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Abstract

Unoccupied aerial vehicles (UAVs) with passive optical sensors have become popular

for reconstructing topography using Structure from Motion (SfM) photogrammetry.

Advances in UAV payloads and the advent of solid-state LiDAR have enabled

consumer-grade active remote sensing equipment to become more widely available,

potentially providing opportunities to overcome some challenges associated with

SfM photogrammetry, such as vegetation penetration and shadowing, that can occur

when processing UAV-acquired images. We evaluate the application of a DJI

Zenmuse L1 solid-state LiDAR sensor on a Matrice 300 RTK UAV to generate digital

elevation models (DEMs). To assess flying height (60–80 m) and speed parameters

(5–10 ms�1) on accuracy, four point clouds were acquired at a test site. These point

clouds were used to develop a processing workflow to georeference, filter and clas-

sify the point clouds to produce a raster DEM product. A dense control network

showed that there was no significant difference in georeferencing from differing fly-

ing height or speed. Building on the test results, a 3 km reach of the River Feshie was

surveyed, collecting over 755 million UAV LiDAR points. The Multiscale Curvature

Classification algorithm was found to be the most suitable classifier of ground topog-

raphy. GNSS check points showed a mean vertical residual of �0.015 m on

unvegetated gravel bars. Multiscale Model to Model Cloud Comparison (M3C2)

residuals compared UAV LiDAR and Terrestrial Laser Scanner point clouds for seven

sample sites demonstrating a close match with marginally zero residuals. Solid-state

LiDAR was effective at penetrating sparse canopy-type vegetation but was less pen-

etrable through dense ground-hugging vegetation (e.g. heather, thick grass). Whilst

UAV solid-state LiDAR needs to be supplemented with bathymetric mapping to pro-

duce wet–dry DEMs, by itself, it offers advantages to comparable geomatics technol-

ogies for kilometre-scale surveys. Ten best practice recommendations will assist

users of UAV solid-state LiDAR to produce bare earth DEMs.
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1 | INTRODUCTION

Unoccupied aerial vehicles (UAVs; Joyce, Anderson, & Bartolo, 2021)

have been transformative in providing a platform to deploy sensors to

quantify the topography of the Earth’s surface, for investigations from

the spatial scale of individual landform features upwards (Piégay

et al., 2020; Tomsett & Leyland, 2019). Where logistical or legislative

constraints allow flying, and spatial coverage can be achieved
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timeously, UAV-mounted sensors have largely superseded alternative

approaches to surveying, including terrestrial laser scanning (TLS;

Brasington, Vericat, & Rychkov, 2012; Williams et al., 2014; Alho

et al., 2011). Sensors that have been mounted onto UAVs to acquire

data to map topography can be grouped into two remote sensing cat-

egories: passive and active (Lillesand, Kiefer, & Chipman, 2015). To

date, the former category has dominated geomorphological applica-

tions, but technological developments in LiDAR technology herald the

potential for the return of more active remote sensing methods for

topographic reconstruction.

Passive sensors include digital cameras that are used to acquire

images that are subsequently used in Structure from Motion (SfM)

photogrammetry (Smith, Carrivick, & Quincey, 2016). Although SfM

photogrammetry has enabled a plethora of geomorphic investigations

(e.g. Bakker & Lane, 2017; Cucchiaro et al., 2018; Eschbach

et al., 2021; Llena et al., 2020; Marteau et al., 2017), there are aspects

of SfM photogrammetry that limit what can be achieved to recon-

struct topography. The passive nature of the technology poses partic-

ular problems for reconstructing bare earth topography; imagery

cannot penetrate vegetation cover, and vegetated areas are typically

associated with poorer processing quality due to weaker image

matching (Carrivick, Smith, & Quincey, 2016; Eltner et al., 2016;

Iglhaut et al., 2019; Resop, Lehmann, & Cully Hession, 2019).

Shadows caused by vegetation and/or topographic features also

reduce and sometimes eliminate the effectiveness of SfM photogram-

metry in what are often key areas of a survey such as steep and

geomorphologically dynamic river banks (Kasvi et al., 2019; Resop,

Lehmann, & Cully Hession, 2019). Whilst workflows to minimise

potential systematic errors, such as large forward and lateral overlap

of imagery, as well as double grid flying patterns (James &

Robson, 2014; Wackrow & Chandler, 2011) have been established,

these do not overcome localised errors that arise from image quality,

and in many situations, they significantly add to UAV flight time.

In contrast to SfM photogrammetry, active remote sensing offers

a direct survey of topography. Airborne Light Detection and Ranging

(LiDAR) surveys (Glennie et al., 2013) that have been acquired using

sensors mounted on crewed planes or helicopters have been transfor-

mative in enabling the construction of digital elevation models (DEMs)

at spatial scales >1 km2. Such datasets have been widely used for a

variety of geomorphological investigations (Clubb et al., 2017; Jones

et al., 2007; Sofia, Fontana, & Tarolli, 2014). Although the importance

of these sensors cannot be understated (Tarolli & Mudd, 2020), the

cost of the instruments and associated deployment logistics have lim-

ited most geomorphologists to using archival airborne LiDAR datasets

(Crosby, Arrowsmith, & Nandigam, 2020). Early integration of LiDAR

sensors on UAV platforms was demonstrated in forestry applications

(Jaakkola et al., 2010; Lin, Hyyppä, & Jaakkola, 2011; Wallace

et al., 2012). More recently, UAV LiDAR including topographic–

bathymetric systems has been demonstrated across several fluvial

environments and applications (e.g. Islam et al., 2021; Mandlburger

et al., 2020; Resop, Lehmann, & Cully Hession, 2019; Resop, Leh-

mann, & Hession, 2021). Despite these pertinent examples, the

growth trajectory of UAV LiDAR surveys remains significantly slower

than that of UAV SfM photogrammetry when it was in its geomorphic

application infancy (Babbel et al., 2019; Pereira et al., 2021), due to

the relatively high entry cost of LiDAR sensors and associated large

payload UAV platforms required. However, a new generation of

cheaper, solid-state LiDAR sensors (Štroner, Urban, & Línková, 2021)

offers potential for a return to active remote sensing of dry topogra-

phy, now using UAV platforms. However, this technology has not yet

been applied and assessed in geomorphic environments.

