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ABSTRACT
Service Mesh Technologies (SMTs) are increasingly popular in sim-
plifying the networking between microservices. They allow one to
declaratively and programmatically define service-to-service poli-
cies and interactions, and take all sorts of network management
logic (e.g., traffic splitting, request tracing, security, reliability) out
of the application. This simplifies the development of microservice
architectures, which are widely used in cloud and edge applications.
However, the suitability for different SMTs for use in edge applica-
tions is unclear. Thus, this work compares the two most popular
SMTs (Istio and Linkerd) in terms of performance and overhead for
resource-constrained devices. Through extensive experimentation
and comparing with a baseline of standard networking in a Kuber-
netes cluster, we identify that Linkerd offers a more edge-friendly
SMT option in contrast to Istio. Overall, Istio’s communications are
≈10% slower than Linkerd at an increased 1.2–1.4x more memory
and ≈1.2x more CPU utilization.
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1 INTRODUCTION
The microservice architectural pattern has gained significant adop-
tion for applications in the cloud and the edge [8, 17]. This is due
to the number of benefits it offers, such as a high degree of techno-
logical heterogeneity, independent service development and main-
tenance timelines, better fault isolation, and individual scaling of
services either horizontally or vertically.
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However, deploying applications using such n-tiered architec-
ture requires additional services for communication and manage-
ment. Therefore, service mesh technologies (SMTs) are increasingly
popular as they provide means to control service-to-service com-
munication over the network. They function independently from
the microservices (i.e., outside the core business logic containers),
abstracting network features from the service development and
also providing useful management of the control plane.

There are a number of SMTs that are available as open source
solutions. In this work, we aim to identify the suitability of SMT so-
lutions for edge systems and in resource-constrained environments
such as many Internet of Things (IoT) systems. For this purpose, we
developed a number of experiments to evaluate Istio and Linkerd,
as the most widely used SMTs.1

We set up controlled experiments to assess the performance and
overhead of Istio and Linkerd for different scales of a microservice
application deployed using Kubernetes. We compare the results
of using each SMT against a baseline of native communication
between Kubernetes pods. We conduct our experiments using a
state-of-the-art edge server. To our knowledge, this is the first paper
to provide a quantitative and empirical comparison of SMTs at scale
for the purposes of edge applications.

We begin by explaining the microservice architecture and why it
motivates the use of SMTs (Section 2), and reviewing related work
(Section 3). We introduce the SMT solutions that we will evaluate
(Section 4). Then we describe our setup for evaluation (Section 5),
and present and discuss our results (Section 6).

2 BACKGROUND
2.1 The microservice architecture
Recent years have seen great rise in the popularity of microservice
architecture applications. It was reported in 2021 that top industry
performers run microservice architectures in 95.5% of their appli-
cations [12]. This popularity also extends to edge and IoT systems
due to their inherent n-tiered architectures, and the relative ease in
migrating services along the cloud-to-edge continuum [8, 17, 20].

A typical microservice application consists of many loosely-
coupled services, each of which can be independently deployed,
tested, and scaled [19]. The microservice architecture provides
numerous benefits when compared to their monolith predecessors
such as loosely coupled development and independent deployment.
In turn, this improves scalability and availability, and affords the
practice of continuous integration and continuous delivery (CI/CD).

However, microservice architectures comewith their own host of
challenges as the number of microservices can balloon to hundreds
of microservices each in the order of tens of thousands of lines of

1https://www.cncf.io/blog/2021/07/15/networking-with-a-service-mesh-use-cases-
best-practices-and-comparison-of-top-mesh-options/
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code [22]. Furthermore, service calls in such a dynamic architecture
are asynchronous and disordered by nature. Left unmanaged, this
can create bottlenecks that affect the performance of the whole
service chain (referred to as the ‘back pressure’ effect); cf. [9, 14].

Consequently, there is a need for the adopters of microservices
to operate additional ‘glue-ware’ to carry out communication and
management tasks such as orchestration, monitoring, load balanc-
ing, message passing, resilience, etc. In fact, 2022 was the first year
when such glue-ware outweighed the number of core microser-
vices [7]. The measures taken by software engineers to provide
such glue-ware includes a number of tools and practices [1, 21, 22],
including widely used solutions such as Kubernetes and Spinnaker.

