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Probabilistic Approach for Road-Users Detection
Gledson Melotti, Weihao Lu, Pedro Conde, Dezong Zhao, Alireza Asvadi, Nuno Gonçalves, Cristiano

Premebida

Abstract—Object detection in autonomous driving
applications implies that the detection and tracking
of semantic objects are commonly native to urban
driving environments, as pedestrians and vehicles. One
of the major challenges in state-of-the-art deep-learning
based object detection are false positives which oc-
cur with overconfident scores. This is highly undesir-
able in autonomous driving and other critical robotic-
perception domains because of safety concerns. This
paper proposes an approach to alleviate the problem
of overconfident predictions by introducing a novel
probabilistic layer to deep object detection networks
in testing. The suggested approach avoids the tradi-
tional Sigmoid or Softmax prediction layer which often
produces overconfident predictions. It is demonstrated
that the proposed technique reduces overconfidence
in the false positives without degrading the perfor-
mance on the true positives. The approach is validated
on the 2D-KITTI objection detection through the
YOLOV4 and SECOND (Lidar-based detector). The
proposed approach enables interpretable probabilistic
predictions without the requirement of re-training the
network and therefore is very practical.

Index Terms—Object Detection; Overconfident pre-
diction; Probabilistic calibration; Multimodality; Deep
learning.

I. Introduction

R EMARKABLE advances in computing hardware,
sensors and machine learning techniques have con-

tributed significantly to artificial perception for au-
tonomous driving [1]–[5]. However, even with such pro-
gresses, artificial perception in real-world driving still
meets grand challenges [4], [6]–[8]. Object detection is a
key aspect of perception systems and has been gradually
dominated by deep learning (DL) approaches. Generally,
modern DL methods export the detection confidence as
the normalized scores by the Softmax function (SM) [9]
or a single value obtained from the Sigmoid function
(SG) [10] without considering the overconfidence or un-
certainties in the predictions (see Fig. 1). Such a lack
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(a) Histogram of the Softmax-layer scores.

(b) Histogram of the logit values.

Fig. 1: In (a) we can see the overconfidence problem
regarding the predictions using Softmax for a three classes
case (from left to right: pedestrian, car and cyclist). The
logit values (i.e., the layer that feeds into Softmax) have
been normalized and the corresponding distributions are
modelled by a histogram in (b).

of proper uncertainty prediction and the overconfident
behaviour are undesired, because objects detected as false
positives may have high score values without any level of
uncertainty. It can be better understood by an example:
consider six deep networks trained to classify three classes
of objects namely, car, cyclist, and pedestrian. The detec-
tion confidence values for each object have been obtained
through a prediction layer, such as the Softmax layer,
which then normalizes the values within the interval [0, 1].
As shown in Table I, the networks show satisfactory results
in terms of F-scores [11], [12] on a test set. However, what
would happen when an object out of the trained classes
is presented to the networks? A clue to answering this
question is given by Fig. 2, where an object representing
‘vegetation’ class1 has been classified with an extremist
prediction (i.e., value very close to one, indicating over-
confident behaviour) to one of the three trained classes.
Ideally, the expected value for that example would be
close to 0.3, as the object does not belong to any of the
three classes considered in the training. More represen-
tative cases of overconfident predictions considering out-
of-training distribution examples are shown by histograms
in Fig. 3, considering different classes e.g., ‘person-sitting’,

1The vegetation class was not considered on the training set.
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TABLE I: Classification results using F-score metric by
deep network models.

Model Car Cyclist Pedestrian Average
LeNet [13] 99.17 89.08 93.79 94.02

AlexNet [14] 99.42 91.41 96.46 95.75
Inception V3 [15] 99.68 95.05 97.67 97.46

EfficientNetB1 [16] 99.84 97.43 98.74 98.67
ViT [17] 99.46 93.56 96.37 96.46

MLP Mixer [18] 98.98 87.47 92.42 92.96

InceptionV3 
CNN

LeNet
CNN

AlexNet
CNN

EfficientNetB1 
CNN

Vision
Transform

MLP 
Mixer

99.05% 1.95% 0.00%

99.98% 0.2% 0.00%

97.76% 0.15% 0.00%

98.85% 0.12% 0.03%

99.98% 0.02% 0.00%

91.54% 8.43% 0.03%

Hyperparameters:
• epoch = 100;
• batch size = 100;
• optimization = AMSgrad;
• learning rate = 0.001;
• dropout = 0.5;

Prediction layer:
• SoftMax function;

Car Cyc PedClasses

Fig. 2: Example of classifying an out-of-(training)-
distribution test object. The object has been classified by
six different neural networks, and all the models’ outputs
are overconfident - which may have critical implications.