LiDAR measurements in their traditional form consist of a pulse

or wave being emitted from a laser sensor, which is steered across an

area of interest using moving components (i.e. mirrors) that are pre-

cisely aligned and regularly calibrated. Either the time-of-flight

between the emission of the laser and its subsequent reflection or

variability in the reflected laser frequency is then used to determine

range. Many LiDAR sensors can also detect multiple returns (Resop,

Lehmann, & Cully Hession, 2019; Wallace et al., 2012), usually based

on the intensity of the return. In contrast to traditional LiDAR, solid-

state LiDAR systems feature few or no moving parts, being composed

of modern electronic components instead. They use an array of

aligned sensors, which when combined enable significantly increased

scanning rates (Velodyne LiDAR, 2022). The development of solid-

state LiDAR can be traced back to obstacle avoidance and navigation

for autonomous vehicle development in the mid-2000s when the lim-

ited scanning rate of mechanical LiDAR systems was deemed insuffi-

cient for these tasks (Pereira et al., 2021; Raj et al., 2020). The

difference between mirror-based mechanical and solid-state LiDAR

systems parallels the difference between traditional whiskbroom and

newer push-broom scanning systems found on space-based satellites

(Abbasi-Moghadam & Abolghasemi, 2015). The change in internal

components from mechanical to electronic resolves limitations in

mounting LiDAR units on UAVs due to the relatively large size, fragil-

ity and the cost of mirror-based sensors. Indeed, the escalating

demand for solid-state LiDAR units from automotive, robotic produc-

tion line and autonomous delivery industries (Kim et al., 2019) has

necessitated scalable manufacture of these units and a subsequent

reduction in unit cost. Moreover, automotive specifications for this

technology have demanded a wide field-of-view (FOV) and fine angu-

lar resolution to enable higher detail at longer range, meaning solid-

state instruments are often of comparable or better quality than their

traditional mechanical counterparts.

The aim of this paper is to evaluate the performance of a

consumer-grade solid-state LiDAR sensor mounted on a UAV to

reconstruct the topography of a vegetated fluvial environment. Our

first objective is to acquire and process LiDAR point clouds using a

variety of UAV flight heights and speeds and assess their associated

horizontal and vertical errors, for a test site, an artificial grass football

pitch. Our second objective is to acquire and assess a LiDAR survey of

a 3-km-long reach of the braided River Feshie to quantify dry topog-

raphy. In the discussion, we (i) reflect upon the advantages of

consumer-grade LiDAR compared with the existing set of geomatics

technologies that are available for geomorphologists to quantify the

form of the Earth’s surface, (ii) discuss errors in vegetated areas and

approaches that could be used to quantify topography in wet areas

and (iii) offer recommendations for acquiring airborne LiDAR surveys

with UAVs.

2 | LIDAR SENSOR AND FIELD SETTING

We focus upon testing a DJI Zenmuse L1 solid-state LiDAR sensor,

which integrates a Livox AVIA solid-state LiDAR module, a high-
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accuracy Inertial Measurement Unit (IMU), and a camera with a 1-inch

Complementary Metal Oxide Semiconductor (CMOS) sensor on a

3-axis stabilized gimbal. The DJI L1 solid-state LiDAR sensor was

mounted on a DJI Matrice 300 Real-Time Kinematic (RTK) UAV plat-

form, which is capable of undertaking mapping flights of around

35 min with the sensor payload. The aircraft and sensor were linked

to a D-RTK 2 GNSS base station by radio to enable the receipt of

accurate RTK-GNSS position data.

Testing of the DJI L1 solid-state LiDAR system was undertaken at

the University of Glasgow Garscube Sports Campus (Figure 1b) to

assess the positional accuracy of the system. An artificial sports pitch

was chosen as the initial test site, given the relative flatness of the

football pitch, the abundance of pitch markings for check points and

the ability to easily distribute and position a further dense grid of gro-

und control targets.

A braided reach of the River Feshie, Scotland, was chosen to

assess the LiDAR system in a natural vegetated fluvial environment

(Figure 1c). This reach is iconic as a site to assess geomatics technolo-

gies for the quantification of topography, including RTK-GNSS

(Brasington, Rumsby, & McVey, 2000), aerial blimps (Vericat

et al., 2008), TLS (Brasington, Vericat, & Rychkov, 2012), wearable

LiDAR (Williams, Lamy, et al., 2020) and RTK-GNSS-positioned UAV

imagery for SfM photogrammetry (Stott, Williams, & Hoey, 2020), as

well as geomorphological application to quantify sediment budgets

(Wheaton et al., 2010) and to shed light on the mechanisms of chan-

nel change (Wheaton et al., 2013). This history of innovation, and the

low vertical amplitude of topographic variation, made this both an

ideal and challenging site to test the use of the LiDAR in a natural

environment. The Feshie reach is characterised by a D50 surface grain

size of 50–110 mm (Brasington, Vericat, & Rychkov, 2012). At the

time of survey, the reach featured a network of shallow anabranches,

which were up to c. 1 m in depth and occupied �15% of the active

width. The active reach features a number of vegetated bars,

colonised with grasses, sedges and heather, as well as Scots Pine

(Pinus sylvertris), silver birch (Betula pendula) and common/grey alder

(Alnus glutinosa/Alnus incana). Across the River Feshie riverscape,

woody vegetation densities are generally increasing across the valley

bottom, including within and on the banks of the active channel, due

to an active and ongoing approach to manage deer numbers

(Ballantyne et al., 2021). The presence of a variety of vegetation, with

different heights and densities, presents a useful applied context for

evaluating the ability of the LiDAR system to detect ground returns

F I GU R E 1 Overview of the two study sites, (a) showing the location of the Garscube site near Glasgow and the Feshie site in the Cairngorms
National Park, (b) the dense control network across the artificial football pitch at the Garscube site, (c) an overall view of the Feshie survey with
GNSS points along roads, river gravel and in vegetation, along with terrestrial laser scanning (TLS) surveys, (d) and (e) to zoomed insets showing

more detail of the additional GNSS and TLS survey extents. [Color figure can be viewed at wileyonlinelibrary.com]
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through vegetation canopies and for point cloud processing algo-

rithms to filter vegetation returns.