2.2 The need for SMTs
Orchestration tools, such as Kubernetes, deploy containerized appli-
cations into pods and provide basic east-west communication chan-
nels between them. However, such communication is by default
not monitored and unencrypted. More generally, and importantly,
Kubernetes does not allow any management of such pod-to-pod
communication. Consider the example of an application deployer
who wants to set policies about when and how frequently to call
certain services. For this to be possible, they would need to inte-
grate such policy enforcement as auxiliary instruments in the core
containers (i.e., the ones with business logic). This has several sig-
nificant disadvantages: mainly, it violates the concept of separation
of concerns as business logic is muddled with network management
logic in an ad hoc fashion, and it is an invasive and fragile practice.

An alternative approach is the pattern of sidecar proxies. This is
where each microservice is shipped as a container that contains the
core business logic as well as another container called the sidecar.
The sidecar acts as the ingress and egress point of the business
container and, thus, can apply auxiliary logic such as networking
services, monitoring, metering, and configuration.

SMTs use the pattern of sidecar proxies to provide communica-
tion between microservices that is low-latency, secure, and moni-
tored. As such, it offers a feature-rich data plane while also provid-
ing steer over the control plane in terms of traffic management, and
service and traffic observability. In effect, SMTs allow application
deployers to declaratively and programmatically define policies to
govern service to service interactions, and extract this logic out
of the core business logic. This could be versioned and applied
consistently at different levels, i.e., at container or cluster level.

In a survey of the CNCF End User Community, the use of SMTs
increased from 27% of respondents in 2020 [6] to 47% in 2022 [7].

3 RELATEDWORK
We are motivated to assess the degrees of suitability for running
major SMTs in edge and IoT environments where resources are
constrained and the need for low latency is of high priority. A fair
number of works studied SMTs either in qualitative or quantitative
ways. Here, we give an overview of these works.

3.1 Qualitative studies
A number of papers offer qualitative studies of SMTs. El Malki
and Zdun [4] conduct an analysis of 40 grey literature publications
to distil the practices around using SMTs. Li et al. [15] give an

early survey of SMTs and their challenges. Duque et al. [3] provide
a qualitative evaluation of SMTs for edge applications, focusing
specifically on traffic management use cases (e.g., QoS assurance
and flexible configurability). There is also countless tech blog posts
about the qualitative differences in SMTs2, but we do not list them
for space constraints.

3.2 Quantitative studies
In 2019, a team at Kinvolk set out to compare the performance
of Istio and Linkerd3. They created a benchmark that employed
emojivoto4, a 3-microservice application created by Linkerd for
demonstration purposes. The benchmark sends multiple requests
per second, and records the latency per request and resource us-
age of the cluster. Overall, they found Linkerd to be more efficient
than Istio in terms of both resource usage and latency. It is impor-
tant to note that this study used Istio version 1.1.6, as Istio has
had a major restructure of its internal components with release
1.55 wherein control plane functionality was consolidated into the
istiod daemon[16]. The above study was reproduced by Linkerd6
using Linkerd 2.10 and Istio 1.10.0, and came up with very similar
findings. However, they also used an application that consists of
only 3 microservices so it is not viable to generalize their findings
to more realistic microservice applications that consist of tens or
hundreds of microservices.

In 2020, Dahlberg created a benchmark to compare the perfor-
mance of Linkerd and Istio [2]. His benchmark used TeaStore, a web
store application of seven microservices. Apache JMeter was used
to send concurrent requests to the meshes. He observed Linkerd
to be more memory-efficient, but Istio to be faster. He also noted
that Linkerd struggled more when handling concurrent requests
and speculates that this could be due to a resource-limiting feature,
as the CPU was not fully utilized, which would explain the added
latency when dealing with multiple users. However, the benchmark
in this study only tests the application with a maximum of 40 si-
multaneous users. This may be representative of smaller internal
technologies, but may not accurately reflect larger applications.