Fig. 3: Object classification on out-of-distribution test
dataset through six different neural networks, using Soft-
max as the prediction layer, considering the LeNet [13],
AlexNet [14], InceptionV3 [15], EfficientNetB1 [16], Vision
Transformer [17], and MLP Mixer [18] CNNs. The over-
confident behavior is notorious.

‘tree’, ‘pole’.
The ability to properly represent the uncertainties of

predictions of an object detection system would ensure
safer decision-making actions, specially in autonomous
driving and robotic systems which may pose threat to peo-
ple’s lives [19]. In the literature, the uncertainties of a deep
learning model [20]–[23] can be obtained through the pre-

dicted values (calibration techniques) or via the network
weights/loss function (regularization techniques) [24]–[37].
However, we will see that calibration and regularization
techniques are not immune to the overconfidence prob-
lem as well, as detailed in Section II. An alternative to
reduce overconfident predictions, and in some techniques
to enable probabilistic interpretation, can be attained by
looking at the logit-layer values (i.e., the score-values
before the prediction layer, or activation functions) [20]–
[23] - as illustrated in Fig. 1b which presents a more
tractable distribution than the distribution out of the
Softmax prediction layer.

In this context, this paper presents a new methodol-
ogy to reduce overconfident predictions in deep object
detection networks without interfering in the cost function
and/or re-training the network. Furthermore, this paper
shows that calibration techniques (such as temperature
scaling and Monte Carlo Dropout, as well as confidence
penalty, and Bayesian neural networks) may provide over-
confidence results.

In summary, the contributions are:
• An investigation of the predicted values using distri-

butions from the logit-layer data;
• An efficient way to obtain proper probabilistic infer-

ence via Maximum Likelihood (ML) and Maximum
a-Posteriori (MAP) formulations;

• Detailed comparisons between the ML/MAP against
the Sigmoid layer, considering true and false positive
predictions by YOLOV4 and SECOND, with respect
to overconfidence results;

• Comprehensive results showing that the traditional
prediction layers can induce erroneous decision-
making in deep object detection networks.

II. Related Work on Overconfident Predictions
Generally, the formulations that acts directly on the

predicted scores to reduce overconfident predictions of
learning models are considered as post-processing (or
post-hoc) calibration techniques [31], [38]–[41]. On the
other hand, the problem of overconfident predictions in
deep models, can also be addressed with regularization
techniques (formulations that interfere with the learning
procedure of the model, to improve the generalization
ability) [15], [42], [43], Bayesian models (that leverage
approximate Bayesian inference instead of classical point
estimation in neural networks) [36], [44], [45], or even aug-
mentation methods [46], that produce better-calibrated
models. Well-calibrated models are expected to provide
accurate predictions when they are right about object
detection and, conversely, provide high uncertainty when
they are inaccurate about a detection. However, such
techniques to reduce or mitigate overconfidence are still
to be improved [25]. Actually, recent studies have shown
overconfident predictions as unsolved problems in the field
of deep learning [25], [47]–[50]. Consequently, several prob-
abilistic methods have been proposed as an alternative
to reduce overconfident predictions, as well as to capture
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uncertainties in deep neural network models [20]–[23],
[26]–[30], [32]–[37], [44], [51]–[53].

The following subsections present more details about
the most common and recent calibration techniques (like
temperature scaling [31]), some regularization techniques
(penalization of overconfident output distributions [28],
[30], [32], [52], [53], label smoothing [54]) and some forms
of approximate Bayesian inference (like variational infer-
ence [36] and Monte Carlo Dropout [33], [55]). Addition-
ally, we would discuss the disadvantages of the mentioned
techniques when predicting objects belonging to out-of-
training-distribution data (which may be critical in au-
tonomous driving and robotics).