3 | METHODS

3.1 | UAV LiDAR data collection

Flights were planned directly in the DJI Pilot app on the aircraft con-

troller, using imported KML polygon areas. Automated IMU calibra-

tion was activated; LiDAR scan side overlap was set to 50%; and triple

returns were recorded, with a sampling rate of 160 kHz. The flight

path pattern was aligned at both sites to remain within UK CAA Visual

Line-of-Sight recommendations for flying UAVs. Moreover, the flight

path patterns ensured that sufficiently frequent sharp turning (every

100 s or every 1000 m with a flight speed of 10 m/s) was undertaken

for IMU calibration purposes, in line with the manufacturer recom-

mendations. The LiDAR data were stored on an SD card within the

DJI L1 solid-state LiDAR sensor.

This initial testing at Garscube consisted of four flights over a

synthetic football pitch and surrounds, each with different flying

heights (60 and 80 m) and speed variables (5 and 10 m/s; Table 1).

At the River Feshie site, the required flight path pattern resulted

in the reach being split into six flight blocks (Table 1), which

were spaced longitudinally along the valley bottom. Flight lines

were orientated in a transverse direction across the valley

bottom (approximate maximum for DJI M300 RTK aircraft with

L1 solid-state LiDAR sensor payload; 40 mins covering up to

0.4 km2). These separate flights were subsequently merged at later

processing stages.

3.2 | GNSS data collection

Twenty-six chessboard pattern ground control targets were laid in a

semi-regular pattern across the Garscube sports pitch (Figure 1b) and

measured with a Leica Viva GS08 survey-grade RTK-GNSS,

positioned with a bipod for stability. Furthermore, an extra 48 points

were collected at distinct sports pitch markings (e.g. at corners;

Figure 1b). All the GNSS points collected used the nearby GLAS refer-

ence station across Leica SmartNet mobile network corrections,

resulting in an average horizontal and vertical quality of <1 cm for the

ground control targets, and slightly larger, c. 1 cm for the measure-

ments of sports pitch marks.

Thirty-four GCPs were laid across the Feshie study area to

provide XYZ quality checks (Figure 1c–e). These targets were posi-

tioned using a Leica 1200 Series RTK-GNSS unit with a bipod for

stability. The Feshie GNSS points were corrected using a Leica

GS16 in base station mode located over a well-established ground

mark that has been used in previous surveys. This resulted in

average reported point qualities of <1 cm in both horizontal and

vertical. Similar to the football markings, a large sample of points

was collected along most of the main estate vehicle tracks within

the study site as well as along the dry gravel sections of the river

channel area using RTK-GNSS without a bipod and a shorter occu-

pancy (Figure 1c–e). Furthermore, sample points were taken within

five types of vegetation cover (grass, heather, sparse tree, dense

trees and high bars with moss) to enable assessment of the LiDAR

in vegetated areas (Figure 1c–e).

3.3 | UAV LiDAR data processing

The Garscube datasets were used to develop a data processing

workflow from the point cloud through to an output digital terrain

model (DTM; Figure 2); this workflow was subsequently applied to

process the River Feshie data. The data were first processed in DJI

Terra software to create an initial LAS point cloud file and flight path

trajectory files. In this step, processing involved the initial geo-

referencing of the point cloud, based on the RTK-GNSS onboard the

aircraft (direct georeferencing; Dreier et al., 2021), using the Optimise

Point Cloud Accuracy setting. The point cloud was then exported in

WGS84 latitude and longitude coordinates with ellipsoidal heights.

Next, the data were imported into TerraSolid software and processed

T AB L E 1 Flight parameters, point counts and densities for unoccupied aerial vehicle (UAV) LiDAR data collection.

Flight
blocks

Flight parameters Pre-processing Post-thinning

Flying height (m above
takeoff)

Speed
(m/s)

Initial number of
points

Point density
(pts/m2)

Thinned number of
points

Point density
(pts/m2)

Garscube 1 80 5 7 948 865 645 1 576 001 128

Garscube 2 60 5 10 994 366 887 1 369 374 111

Garscube 3 60 10 5 803 970 470 1 359 296 110

Garscube 4 80 10 4 262 304 346 1 165 226 95

Feshie 1 167 801 385 403 32 417 397 82

Feshie 2 153 049 016 370 27 223 825 66

Feshie 3 70 10 76 774 455 341 16 411 617 73

Feshie 4 111 741 189 343 23 009 919 73

Feshie 5 79 409 092 333 17 002 397 71

Feshie 6 166 018 675 358 27 331 428 62

2214 MACDONELL ET AL.
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F I GU R E 2 Data collection and data processing workflow. The three columns (unoccupied aerial vehicles [UAV] flight operations, GNSS
surveys and terrestrial laser scanning [TLS] surveys) represent the main techniques of data collection. TLS surveys were used in this investigation
as a rigorous accuracy check, but subsequent surveys are unlikely to use this technique to assess the quality of a digital terrain model produced
from UAV LiDAR. [Color figure can be viewed at wileyonlinelibrary.com]
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using the Drone Project wizard in the TerraScan module. In this step,

the LAS file output from DJI Terra, as well as flight path trajectory

files, were projected to a local coordinate system: OSGB36(15) British

National Grid (EPSG:27700) for horizontal position and Ordnance

Datum Newlyn (ESPG:5701) for orthometric height.

The point cloud data were thinned (Resop, Lehmann, & Cully

Hession, 2019) using two processes to reduce and balance the point

density such that processing over larger areas (e.g. Feshie study

area = c. 1.5 km2) did not become computationally cumbersome

because of the high point densities (Table 1). Firstly, overlapping

points captured whilst flying along adjacent flight lines were removed

using a tool in the TerraScan Process Drone Data wizard, which estab-

lishes the closest overlapping point relative to the nearest flight line

and discards the other overlapping points, thereby minimising noise in

these overlap areas. The data were then further thinned using the

Thin LAS tool in ArcGIS Pro to reduce the point density to a point

every 15 cm in both the horizontal and vertical, which approximated

the required resolution for the geomorphological context of the sur-

vey. A similar open-source tool is available through LASTools

(rapidlasso GmbH, 2021).