Ganguli et al. [10] presented an analysis of using a Kubernetes
cluster with an Istio mesh on an edge application. The study is pri-
marily concerned with the overheads of such a setup on the ability
to serve an increasing number of user requests. Finally, Saleh Sedgh-
pour et al. [18] present experimental results to identify the best
way to use SMTs particularly for the circuit breaker functionality
in a microservice-based application of a complex topology.

3.3 Summary
We surmise that there is a number of works that studied SMTs
from a qualitative point of view, but do not compare them in an
empirical and experimental manner. There are only a few efforts
that do assess the overheads of different SMTs, but they are either
limited in scale or use outdated SMT releases.

2For instance: https://www.containiq.com/post/comparing-service-meshes-istio-vs-
linkerd-vs-consul
3https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-
linkerd/
4https://github.com/BuoyantIO/emojivoto
5https://istio.io/v1.5/blog/2020/istiod/
6https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
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4 SMT SOLUTIONS
In this section we provide an introduction to the SMTs that we
study and compare. They are chosen due to their popularity in
the DevOps community at large and specifically in cloud and edge
systems. Note that a detailed qualitative differentiation of these
solutions is not our aim here, and is covered by other works as
already mentioned (e.g., [3, 13, 15]).

4.1 Envoy
Envoy7 is not strictly an SMT, but it needs introduction as it plays
a vital role in major SMTs such as Istio and Kuma8. Written in C++,
Envoy is an open source sidecar proxy that was donated by Lyft to
the CNCF in September 2017.

Essentially, Envoy is a component that sits on the request path
and acts as part of the application, forcing all application commu-
nications to go through it. It configures the container’s IP table and
gives the application a clean and unified interface to the network
that is high-performance and managed universally. This relates
to offering added features such as load balancing, rate limiting,
circuit breaking, and more. Envoy’s architecture is made up mainly
of listeners that ingests data plane traffic, filters that process said
traffic, and routes that applies layer 7 logic (i.e., traffic policies).

4.2 Istio
Istio is a very popular SMT, partly because it is developed to be well
integrated with Kubernetes and is an CNCF project since September
2022. It uses Envoy for the data plane and implements its own
control plane. The data plane deploys a set of Envoy proxies as
sidecars attached to pods, and they mediate and control all network
communication betweenmicroservices. They also collect and report
measurements on all mesh traffic. The control plane, in the form
of the istiod service since release 1.5, manages and configures
the proxies to route traffic and operates discovery and certification
operations.

Sidecar configuration is done through Custom Resource Defi-
nitions (CRDs) that are then converted into Envoy configurations
that are communicated to all proxies. istiod operates a service
registry to detect newly deployed microservices and track currently
deployed ones. It also operates as a deployment-specific certification
authority for certificate management (e.g., automated certificate
circulation every 𝑥 hours/days). Istio gives further added-values
such as the ability to use GraphQL for querying service communi-
cations and telemetry. It also supports Extended Berkeley Packet
Filter (eBPF) for additional network observability.

Setup of an Istio mesh can be done using predefined profiles that
apply the mesh automatically. If more customized configuration is
required, the user needs to edit Kubernetes manifests files (e.g., in
YAML) to annotate a namespace or pods that need meshing.

4.3 Linkerd
Like Istio, Linkerd is an open-source CNCF project (since July 2021)
and is well integrated with Kubernetes. Architecturally speaking,
Linkerd looks similar to Istio prior to version 1.5. It consists of
sidecar proxies and a distributed set of control plane services. The
7https://www.envoyproxy.io/
8https://kuma.io/

differences, however, are abundant when you inspect the imple-
mentation details. Instead of Envoy, Linkerd uses its own proxy,
called Linkerd2-proxy, which is written in Rust and is dubbed a
‘micro-proxy’ by its developers. It is purpose-built with clear em-
phasis on asynchronous networking and being lightweight, and
thus ships with a smaller set of features when compared to Envoy
yet still supports the functionality expected from an SMT such as
observability, security, and reliability. It also has native integration
with Prometheus monitoring framework.

Linkerd uses a declarative configuration model. It does not need
editing of any user-facing YAML per se, only the inclusion in the
Kubernetes deployment plan to signify where proxy sidecars are
needed. As such, its configuration is rather straightforward.