A. Softmax and Sigmoid Prediction Layers
The Softmax function, a generalization of the Sigmoid

function for the multiclass case, is currently one of the
most commonly employed functions to act as the predic-
tion layer in deep networks. In part, this is explained by
the fact that such function increases the weights of the
correct classes in an exponential way, strongly interfering
in the updating of the weights, and thus may guarantee
a better result in terms of classification performance.
However, such behaviour may lead to overfitting, since the
model becomes overconfident on the training data [56].
Additionally, the Softmax function does not provide any
reliable confidence measurements for the predicted val-
ues [31], [57], [58]. Also, it is possible to find in the lit-
erature works where the Softmax’s outputs are considered
actual likelihood values [38], [59]–[61] (perhaps because
they sum up to one) which tends to give an erroneous
probabilistic interpretation about the results.

The Softmax, as well as the Sigmoid function, are
sensitive to adversarial attacks. The studies that back this
claim consider adversarial perturbations applied to the
Softmax and Sigmoid prediction layer, generating possible
underfitting problems on the weights [62], [63]. Addi-
tionally to the fact that Softmax and Sigmoid functions
are prone to provide poorly calibrated scores and being
sensitive to adversarial attacks, such functions also seem to
be inadequate to cope with out-of-distribution objects in
the test phase (e.g., during the evaluation time the trained
network can be faced with objects that do not fit to any
of the training classes) as demonstrated experimentally
in [21], [53], [58], [64]–[66].

B. Post-processing Calibration Techniques
Among the various existing techniques to reduce over-

confident predictions, post-processing calibration tech-
niques present the advantage of being easily applied to
pre-trained models. For example, temperature scaling has
demonstrated interesting characteristics because it is sim-
ple and, in some cases, efficient [31].

The value of temperature scaling (TS) is obtained
by minimizing the negative log likelihood (NLL) on the
validation set. All the values of the logit vector (before the
prediction layer) are multiplied by a scalar parameter 1

TS ,

with TS > 0. Simply, the temperature scaling parameter
can be included in the Softmax prediction layer (SM)

SM(ẑj) = e(ẑj/TS)

K∑
k=1

e(ẑk/TS)

, (1)

where k ∈ {1, . . . ,K}, K is the number of classes, ẑj is
the output of the predicted logit layer i.e., predict score
value of the object j.

C. Regularization Techniques
Different from the post-processing techniques, regular-

ization techniques such as label smoothing and confidence
penalty act during the training process, on the updates of
the weights according to the cost function [15], [32], [43],
[54].

For classification problems, defining X = {x1, . . . ,xj} as
input data, and Y = {y1, . . . ,yj} as output data obtains
the dataset D = {xj,yj}Nts

j=1, where Nts is training set size,
xj ∈ Rn, and yj ∈ {1, . . . ,K} with K classes, the loss
function considering the true label as one-hot encoding
vector is defined by

L = − 1
Nts

Nts∑
j

p(yj|xj)log(p(ŷj|xj)), (2)

where p(yj|xj) is the distribution of the true label (ground-
truth) given the data, ŷj is the predicted value for the
input xj, and p(ŷj|xj) is the predicted labels distribution.
The expression of the confidence penalty (3) includes a
weighting term in the cost function given in (2). The
additional term is the Entropy of the predicted values, and
β is the parameter that controls the confidence penalty [32]

L = − 1
Nts

Nts∑
j

[p(yj|xj)log(p(ŷj|xj))

−βp(ŷj|xj)log(p(ŷj|xj))]. (3)

Unlike confidence penalty, the label smoothing tech-
nique does not interfere with the mathematical formula-
tion of the cost function, making the model less certain
about the provided predictions. In fact, label smoothing
modifies the values of the one-hot encoding vector, as
defined in (4) [15]

ynewj,k = (1− ε)yj,k + ε

K
, (4)

where yj,k is the object j in the class k, ynewj,k is the
new label value, ε is the smoothing parameter arbitrarily
defined, and K is the number of classes. Label smoothing
reduces the difference between the values of the labels of
the correct class against the values of the other classes,
interfering in the updating of the weights of the network.
Not using the label smoothing technique can cause two
problems, according to [15]: “First, it may result in over-
fitting: if the model learns to assign full probability to
the groundtruth label for each training example, it is not
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guaranteed to generalize. Second, it encourages the differ-
ences between the largest logit and all others to become

large, and this, combined with the bounded gradient
∂l

∂zk
,

reduces the ability of the model to adapt. Intuitively, this
happens because the model becomes too confident about
its predictions”.