3.4 | XYZ residual analysis: GCPs

Two methods were used to select LiDAR points from each pre-

thinned point cloud for comparison to the known GNSS coordinates

in all three dimensions (Easting/Northing/Height). First, a point-to-

point method, referred to hereafter as GCP Point, involved digitising a

point selection at the centre of the ground target in the displayed LAS

file in ArcGIS Pro software. This is similar to the method of GCP selec-

tion in SfM photogrammetric processing (e.g. with Pix4D software;

Stott, Williams, & Hoey, 2020). The second point-to-point method,

referred to hereafter as GCP Polygon, involved digitising a polygon of

the extent of the ground control target (c. 0.61 m � 0.61 m) from the

displayed LAS data. The centre point of the digitised polygon was cal-

culated and used as the single selection point. At Garscube, the addi-

tional GNSS measurements taken on the football pitch markings were

also used for residual analysis. A point was digitised at the centre of

the intersecting pitch lines (pitch lines were 0.114 m wide), in the

same manner as the GCP Point method. This analysis will be hereafter

referred to as Football Marks. For all three of these methods, the coor-

dinates from the nearest LiDAR point (in XY) to the GCP selection

were subtracted from the GCP coordinates to determine the individ-

ual residual for that GCP in each dimension, and summary statistics

were calculated for each flight (Mayr et al., 2019).

3.5 | Z residual analysis: GCPs and check points

Upon initial inspection of some of the orthometric height results from

the point-to-point methods described above, some significantly larger

residuals were identified. Further investigation determined that it was

caused when the selected LiDAR point was not quite representative

of the local sample of points and their recorded orthometric heights

(Figure 3d). Therefore, an additional method of residual analysis was

devised that used a sample of the LiDAR points located within a

0.1-m radius of the selected location (GCP or check point) to enable

the calculation of the mean orthometric height of the LiDAR points

within this search radius prior to differencing with the measured

GNSS height. This method is herein referred to as GNSS Proximity

(Figure 3b/c). For the Feshie, the additional GNSS measurements

along the vehicle tracks, dry river bars and in vegetation were used to

supplement the GCPs and provide further data to assess the vertical

consistency of the LiDAR data across a variety of surface types.

3.6 | Ground classification and DTM creation

DTMs were created from the Garscube and Feshie point cloud data.

For Garscube, a DTM was created for each of the four test flights,

and in the Feshie, a single DTM was created from the combination of

the six individual DTMs for each flight block.

To create a DTM from the point cloud, it first needed to have a

subset of points classified as ground returns. The lidR library

(Roussel & Auty, n.d.; Roussel et al., 2020) within R software (R Core

Team, 2021) was used to classify ground returns in the point cloud.

This library was used to test different input parameters and ground

classification algorithm options, using the Garscube Flight 1 dataset

and part of the Feshie point cloud. The tests were undertaken for

three algorithm options: the Cloth-Simulation Function (CSF; Zhang

et al., 2016), Progressive Morphological Filter (PMF; Zhang

et al., 2003) and Multiscale Curvature Classification (MCC; Evans &

Hudak, 2007). Once the MCC algorithm was chosen, further testing

using various values for curvature and scale parameters was under-

taken using on Garscube and Feshie test areas. Default parameters

identified by Evans and Hudak (2007), scale (λ or s) of 1.5 and curva-

ture (t) of 0.3, were used based on the findings of these tests. Due to

the intensity of computational processing, each of the six River Feshie

point clouds was processed separately to extract a subset of ground-

classified points.

The ground-classified point clouds (four at Garscube, six at

Feshie) were then interpolated into a raster DTM of 0.2-m resolution

using the Topo to Raster tool in ArcGIS Pro (Hutchinson, 1989; Smith,

Holland, & Longley, 2003). Three flight blocks at the Feshie were mer-

ged into a single interpolation meaning only two halves needed mer-

ged, using the centre of the overlap zone between Flight 3 & Flight

4. The Feshie and Garscube DTMs were then also assessed for verti-

cal accuracy against the known GNSS heights using data from all the

various surface and target types.

3.7 | TLS comparison—River Feshie

TLS data collected at seven sample sites across the River Feshie were

used to quantify the M3C2 differences (Lague, Brodu, &

Leroux, 2013) between the UAV LiDAR and the TLS point clouds

(Babbel et al., 2019; Dreier et al., 2021; Mayr et al., 2019). The seven

samples varied in spatial extent (n = 148 687 to 3 116 779 point sam-

ples), but all focused on gravel bar areas within the active river zone

with vegetation and areas outwith the control targets removed prior

to further analysis (blue polygon, Figure 1d,e).

The M3C2 differences were calculated in CloudCompare

(CloudCompare, 2022) using the default algorithm and settings

(Lague, Brodu, & Leroux, 2013; TLS as reference point cloud). The
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calculated M3C2 standard deviations were used to visualise the mini-

mum and maximum expected values for the M3C2 distributions. Sub-

sequently, the seven samples were combined, and the overall M3C2

distribution was approximated empirically following the procedure

presented in Williams, Lamy, et al. (2020). The fitdistrplus R-package

(Delignette-Muller & Dutang, 2015) was used to identify reasonable

candidate distributions and select the best-fit (Supplementary Mate-

rials C).

4 | RESULTS

4.1 | Garscube XYZ residual results

Initial testing of the positional uncertainty of the DJI L1 solid-state

LiDAR system undertaken at the synthetic football pitch at Garscube

demonstrated sufficiently accurate and precise results with respect to

both the horizontal and vertical residuals. These results are

summarised in Figure 4, which shows the consistent centimetric-scale

accuracy in all dimensions across the four different flight tests, as well

as the four different GCP Point, GCP Polygon, Football Marks and GNSS

Proximity residual methodologies. The magnitude of the errors across

the four flights and three different XYZ comparison methods (ranging

between �0.076 and 0.077 m in horizontal and �0.040 and 0.057 m

in vertical) are mostly within several guideline thresholds you could

expect and consider for this type of data collection (e.g. The Survey

Association, 2016; also see Table 2). Firstly, the planimetric and verti-

cal accuracy of the GNSS measurements (Supplementary Materials A)

used to calculate the positional residuals of the LiDAR data are com-

parable. Secondly, considering the average point densities of the pre-

thinning point clouds (Table 1), the residual errors of the LiDAR data

are again of a similar magnitude as the spacing of LiDAR points (vary-

ing between 0.088 m [Garscube Flight 1] and 0.127 m [Feshie Flight

6] spacing between LiDAR points). As a third and final point, our

F I GU R E 3 Selection of LiDAR point for Z residual calculation using point-to-point comparison methods. (a) Location of measured GNSS (GCP
target) points across the Garscube football pitch. (b) GCP location in RGB-coloured point cloud with cross-section, digitised target extent and
various point locations. (c) An inset around the centre of GCP target showing the two LiDAR points selected as nearest to centre selections for
GCP point and GCP polygon methods, as well as the extent of GNSS proximity selection (n = 29 for this target). (d) Cross-section of point cloud
showing how the selection of nearest LiDAR point (GCP point or GCP polygon methods) can result in non-representative Z location and an outlier
residual, with GNSS proximity method performing better since the selected point(s) are closer to the position measured by RTK-GNSS. [Color
figure can be viewed at wileyonlinelibrary.com]
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controlled test results here at the Garscube football pitch exceed

those quoted by the manufacturers of the equipment, DJI (horizontal:

10 cm at 50 m; vertical: 5 cm at 50 m). The DJI test conditions were

similar to those used at the football pitch, with the differences being

flying height (DJI = 50 m; Garscube 60 and 80 m), and this work also

evaluated a slower flight speed (DJI = 10 m/s only; Garscube 5 and

10 m/s).