5 EXPERIMENTAL SETUP
We now explain the setup we used in our evaluation experiments.

5.1 Methodology
Scale. We devised microservice application of different scales,
being composed of 10, 20, 40, and 80 microservices.
SMTs and baseline. We evaluated the latest releases from Istio and
Linkerd, specifically Istio version 1.15.3 and Linkerd version 2.12.3.
As a baseline, we compare against a bare Kubernetes deployment.
Metrics. We are interested chiefly in the effectiveness and effi-
ciency of SMTs specifically for edge systems where resources may
be constrained and/or costly. We measured the following metrics:
• Latency: The time taken to communicate between microservices
as evidence for the effectiveness of each SMT. This is measured
as the time between submitting a request and receiving a corre-
sponding request.

• Memory footprint: This is the first indication of the overhead
of an SMT. We look at both the overall memory used as well as
the breakdown.

• CPU utilization: This is another measurement of SMT overhead,
which we also measure in aggregate and detailed forms.

5.2 Hardware
Our experiments were carried out on an OnLogic Helix 600 edge
server. This is a state-of-the-art device towards the high-end of
edge capabilities [11], which is representative of devices used in
un-staffed micro data centers to support suburban and remote set-
tings [5]. It has an Intel Core i7-10700T Comet Lake 4.5 GHz 8-core
processor with 32 GB of DDR4 memory, and it runs Ubuntu 20.04.

5.3 Workload
We developed a web application using the Flask Python framework9.
For our purpose, the key requirement is to have an architecture that
can be easily scaled horizontally, i.e., by adding more or removing
microservices. For an overview, see Fig. 1.

Our application represents workloads that are made up of Read-
Modify-Write transactions. Functionally, the application works as
a counter: it receives a request containing a start value and an
objective value. The application increments the current value and

9https://flask.palletsprojects.com/en/2.2.x/
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Figure 1: An overview of the overall experiment architecture.

resubmits the request to another microservice. This process contin-
ues until the value reaches the objective value.

To represent realistic usage of an edge system, we simulate mul-
tiple users submitting requests simultaneously to the application.
To do so, we used Apache ab10. We specified a total number of
requests and how many requests were to be sent concurrently. The
concurrent requests are used to simulate simultaneous users send-
ing requests to the application, while the total number of requests
divided by the number of concurrent ones, gives us an average
number of requests per user (RPUs). Each user will send a request,
await a response, and once received send another request until the
total RPUs is reached for every simulated user.

5.4 Cluster
A Kubernetes cluster with one node was created using the Kuber-
netes in Docker (KinD) distribution version 0.17.0. KinD allows the
easy building and testing of Kubernetes pods. Eight pods were used
by the Kubernetes system to manage the cluster, while three are
dedicated to collect resource usage. One pod is used to start the
benchmark execution and store the results. Another pod is used
to generate requests and record their response rate. An additional
24 pods were used to simulate the micro-services. Some of the
remaining pods are used for the service mesh control plane.

5.5 Deployment and Operation
The counter application was containerized using Docker and two
Kubernetes deployments were defined containing 12 pods each
running the application. Pods can run multiple containers simul-
taneously, however only one counter container was created per
pod. Every replica runs the counter application and is hosted in

10https://httpd.apache.org/docs/2.4/programs/ab.html

its own pod. Two Kubernetes services were created to expose the
counter deployments to the cluster’s network. This creates an URL
per deployment, i.e., all pods inside the deployment are pointed
at by the same URL. When a request is sent to that URL, either
Kubernetes’s or the SMT’s load balancer (depending on what is
being tested) selects the pod to receive the request.

Two deployments, Counter-A and Counter-B, were specified,
such that Counter-A would send requests to Counter-B and vice
versa. This is to avoid having pods sending requests to themselves,
which is unrealistic.

A benchmark controller and a request generator were deployed.
The controller starts the experiment and stores the results. Once
a service mesh is installed, the controller will send a collection of
values defining the number of simultaneous users, RPU and number
of microservices to the request generator. The request generator
will then simulate those users, each sending the specified number
of requests, which are sent through the counters until the specified
number of microservices is attained.