D. Bayesian Neural Networks
Bayesian Neural Networks are modelled using approx-

imate Bayesian inference (5) to assign probabilities to
events, and thus capturing uncertainties in a model’s
predictions [44], [45], [53], by considering the network
weights as a probability distribution parameter(s) instead
of a ‘deterministic’ value (like in traditional deep neural
networks). The posterior probability of the weights given
the input and the target/class data can be expressed
by [33], [44]

p(W|X,Y) =
p(Y|X,W)p(W)

p(Y|X) , (5)

where W = {w1, . . . ,wi} denotes the weights matrix, X
is input data, Y is output data, p(W) is the prior distri-
bution, which expresses the uncertainty before any data
observed [45], [67], and p(Y|X,W) is the class conditional
density (likelihood function). The p(Y|X) 6= 0 acts as
a scaling factor for p(W|X,Y), and it can be expressed
as
∫
p(Y|X,W)p(W)dW that can often be determined

by the law of the total probability [45]. For example,
considering a discrete case2, P (Y|X) can be computed per
parameter wi i.e.,

∑
P (Y|X,wi)P (wi).

The calculation of the posterior p(W|X,Y) may not be
trivial because the density function p(Y|X) can assume
a complex form (whereas the prior can be specified from
some previous knowledge and the likelihood conceivably
obtained from the data). For this reason, in complex
models - like deep neural networks - the posterior becomes
intractable. Thus, a possible solution is to perform an
approximation by means of variational inference [34]–[36],
[45], [52], [55], [67], [68]. Nonetheless, variational inference
still presents some challenges in terms of computational
complexity, specially when dealing with large models and
large quantities of data.

A computationally more efficient (and therefore pop-
ular) method of approximate Bayesian inference is the
Monte Carlo Dropout formulation, [33], [55], that lever-
ages dropout [69] (commonly used as a regularization
technique) at test time, to capture the model uncertainty.
Dropout [69] is a stochastic technique [66], which might
potentially be included in the neural network, contributing
to avoid overfitting. It is usually used during training,
and therefore it can be questioned: what does occur
when the dropout is used during testing? The predicted
values will not be deterministic i.e., the values depend on

2Probability formulations for continuous cases are represented by
lowercase letters, while for discrete cases they are represented by
uppercase letters.

(a) From left to right: temperature scaling [31], confidence
penalty and label smoothing [32].

(b) From left to right: confidence penalty with label smooth-
ing [32], Monte Carlo Dropout [55], and Bayesian neural
network.

Fig. 4: Object classification on out-of-(training)-
distribution test dataset using calibration and
regularization techniques in an InceptionV3 CNN
model.

which connections between the neurons will be randomly
chosen during the prediction stage. In fact, the same test
sample forwarded several times in the network can have
different predicted values. In [33], the authors show that
applying dropout (at inference) before every weight layer
of a deterministic deep neural network is equivalent to an
approximation of a probabilistic deep Gaussian process.

E. Discussion on the State of the Art
Temperature scaling, confidence penalty, and label

smoothing techniques aim to reduce the overconfidence
problem when making predictions using relatively simple
formulations. Temperature scaling also enables, as an
advantage, the possibility of being applied without the
need to re-train the network. The disadvantage of these
techniques is the inability to directly provide an uncer-
tainty interval regarding the detected objects subjected to
the trained classes. Monte Carlo Dropout and Bayesian
neural networks, on the other hand, provide uncertainties
measures i.e., the mean and variance associated with each
confidence value, but with relatively higher computational
cost.

Figure 4 shows the performance of some of the
previously mentioned techniques by considering out-of-
distribution test objects (person sitting, tree, pole/stem).
The networks were trained from scratch to classify ob-
jects belonging to the categories {car, cyclist, pedestrian},
considering ε = 0.2 in (4) for label smoothing, β = 0.3
in (3) for the confidence penalty, TS = 1.82 in (1) for
temperature scaling, and for Monte Carlo Dropout the test
sample was forwarded 300 times through the network. In
the case of the Bayesian neural network, the classification
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experiments were conducted using the Tensorflow toolbox.
Note that most of the objects in this controlled experiment
have been classified with overconfidence.