At Garscube, four flights were conducted with one of the objec-

tives being to establish any significant difference between different

flight parameters, namely flying height and speed. These parameters

influence the point density of the data, as well as the possible cover-

age area during a single flight or a larger survey campaign with multi-

ple flights (Babbel et al., 2019; Resop, Lehmann, & Cully

Hession, 2019). To establish if one of these combinations was optimal

based on the above geometric residual results, the Easting, Northing

and Orthometric Height residuals of all the GNSS measurements for

the four flights were combined (GCP Point, GCP Polygon and Football

Marks methods) and statistically compared using a Kruskal–Wallis,

non-parametric test. The results of these tests concluded no statistical

difference between any of the flights for any of the three dimensions

(Easting, Northing or Orthometric Height).

Further investigation of the residuals shows minor variability

between the flights in terms of the directionality of the various resid-

uals calculated, notably in the Easting and Northing dimensions. How-

ever, the magnitude of this variability was still minimal (c. 0.06–

0.08 m) and remained within the expected tolerances described

above. Although the same programmed flight path was used for all

Garscube flights with the use of the D-RTK base station for the air-

craft, the actual flight paths displayed some minor variability, which

could be attributed to environmental conditions like the light wind

and associated corrections to maintain the flight path to the plan. This

variability in flight path may go some way to explaining the minor vari-

ance between the different flights that are not explained by changes

in flying height and speed.

4.2 | River Feshie XYZ residuals

The magnitude and variability of the geometric residuals for the River

Feshie site (Figure 5) were comparable with those seen during the

Garscube testing, for non-vegetated areas (GCPs, Road, River Gravel;

ranging between �0.050 and 0.011 m in horizontal and �0.048 and

F I GU R E 4 Garscube GNSS-LiDAR residuals. Each row represents a different flight test (Table 1), and each column represents a different
method for calculating the residuals. Note that the first three columns are for XYZ residuals, and the right column is the mean average of Z
residuals, for the GCPs and football markings, respectively.
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�0.002 m in vertical). Residuals for vegetated areas were, however,

more complex. For these areas, in addition to summarising geometric

residuals for all the sample points (Figure 5), Figure 6 shows represen-

tative cross-sections through the point cloud for each vegetation

type. The residuals of the pre-thinned point cloud in these vegetated

areas show significant offsets between the measured GNSS points

and selected point cloud data. However, all the trends in the resid-

uals are similar to the magnitude of the vertical dimensions of these

different vegetation types. For example, LiDAR data collected in

areas with moss (on gravel bars) had a mean average vertical residual

of �0.007 m, whereas areas of heather (without trees) had a mean

average offset of �0.290 m. With respect to the latter, this is

indicative of the LiDAR measurements not penetrating through

heather to the ground level, which can be seen in a representative

cross-section through the point cloud for this vegetation type

(Figure 6). Residuals for grass are similar to those associated with

heather, albeit of a smaller magnitude (�0.116 m), most attributable

to the lesser density of the vegetation structure. For canopy-type

vegetation, residuals demonstrate that the LiDAR is capable of par-

tial penetration through sparse trees but not dense trees; the mean

average vertical residuals were respectively �0.297 and �0.883 m

for these vegetation types.

Figure 6 shows several cross-sections from the different vege-

tated areas, showing how the LiDAR penetrated through canopy-type

F I GU R E 5 Feshie GNSS-LiDAR residuals. The first row shows the XYZ residual results when using the GCP point and GCP polygon methods.
Row 2 and below shows Z residuals for the various measured check points throughout the Feshie using both the point-to-point method and also
an average of the LiDAR points within immediate proximity.

2220 MACDONELL ET AL.

 10969837, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5608 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



vegetation, but could only capture the top surface of denser vegeta-

tion types like heather.

4.3 | Ground classification and DTM creation

Ground classification is a key step to produce a realistic terrain prod-

uct for further use. Therefore, particular attention was paid to

selecting the best algorithm and parameters for the variety of features

seen in vegetated fluvial environments.

Three different ground class algorithms and a range of associated

parameters were tested on Garscube Flight 1 and a test area within

the River Feshie site. This resulted in 146 test point clouds being cre-

ated, with nearly 2500 residual calculations. These residuals were

then tested to see if there was any statistically significant difference

between any of the algorithms across all parameter settings. Figure 7

shows the distribution of residuals plotted for each algorithm, and

almost no difference can be seen between them. All three algorithms

converge around minimal to no elevation residual when compared

against the GNSS measurements. The performance of the three algo-

rithms could not be statistically separated. The MCC algorithm was

chosen (using λ = 1.5 and t = 0.3 as input parameters) for this ground

classification for two reasons. First, it gave the best qualitative result

by removing non-ground features like buildings and trees from the

test sites used. Second, it also did not remove too much data, resulting

in large holes in the point cloud that were associated with other alter-

native algorithms and parameter settings.

Converting point cloud data into continuous gridded raster prod-

ucts required an appropriate interpolation method. Further analysis

was undertaken with all four Garscube flights, comparing the Topo to

Raster interpolation, available in ESRI ArcGIS products

(Hutchinson, 1989; Smith, Holland, & Longley, 2003) and another

common methodology in geomorphological applications, converting

point data via a triangulated irregular network (TIN) to raster.

Quantitative analysis of the DTM residuals from the GNSS mea-

surements (Figure 8) across the football pitch showed no obvious dif-

ference between the methods. However, Topo to Raster interpolation

had a tighter distribution of residuals (indicated by the standard devia-

tions; Figure 8) across all four flights, despite the mean and median of

some flights being lower for the TIN to Raster method. Consequently,

Topo to Raster was chosen with no drainage corrections applied.