To record the memory footprint and CPU utilization, Prometheus
alongside Node Exporter and cAdvisor were used. Like the bench-
mark controller, these also remained unmeshed throughout the
experiment to prevent the meshes from delaying the measurements
of resource usage. To be clear, the only components of the experi-
ment that were meshed were the request generator and the counter
applications.

5.6 Code availability
To support reproducibility, we release our code and data onGithub11.

11https://github.com/JoseLuisPovedanoPoyato/SMTComparisonEdge/
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Figure 2: A box-plot showing the latency experienced using
native Kubernetes, Istio, and Linkerd for increasing number
of application users.

6 RESULTS
Note that although we ran experiments with different numbers
of microservices, we only show and discuss the results for an 80
microservice application due to space constraints. The results for
the 10-, 20-, and 40-microservice applications show similar findings.
Similarly, we also ran experiments with 3 and 5 RPU but we only
show the results for 10 RPU as it suffices. The full set of results is
available through our Github repository.

6.1 Latency
Overall, we notice that Istio incurs the highest latency across dif-
ferent scales of number of users (Fig. 2). Linkerd comes second
(about 6%–12% lower than Istio), while native Kubernetes has the
least latency. Linkerd’s gain over Istio increases with scale as the
difference, as Linkerd’s median values get increasingly lower than
Istio’s lower quartile latency.

Additionally, it is interesting to note that latency with either
SMT is much more predictable than that of Kubernetes. The latter
becomes increasingly unpredictable as the number of simultaneous
users increases, when its latency distribution exhibits a very long
tail as shown by the outlier markers at the top of the plot in Fig. 2.

6.2 Memory footprint
When we look at overall memory utilization (Fig. 3), we find that it
follows the general trend that we observed with latency: Kubernetes
has the least memory overhead (obviously), followed by Linkerd,
then finally Istio. However, here the differences are significant
especially between Linkerd and Istio: Istio uses between 20% and
43% more memory than Linkerd. This might be a deciding factor for
favoring the former over the latter for devices with limited memory
resources.

In order to stratify the memory utilization and identify the cause
for Istio’s higher consumption, we also plot the breakdown of mem-
ory utilization in Fig. 4. We only show the plots for 100 simulated

Figure 3: A box-plot showing the total memory used by Ku-
bernetes, Istio, and Linkerd for increasing number of appli-
cation users.

Figure 4: A breakdown of the memory utilization of the ap-
plication subprocesses using each of Kubernetes, Istio, and
Linkerd for the bottom of the experiment scale at 100 users
and 20 services, and the top at 800 users and 80 services.

application users with 20 microservices, and 800 users with 80 ser-
vices for space constraints. The key observation here is that Istio’s
data plane requires 3x–5x more memory than Linkerd. This is due
to Istio’s use of the Envoy proxy as a universal sidecar.

6.3 CPU utilization
The levels of CPU utilization (shown in Fig. 5) follow similar trends
as those seen before, but at much less pronounced differences. Here,
we display the values for 20 microservices and that of 80. Although
the values are different (notice the scale of the y-axis), the different
series compare to each other in almost identical ways. Linkerd uses
around 22%–25% more CPU than Kubernetes, while Istio uses a
further 16%–20% more than Linkerd. The main culprit is again the
data plane, namely the collection of Envoy proxies and the central
istiod service.
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Figure 5: The CPU utilization of the SMTs compared to that
of Kubernetes at the scales of 20 (top) and 80 microservices
(bottom). The total value in each case is dissected into the
different application sub-processes.

7 CONCLUSION
In this paper, we provided a quantitative assessment of the suit-
ability of two service mesh technologies (SMTs) for use in edge
environments: namely, Istio and Linkerd. In our experiment, we
observed Linkerd to be less resource-hungry than Istio especially
in memory utilization. We also remarked that this reduced com-
putational overhead comes with response latencies that are lower
than Istio’s, and are more predictable in their variance than bare
Kubernetes. These findings coupled with the relative ease of setup
of Linkerd lends it quite well to use in edge and IoT environments.
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