASSO regression model on the recovered metacyc 
pathways. Amino acid biosynthesis pathways such as L-histidine 
biosynthesis, L-arginine biosynthesis I (via L-ornithine), and the super-
pathway of taurine degradation are found to be positively associated 
with a bird’s age. It has been reported that these amino acids are 
involved in the growth of the bird, specifically during the early days, 
and also play an important role in managing stress responses 
(Chowdhury et al., 2021). Histidine has an effect on the metabolites of 
various metabolic pathways. L-arginine has a vital role in reducing fat 
deposition by moderating lipid metabolism (Fouad et  al., 2013; 
Lackner et al., 2022). Taurine affects meat quality by enhancing the 
anti-oxidative capacity and lipid metabolism, particularly under heat 
stress (Lu et al., 2019; Xu et al., 2019; Han et al., 2020). Peptidoglycan, 
coumarins, and some nucleotide biosynthesis/repair pathways are 
found to be positively associated with the age and growth of the birds, 
as supported by a few other studies (McFarland and Coon, 2016). As 
evident from previous studies, peptidoglycan biosynthesis, which is 
more perfectly enabled by gram-positive than gram-negative bacteria, 
may also be one cause of the proliferation of piARGs. If a gut has more 
probiotic bacterial species producing SCFAs such as lactic acid, this 
will then positively affect the growth by hindering the peptidoglycan 
biosynthesis in pathogenic bacteria (Lovering et al., 2012; Hidayat 
et al., 2018; Lee et al., 2022). Furthermore, the coumarins biosynthesis 
pathway (which increases with age) plays an important role in gut 
homeostasis. These have antibacterial, antiviral, antifungal, antioxidant, 
anticancer, and anti-inflammatory activity (El-Far et al., 2016; Duskaev 
et al., 2021; Sahoo et al., 2021; Cheke et al., 2022). Another important 
pathway, the tetrapyrrole biosynthesis pathway, that was negatively 
associated with the age and weight of the broilers was also implicated 
in earlier studies (Zappa et al., 2010; Plata et al., 2022). On a similar 
note, foliate transformations and nicotinamide adenine dinucleotide 
(NAD) biosynthesis are negatively associated with the bird’s age. 
Similar results regarding the anti-aging effects of NAD are found in 
other recent studies as well (Johnson and Imai, 2018; Zhang et al., 
2020). We have used a predictive functional modeling approach, and 
there is often a degree of skepticism associated with applying such 
approaches. However, the majority of our findings were corroborated 
by published literature, increasing our confidence in the utility of 
PICRUSt2 to supplement microbial community analyses.
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5. Conclusion

Through the use of new in situ analytical tools, we  have 
demonstrated how certain species persisted as stable components of 
microbial communities by emphasizing periods where diets remained 
unchanged. In parallel, we have explored the dynamic components of 
microbial communities, whether they were positively or negatively 
associated with the performance parameters of interest, or whether 
they shot up within a specific narrow range. The microbial community 
dataset, which originated from 12 pens, each with their own 
idiosyncrasy, was explicitly modeled in the MicroNiche algorithm to 
mask out any biases associated with the environments and reveal 
patterns that lead us to harness their true potential. Overall, our 
findings suggest a route toward improving the performance of the 
birds by modulating their microbiome and improving their health by 
highlighting specific parameters such as diet that are associated with 
microbial communities’ flux. Considering the content estimation of 
the different diets and looking at what microbes were promoted by the 
diet (specificity analyses), we should be able to come up with a dietary 
intervention to modulate the microbiome to optimize some sort of 
fitness function. A strong association of microbes with FCR, FI, body 
weight, and weight gain then enables us to design future intervention 
strategies where the findings of this study can serve as a reference, as 
well as help us establish a dietary plan that can help us forgo the use 
of antibiotic growth promoters for enhancing feed conversion.
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