4.4 | M3C2 differences

The local M3C2 calculations for the seven sample sites, which com-

pared the UAV LiDAR and TLS point clouds, showed the dominance

of marginally zero M3C2 residual values for all the sub-areas. The

mean M3C2 residuals ranged from �0.02 to 0.05 m, respectively,

with equally low median residuals varying between �0.01 and 0.05 m

and tight standard deviations of these M3C2 residual distributions

between 0.02 and 0.04 m. Outlier residuals, defined as M3C2 differ-

ences greater than 0.5 m, were also minimal across all the sample

sites, only representing between 0.007% and 0.04% of the local

samples.

The distribution fitting shows how a Cauchy distribution (location

parameter = 0.003; scale = 0.0134) outperforms the corresponding

Gaussian fitting, for the approximation of the combined M3C2 differ-

ence from all areas (Figure 9). The latter is strong evidence for the

marginally zero type of the M3C2 difference between the two point

clouds (UAV LiDAR and TLS), because the Cauchy distribution is char-

acteristically leptokurtic.

F I GU R E 6 Example 1-m-wide cross-section through the vegetated areas of the LiDAR survey. GNSS measured points shown by black
crosses show the lack of penetration of LiDAR measurements through dense vegetation (e.g. heather), whereas on less dense vegetation

(e.g. moss) or hard features (e.g. road), the GNSS measurements are centred within the LiDAR measurements. [Color figure can be viewed at
wileyonlinelibrary.com]
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5 | DISCUSSION

5.1 | Reach-scale topography

Figure 10a shows the reach-scale DEM of the River Feshie collected

using the DJI L1 solid-state LiDAR sensor in September 2021. This

figure also highlights particular areas of interest to illustrate the over-

all quality of the topographic reproduction (Figure 10c,d), some areas

where the automated point cloud classification algorithm does not

remove all surface objects (Figure 10b) and where historic anthropo-

genic features can be revealed (Figure 10e). The ground control and

vertical check point error assessments at the River Feshie demon-

strate that the horizontal and vertical accuracy of point data acquired

by UAV solid-state LiDAR is at least comparable with equivalent sur-

veys undertaken on the same reach using SfM photogrammetry

(Stott, Williams, & Hoey, 2020) and ground-based laser scanning

(Williams et al., 2014). The magnitude of the residuals is comparable

with the feasible level of detection in a fluvial gravel-bed river envi-

ronment due to the surface grain size. Moreover, the residuals must

be considered within the context of the LiDAR point spacing, which

ranges from c. 0.034 to 0.055 m for Garscube and the River Feshie,

respectively. These point spacings are dense for aerial topographic

F I GU R E 8 Testing of two interpolation methods across all four Garscube test flights. Topo to Raster interpolation (top row) and TIN to
Raster interpolation (bottom row). [Color figure can be viewed at wileyonlinelibrary.com]

F I G UR E 7 Boxplots for each of the three
ground classification algorithms trialled using the
lidR coding package (Roussel et al., 2020).
Residuals are combined from both the Garscube
and the Feshie test site, for all parameter settings
combined. [Color figure can be viewed at
wileyonlinelibrary.com]
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surveys, but the inherent noise in the point cloud data (Figure 6) will

likely occlude opportunities for grain size mapping from elevation dis-

tributions as demonstrated in a range of investigations that have

developed empirical relationships between detrended surface rough-

ness and grain size (e.g. Brasington, Vericat, & Rychkov, 2012;

Pearson et al., 2017; Reid et al., 2019).

The UAV solid-state LiDAR to TLS point cloud comparison clearly

indicates marginally zero residuals in unvegetated areas. Thus, future

geomorphic applications of the DJI L1 solid-state LiDAR sensor need

not conduct error analysis assessment to the degree that has been

undertaken here to quantify horizontal and vertical residuals. Table 2

summarises the errors from this investigation relative to those from

alternative geomatics technologies. The errors reported here, for the

River Feshie, using UAV solid-state LiDAR are comparable with those

from the other geomatics technologies detailed. However, the UAV

solid-state LiDAR system also enables a larger extent to be covered at

a much higher survey density. Although the workflow is not fully

streamlined into one software application, it is both reproducible and

modifiable. Indeed, since data collection and processing of the

Garscube and River Feshie datasets, updates to DJI Terra software

could further streamline the processing workflow with respect to

coordinate conversions, datums and point cloud densities.

5.2 | Vegetation and bathymetry

An advantage of using active remote sensing techniques, such as

LiDAR, is their penetration of vegetation and thus the ability to derive

a bare earth DTM instead of vegetated DSM. In this paper, we dem-

onstrate that the error in vegetated areas varies (�0.007 to

�0.883 m; Figures 5 and 6) depending upon the density of vegetation.

Several other investigations (e.g. Babbel et al., 2019; Crow

et al., 2007; Evans & Hudak, 2007; Javernick, Brasington, &

Caruso, 2014; Resop, Lehmann, & Cully Hession, 2019) have found

similar limitations related to ground/vegetation classification related

to vegetation density, particularly the presence of dense understory

vegetation, which significantly reduced LiDAR penetration to ground

level. To obtain a true ground measurement, the laser pulse from the

instrument has to pass through any canopy and understory vegetation

in both directions (i.e. away from the sensor and on return). This can

be considered partially a function of the LiDAR sensor’s power specifi-

cation. The DJI L1 solid-state LiDAR sensor produces around 30 W

with a maximum of 60 W; our investigation has demonstrated the

capabilities of this sensor for penetrating sparse vegetation and the

limitations for penetrating dense vegetation. Several authors have

described potential considerations, which may improve data collection

using LiDAR in vegetated areas including a methodology for canopy

and ground penetration estimation, scan angle including overlap per-

centage (Babbel et al., 2019; Crow et al., 2007) and FOV, seasonal fly-

ing during the winter period with less foliage (Crow et al., 2007;

Resop, Lehmann, & Cully Hession, 2019) and flight orientations in

areas of linear vegetation growth (e.g. plantation forests; Crow

et al., 2007). For types of vegetation that are similar to those found in

the River Feshie, further experiments could be conducted to assess

improvements to vegetation penetration by flying lower, increasing

the flight overlaps to >50%, changing the scanning pattern, altering

point cloud thinning to ensure more oblique points originating from

an adjacent flight line with the FOV are used more and flying after

autumnal foliage dieback. The latter is, however, species-specific and

would not overcome problems with heather because it does not die

F I GU R E 9 The distribution of the
combined M3C2 differences between the
unoccupied aerial vehicle (UAV) LiDAR and
the terrestrial laser scanning (TLS) point
clouds (River Feshie, black). The grey
histograms demonstrate the maximum and
the minimum expected distributions (M3C2�
uncertainty and M3C2+ uncertainty for left
and right, respectively). The red fitting shows
samples of the fitted Cauchy distribution as
selected and approximated in Supplementary
Materials C. [Color figure can be viewed at
wileyonlinelibrary.com]
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back. Overall, it is thus recommended that users always conduct a

pre-survey investigation of their site to assess the best approach to

minimise errors arising from dense canopy and/or understory

vegetation.