The overconfidence problem in deep models can be
detrimental to draw a firm conclusion regarding safety,
particularly because it is not possible to foresee all kinds of
objects that can appear, for example, within a perception
system’s FOV of an autonomous vehicle operating in a
real-world (uncontrolled) environment. However, it can
be partially concluded that the behavior shown in Fig. 4
makes it very difficult to interpret the model’s confidence
in a proper way.

III. Probabilistic Inference For Object
Detection

This section presents a formulation to reduce overconfi-
dent predictions on existing deep object-detectors, includ-
ing non-parametric and parametric modeling to represent
the likelihood and the priors. The proposed approach
relies on a Maximum Likelihood (ML) and Maximum
a-Posteriori (MAP) function-layers, based on the Bayes’
rule, to replace Softmax or Sigmoid functions depending
on the object detector.

A. ML and MAP Layers
The formulation behind the Bayesian inference for the

proposed ML and MAP layers is built up from the logit
outputs/scores (denoted by x) and the random variables
C and W i.e., the class-labels and the network weight re-
spectively. The decision layers will then output a posterior
P (C|x,W) that is proportional to the class-conditional
density (i.e., likelihood) p(x|C,W) and the priors P (C),
where C = {c1, . . . , cN} and x = {x1, . . . , xN}, with xi
corresponding to the logit value for the class ci. Thus, the
Bayes’ rule may simply be given by (6), considering that
the weights were the result of a learning process in order
to explain the data [67] and are assumed to be constant
after the training,

P (C|x) =
p(x|C)P (C)

p(x) . (6)

The law of total probability [45], [70] allows (6) to be
rewritten using the per-class discrete formulation,

P (ci|x) =
P (x|ci)P (ci)
K∑
i=1

P (x|ci)P (ci)
, (7)

where K is the number of classes.
Inference can then be made on the test set regarding C

given the dependence with x i.e., the value of the posterior
probability (7) of C is determined after observing the value
of x. Once we have specified the likelihood distribution
p(x|C), and the priors, the proposed ML/MAP prediction
layers can be used to replace a Softmax or a Sigmoid
function in order to output the object classification scores
in a probabilistic way. Thus, the Maximum Likelihood
(ML) and Maximum a-Posteriori (MAP) functions can be

defined as prediction layers at the testing time, and they
are expressed by

ML = argmax
i

(P (x|ci) + λ)
K∑
i=1

(P (x|ci) + λ)
, (8)

MAP = argmax
i

(P (x|ci)P (ci) + λ)
K∑
i=1

(P (x|ci)P (ci) + λ)
, (9)

where λ is an additive smoothing parameter to avoid the
“zero” probability issue [71]–[73], to indirectly mitigate the
overconfidence problem, and at the same time incorporate
some unpredictable level of uncertainty in the final predic-
tion. The parameter λ is not too high or too small, and
does not depend on any specific prior information, but
its value has to preserve the original distribution ‘shape’
without degrading the final result.

Notice that, although the Bayesian formulation takes
distributions into account, ML and MAP layers compute
a single estimate rather than a distribution.

B. Estimating the Likelihood and Prior Probability
The non-parametric probabilistic density distribution

chosen here to obtain the likelihood function comes from
normalized histograms3 of the logit-layer’s scores for each
class on the training dataset, as shown in Fig. 5

During the testing phase (i.e., on the test set), the logit-
layer score per example (or object) will then be matched
to the per-class histogram, as illustrated in Fig. 5.

Unlike the likelihood function estimation, the prior
probability distribution has been modelled by a Normal.
Thus, the parametric estimation depends on the mean and
the variance obtained from the logit scores as well (this
time it is a continuous pdf as shown in Fig. 6). Therefore,
the prior is P (ci) ∼ N (x|µ, σ2) with mean µ and variance
σ2 computed per class.

The purpose of considering a discrete (normalized his-
togram) and a continuous pdf to model the likelihood
and the a-prior probability respectively, is motivated from
the perspective of complementary information that can be
extracted from the same data.