A key limitation of the DJI L1 solid-state LiDAR is that returns

from terrestrial targets are of direct use without further processing

considerations. Returns in wet areas of the Feshie, such as

anabranches, had a sporadic distribution of return densities, with

some areas having no returns (Babbel et al., 2019; Passalacqua, Bel-

mont, & Foufoula-Georgiou, 2012; Resop, Lehmann, & Cully

Hession, 2019), whereas other areas have similar densities to adjacent

terrestrial targets (e.g. gravel bars). The identification of wet areas

from the LiDAR data alone is not trivial given the inconsistency of

return densities. Similar to Pan et al. (2015), in this survey, we

F I GU R E 1 0 (a) Digital elevation model (DEM) of the 3-km-long River Feshie reach, with hillshade illumination and linearly detrended by
longitudinal valley slope. Insets show areas of interest: (b) artefacts of estate buildings and vegetation not removed through automated point

classification process; (c) anabranches; (d) confluence of Shlochd Beag and River Feshie; (e) footprints of demolished estate buildings under grass
cover revealed by LiDAR DEM and hillshade. [Color figure can be viewed at wileyonlinelibrary.com]
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conducted a post-survey digitisation to map water extent from the

orthomosaic image produced by the camera in the L1 solid-state

LiDAR sensor, which was also further supported by measured RTK-

GNSS positions along the channel edge. However, several other semi-

automated approaches could also be considered to identify the extent

of wet areas such as the use of spectral information from the ort-

homosaic image to colour the LiDAR point cloud (Carbonneau

et al., 2020; Islam et al., 2021), waveform feature statistics and

neighbourhood analysis (Guo et al., 2023) or using a more advanced

geometric approach (e.g. Passalacqua et al., 2010). All these suggested

semi-automated approaches currently utilise raster data formats

(i.e. orthoimagery or a Digital Elevation Model), but there may be

potential to explore the use of the original LiDAR point cloud data.

Once the wet area extent has been established, there are three broad

approaches that could be applied to reconstruct the topography of

wet areas, which could subsequently be fused (Williams et al., 2014)

into the dry bare earth DTM. First, wet topography could be directly

surveyed using robotic total station, RTK-GNSS or echo-sounding

(e.g. Williams et al., 2014; Williams, Bangen, et al., 2020). Second,

RGB images that are acquired as part of the DJI L1 solid-state LiDAR

survey, to colourise the point cloud, could be used to produce an ort-

homosaic image and depth could then be reconstructed using spec-

trally based optimal band ratio analysis (OBRA; Legleiter, Roberts, &

Lawrence, 2009), a technique that has been operationalised by

Legleiter (2021) in the Optical River Bathymetry Toolkit (ORByT). This

approach requires glint-free images, or images with glint removed

(Overstreet & Legleiter, 2017), and independent depth observations

to select the band ratio that yields the strongest correlation between

depth and the image-derived quantity. Finally, the third approach is to

acquire a set of RGB images from the UAV platform that can be

processed using SfM photogrammetry and then corrected for light

refraction through the water column using either a constant refractive

index (Woodget et al., 2015) or by deriving refraction correction equa-

tions for every point and camera combination in an SfM photogram-

metry point cloud (Dietrich, 2017). All three approaches require water

surface elevation to be reconstructed before bed levels are calculated;

this requires diligence and can be a source of significant error

(Williams et al., 2014; Woodget, Dietrich, & Wilson, 2019). Of these

three approaches, optical empirical bathymetric reconstruction

requires the least additional data collection and processing; direct sur-

vey involves time-consuming ground-based sampling, whereas bathy-

metric correction techniques require images and computational

overheads associated with SfM photogrammetry. All these techniques

are widely established and have been applied to a range of rivers; it is

thus beyond the scope of our investigation to demonstrate these

techniques here for the Feshie.

5.3 | Best practice recommendations

Table 3 presents a set of 10 best practice recommendations based on

our experience of deriving a bare earth DTM of the River Feshie using

UAV solid-state LiDAR. The recommendations are organised around

the key steps in the workflow that was developed and applied in this

investigation. The first three items relate to surveying considerations.

Flight planning considerations include the choice of the UAV

T AB L E 3 Best practice recommendations for acquiring and processing unoccupied aerial vehicle (UAV) solid-state LiDAR.

Item Considerations

1. Flight planning • Choice of UAV

• Choice of UAV navigation app

• Flight height, speed, direction

• Logistics for flight take-off and landing, including battery duration and battery swapping

2. Operation of sensor • Choice of sensor

• Swath width and side overlap (50%)

• Number of returns to record

• Sampling rate

• Calibration of IMU

3. Independent survey data • Distribution and number of independent points (e.g. targets, landscape features) to independently survey

• Choice of equipment for accuracy assessment, e.g. RTK-GNSS/total station/TLS

4. Coordinate transformation • Coordinate system for data collection and output product

5. Cloud thinning • Methods to thin overlap and overall point cloud

6. Point classification • Selection of algorithm

• Definition of representative sample for accuracy assessment

7. Manual point cloud editing • Likely optional but should be considered after evaluating point classification accuracy

8. Interpolation to raster • Selection of algorithm, e.g. Topo2Raster, TIN to Raster

9. Accuracy assessments • Selection of statistical methods during three stages:
� (1) Pre-processing–survey assessment
� (2) Post-processing–classification assessment
� (3) Raster interpolation assessment

10. Wet areas • Identification and mapping of wet area(s) extent(s)

• Selection of technique for reconstruction, if required

• Approaches available:
� Direct survey (robotic total station, RTK-GNSS, echo-sounding)
� Refraction correction of SfM photogrammetry derived point cloud
� Spectrally based Optimal Band Ratio Analysis
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navigation app and how the UAV will be operated. The length of flight

lines needs to stay within relevant UAV flying laws and guidance. This

may also be influenced by sensor requirements; for example, the DJI

L1 solid-state LiDAR sensor requires flight line length to be <1000 m

so that the IMU is regularly calibrated during turning. For large survey

areas, such as the 3-km River Feshie reach, battery logistics become

important as flight duration is greater than the power that one set of

batteries can provide (Resop, Lehmann, & Cully Hession, 2019); loca-

tions for flight landing and take-offs to replace batteries need to be

accessible and planned. Sensor operation considerations are closely

related to flight planning considerations. Flight lines need side overlap

of at least 50% but increasing overlap too much, for example to the

80% suggested for SfM photogrammetry (James et al., 2019;

Woodget et al., 2015), will result in much longer flight times. Flying

lower and slower yields a higher sampling rate and thus greater point

density, but this increased sampling rate will result in the use of more

battery power. A choice also needs to be made about the number of

results to record; the L1 sensor’s single outgoing pulse can be

received as triple returns. Although not investigated here, these

returns can be analysed to characterise vegetation type and density

(Resop, Lehmann, & Cully Hession, 2019; Wallace et al., 2012). The

third consideration is the acquisition of independent survey data.

Appropriate equipment (e.g. RTK-GNSS, total station, TLS) needs to

be deployed to sample surfaces that are subjected to error analysis.

The fourth and fifth considerations are coordinate transformation

and cloud thinning. Raw point cloud data need transformation if out-

put in a local or national coordinate system is required. In this investi-

gation, TerraSolid software was used to transform the raw point cloud

into the required coordinate system, British National Grid (BNG).

However, a recent software update to DJI Terra now offers transfor-

mation to BNG, which simplifies this processing workflow. Point cloud

thinning needs to consider the point density that is required as out-

put, possibly based off gridded DTM resolution, and the algorithm

that is subsequently used to thin both overlap and the overall point

cloud.

Consideration seven concerns the approach to point classifica-

tion; a key step in the process of deriving a high-quality DTM because

this determines which points are selected to represent bare earth.

This investigation trialled 146 separate algorithms and parameter set-

tings combinations before settling on the default MCC algorithm

(Evans & Hudak, 2007). This algorithm was specifically developed for

natural, forested areas. This contrasts with classification approaches

for more anthropogenically developed areas, where sharper curva-

tures (e.g. building walls and roofs) are considered, as opposed to

softer curvatures with topography and vegetation. As the name sug-

gests, Multiscale Curvature Classification utilises a curvature thresh-

old method to assess and classify ground versus non-ground returns

at multiple scales within a local neighbourhood. Haugerud & Harding

(2001) developed a similar curvature-based classification algorithm

known as Virtual DeForestation (VDF) and suggested that the curva-

ture tolerance parameter (t) should be set at around four times the

interpolated cell size. Based on the scale of sediment features in the

River Feshie requiring a spatial resolution of around 20 cm for geo-

morphological analyses, an appropriate curvature tolerance of 0.8 was

trialled for the various algorithms. This was found to be quantitatively

inseparable from residuals obtained from other parameters but

appeared qualitatively inferior to other settings, particularly those

outlined by Evans and Hudak (2007) and other lidR package docu-

mentation. Sinkhole-type artefacts, seen in some of our early test

results with other anthropogenically focused algorithms (e.g. in Ter-

raSolid), were elucidated in Evans and Hudak (2007) as negative blun-

ders resulting from scattering of the LiDAR pulses. The sinkhole

artefacts tended to be most obvious on harder surfaces such as road

and gravel bars, because of the uniformity of these surfaces. These

sinkholes appeared to result from commission errors (classifying non-

ground point as ground, false positive) using erroneous points that

were below the actual ground and caused these significant artefacts

in the first tests of gridded raster terrain model outputs. These sink-

hole artefacts did not appear to be replicated in the more natural algo-

rithms like MCC, which was used in the final product, although

anthropogenic areas (e.g. farm buildings, Figure 10b) did have arte-

facts that were of less concern given the topographic context.

Item 8 considers the algorithm choice to interpolate to a raster.

Item 9 focuses on accuracy assessment. At the same stage as flight

and independent survey data planning, the accuracy assessment

requirements need to be considered. It is recommended that these

are split into three stages: pre-processing to assess the survey, post-

processing to assess the ground classification and raster interpolation

to assess the gridded product. Finally, the approach for reconstructing

wet areas, if required, needs to be determined. Options are discussed

above, in Section 5.2, and may influence flight planning and a need to

acquire depth data.

6 | CONCLUSION

This investigation has evaluated a new consumer-grade UAV solid-

state LiDAR sensor for topographic surveying and geomorphic charac-

terisation of fluvial systems. Given that this new type of LiDAR tech-

nology has mainly been used outwith topographic surveying until very

recently (Kim et al., 2019; Raj et al., 2020; Štroner, Urban, &

Línková, 2021), the importance of our investigation lies in the exten-

sive geolocation error evaluation across study areas with different

degrees of topographic complexity.

Our results suggest that, in unvegetated areas, the accuracy of

the DJI Zenmuse L1 solid-state UAV LiDAR system is comparable

with other current UAV or aerial-based methods such as SfM photo-

grammetry, and statistically indistinguishable from detailed ground-

based TLS surveys. It is possible to produce DEMs that achieve sub-

decimetre scale (<0.1 m) geolocation accuracy from the RTK aircraft

position alone, even when surveying in fluvial environments that are

characterised by ‘noise’ from surface roughness associated with sedi-

ment and sparse canopy-type vegetation. However, the solid-state

LiDAR sensor was unable to penetrate dense ground-hugging vegeta-

tion like heather or thick grass, resulting in elevation bias in areas

characterised by these types of vegetation.

Our investigation provides an initial processing workflow for UAV

solid-state LiDAR data, when applied to vegetated parts of the Earth’s

surface. Although the workflow is currently discontinuous, using a

variety of different software to process and assess the dense point

clouds that are acquired using these sensors, further software devel-

opment will likely improve processing efficiency. This will enable the

characterisation of the topography, and objects such as vegetation,

using the increased density of data that UAV solid-state LiDAR
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provides, and the increasingly large areas that can be surveyed with

contemporary UAV platforms.
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