Algorithm 1 summarizes the steps of the proposed
methodology to computes ML and MAP layers scores
of each class from the logit-layer values.Note that some
detection models consider the objectness score (OS) pa-
rameter (parameter obtained during training), according
to YOLOV4. OS is a parameter which defines whether
a region in the image (grid) contains an object or not.
For each grid in the image, the network provides a set of
bounding-boxes, having each bounding-box an objectness
score and a classification score. From an objectness thresh-
old, the network defines which is the best bounding box
that represents a given object. In other words, OS is used
to evaluate which bounding box centered on a grid best

3The importance of normalizing the histogram is to ensure that
the sum of the probabilities is one.
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Logit layer-Testing

𝑺𝑼𝑴𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 = 0.0651 + 0.0151 + 𝟎. 𝟏𝟓𝟓𝟏 = 0.2353

𝑴𝑳 =
0.0651

0.2353

0.0151

0.2353

𝟎. 𝟏𝟓𝟓𝟏

𝟎. 𝟐𝟑𝟓𝟑

𝜎 = ሾ3.1578

𝑃𝑒𝑑

27.3562

𝐶𝑎𝑟

ሿ3.6532

𝐶𝑦𝑐

𝑴𝑳 = ሾ0.2767

𝑃𝑒𝑑

0.0642

𝐶𝑎𝑟

ሿ𝟎. 𝟔𝟓𝟗𝟏

𝐶𝑦𝑐

Likelihood = 0.0651 0.0151 𝟎. 𝟏𝟓𝟓𝟏

Edge: 27.15 – 29.45
Value: 0.0151

Edge: 2.15 - 3.45
Value: 0.0651

Edge: 3.22 – 3.88
Value: 0.1551

PDF-Training PDF-Training PDF-Training

Fig. 5: Getting the probability values from normalized-histograms used to model the distributions of the logits on the
training set.
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Fig. 6: Gaussian distributions to estimate the prior prob-
abilities for the three training classes (car, cyclist and
pedestrian).

represents the detected object [10]. By multiplying OS
with the classification score, the resulting is the confidence
level of the detected object. Thus, in the formulation of
YOLOV4, the final process of defining an object’s class
is to multiply the objectness score with the classification
score. Therefore, the proposed methodology maintains

the same way of classifying an object according to the
detection algorithm being analyzed. In other words, in the
case of YOLOV4, the proposed methodology replaces the
classification scores obtained by the Sigmoid function by
the scores from the ML and MAP layers i.e., multiplying
the ML and MAP scores by the objectness scores.

IV. OBJECT DETECTION
Currently, the state of the art in pattern recognition

for autonomous driving and robotics is closely related to
object detection using deep models, which has become
one of the most important areas of computer vision (in-
cluding LiDAR-based systems). The primary purpose of
a detector is to estimate the object’s position, size and
class/category. A 2D detector estimates bounding boxes
considering the coordinates of the center, width and height
of the objects’ hypothesis. Additionally, detectors estimate
the classification score and predicted class. In plain words,
the recent detectors rely on a series of steps to define the
bounding boxes and the classification scores depending on
comparisons across thresholds between predicted output
and ground-truth (training stage), as well as objectness
score threshold, intersection over union (IoU), non-max
suppression (NMS), and class threshold.

Among the various detection models, we have chosen
the YOLOV4 [10], published in 2020, which at the time
has reached the state of the art performance on the COCO
dataset, while achieving shot inference time. The structure
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Algorithm 1: ML and MAP Layers

Input:
• Densities (normalized histogram and Gaussian

distribution on the training set - logit-layer
values, Fig. 5);

• Logit-layer values on the test set (Test);
• Additive smoothing (λ);
• Number of classes (K).

Output:
• Maximum Likelihood (ML);
• Maximum a-Posteriori (MAP).

Normalized frequency histograms:
hc← histogram(Train(K));
Edge values of each bin of each histogram:
BinLow ← BinEdgesLow(hc);
BinHigh← BinEdgesHigh(hc);
Frequency values of each of the histograms:
V ← V alues(hc)
Getting the likelihood:
P (x|C)← zeros(size(Test),K);
for k ← 1 : size(Test) do

for cl← 1 : K do
for i← 1 : size(BinV alues) do

if (BinLow(cl, i) 6 Test(k, cl))
& (Test(k, cl) < BinHigh(cl, i)) then

P (x|C)(k, cl)← V (cl, i)
end

end
end

Getting the Prior:
P (C)← N (Test|[µTrain, σ2

Train]);
Calculating the ML and MAP:
ML← P (x|C) + λ;
ML← (ML/sum(ML)) ∗ObjectnessScore;
MAP ← P (x|C)P (C) + λ;
MAP ← (MAP/sum(MAP )) ∗ObjectnessScore;

of YOLOV4 and the proposed methodology is illustrated
in Fig. 7.

The advantages of YOLOV4, over previous versions
and other existing object detection algorithms, are that
YOLOV4 tries to avoid overconfident results by using data
augmentation (CutMix and Mosaic), class label smooth-
ing, and dropout in the convolution layers (DropBlock reg-
ularization), which then influence the classifier accuracy.
Also, unlike many object detection algorithms, YOLOV4
uses the Mish activation function instead of the tradi-
tional functions (e.g., ReLU, ELU, SeLU, PReLU, Swich).
Additionally, the cost function of YOLOV4 incorporates
overlap area, central point distance and aspect ratio [74],
as well as cosine annealing scheduler (learning rate) [75],
a modified cross-iteration batch normalization [76], self-
adversarial training [10]. Finally, the Sigmoid function
is employed to get the final bounding boxes and the

respective classification scores.
Even though YOLOV4 considers strategies to reduce

overconfident predictions, our results demonstrate that a
significant number of false positives are predicted with
high score values, which demonstrates that the prediction
layer using the Sigmoid function did not mitigate overcon-
fident results enough, as shown in Fig. 8.

For object detection with 3D point clouds, we choose
the lightweight yet effective SECOND [77] detector as the
baseline. SECOND extracts features by encoding voxel-
based 3D data with submanifold sparse 3D convolution
layers [77]. The 3D features are converted to Bird’s Eye
View (BEV) representations via high compression, where
the height in the metric space is flattened into the feature
channels. Standard 2D convolutions are used to generate
BEV features. The outputting feature map is passed to
the single-stage anchor-based detector head for classifi-
cation and bounding box regression. Compared to the
sophisticated models with more structure information, the
voxel-based SECOND [77] has a much faster runtime with
comparable performance.

As shown in Fig. 9, SECOND [77] outputs a similar dis-
tribution, in a lato sensu perspective, of the true positives
as YOLOV4, while giving distinct and more “aggressive”
decisions on the false positives.

A. RGB and LiDAR Modalities

The proposed probabilistic methodology is validated
through multi-sensory 2D and 3D object detection on the
KITTI dataset, considering for YOLOV4 detector RGB
images, range-view (RaV), and reflectance-view (ReV)
maps modalities, as showed in Fig. 10, and 3D point clouds
for SECOND detector. The modalities (RaV), and (ReV)
were obtained by projecting the 3D−LiDAR point clouds
in the 2D image plane followed by an upsampling step
using a tailored bilateral filter implementation, expressed
in (10), where r̂0 is the upsampled pixel [78]

r̂0 = 1
W

n∑
i=1

Gσs(||c0 − ci||)Gσr (|r0 − ri|)ri, (10)

where W =
n∑
i=1

Gσs
(||c0 − ci||)Gσr

(r0 − ri) is a scaling

factor that ensures the output sums to one, Gσs
weights

the point ci inversely proportional to a distance (we used
the Euclidean distance), and Gσr weights the sampled
points from their intensity values ri. Gσs and Gσr were
considered to be of the form

Gσs
= 1

1 + (||c0 − ci||)
, (11)

Gσr
= 1

1 + (|r0 − ri|)
. (12)

In fact, the upsample is for estimating points at posi-
tions where there are no projected points. The estimate
of such points can be performed by considering a mask
Cmask of size c × c pixels, and using the sliding window
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Logits layersInput-608x608 Logits processing

Training

IoU and NMS

38x38x3
76x76x3

19x19x3

Yolo V4

IoU – Intersection over Union
NMS – Non-Maximum Supression

Convolutions

Detection 
scores

Testing

𝑃(𝑿|𝐶𝑖)

σ𝑃(𝑿|𝐶𝑗)

ML Function

MAP Function

𝑃(𝐶𝑖)𝑃 𝑿 𝐶𝑖
σ𝑃(𝑿|𝐶𝑗)𝑃(𝐶𝑗)

Detection
scores

Classes Scores

Prior

Likelihood

Scores before the 
Sigmoid function

Likelihood

Prior

Fig. 7: YOLOV4 representation with logit and Sigmoid (SG) layers, Maximum Likelihood (ML) and Maximum a-
Posterior (MAP) functions. After training, the predicted values from the Sigmoid Layer were replaced by the scores
from ML and MAP functions. Notice that the YOLOV4 was not trained or re-trained with the ML/MAP functions.

(a) Score distributions of the true positive objects.

(b) Score distributions of the false positive objects.

Fig. 8: Distributions of the YOLOV4’s classification scores
for car, cyclist, and pedestrian classes, considering RGB
modality.

principle. The sampled point r̂0, located at the center of
Cmask, is weighted by the number of neighboring points
defined by the mask size i.e., the formulation combines
the intensity and distance values of a pixels group which
are inside the mask Cmask, being c0 = (ch, cv) the mask
center, which is the localization of interest, and r̂0 the
value to be estimated at c0 from the ri (RaV or ReV),
where ch and cv are the positions in the horizontal and
vertical directions respectively, as in Fig. 11.

V. Experiments and Results
In this section, we evaluate quantitatively the proposed

approach to reduce overconfident predictions through the
ML and MAP layers, considering Gaussian distributions,
and normalized histograms, to model the prior and like-
lihood respectively. The approach depends of some “hy-
perparameters” that interfere in the results achieved by
the ML and MAP layers. The additive smoothing λ (c.f.

(a) Score distributions of the true positive objects.

(b) Score distributions of the false positive objects.

Fig. 9: Distributions of the SECOND’s classification scores
for car, cyclist, and pedestrian classes, considering LiDAR
modality (3D LiDAR).

Sect. III-A), the chosen densities e.g., the numbers of bins
of the normalized histograms (described in Sect. III-B
above), are design dependent parameters and hence are
subjected to the problem in hands. Here, the choice of
these parameters has been made experimentally.

The experiments conducted in this Section to assess
the proposed technique and to support comparison studies
make use of the KITTI ‘Object Detection’ dataset 4, both
the RGB (camera) and the LiDAR modalities (necessary
for the RaV, ReV, and 3D point cloud). We have split
the original training set by considering 3367 frames for
training, 375 for validation, and then the remaining 3739
frames comprise the actual test set. RGB, RaV, and ReV
modalities were trained with the same hyperparameters
(learning rate, image size, anchors, strides, IoU threshold,
etc.) for YOLOV4, while the 3D point clouds were trained
directly via the SECOND detector.

4http://www.cvlibs.net/datasets/kitti/eval 3dobject.php
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(a) RGB modality.

(b) Projection of the 3D point clouds in the 2D image plain.

Fig. 10: The 3D cloud points were obtained from the
Velodyne 64 sensor and then projected onto the image
plane.

(a) RaV map generated from LiDAR’s depth data.

(b) ReV map using the LiDAR’s reflectance data.

Fig. 11: Maps generated by bilateral filtering using sliding
window with size 13× 13.

A. General Performance and Overconfidence
The results on the per-modalities test sets are shown

in figures 12, 13, and 14 through precision-recall curves
(Pr-Rc) for YOLOV4, while the figures 15, 16, and 17
correspond to the experimental results achieved with the
SECOND detector. Note that the curves are presented to
the three different difficulty levels (easy, moderate and
hard), according to the KITTI dataset methodology for
object detection.

In addition to the results given by the Pr-Rc curves,
we further present a quantitative comparison, between the
baseline (designated by Sigmoid, or simply SG) and the
proposed ML, and MAP layers, using the areas under the
curve (AUC), as shown in tables II and IV.

Based on the Pr-Rc curves using YOLOV4, it is possible
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Fig. 12: Precision-recall curves for car, cyc. and ped.
classes using the RGB modality, with λML = 1.6 × 10−6,
BinsML = 22, λMAP = 1.0× 10−8, and BinsMAP = 24.
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Fig. 13: Precision-recall curves for RaV modality, with
λML = 1.3 × 10−3, BinsML = 20, λMAP = 1.7 × 10−5,
and BinsMAP = 24.
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Fig. 14: Precision-recall curves for ReV modality, with
λML = 1.3 × 10−3, BinsML = 23, λMAP = 8.0 × 10−5,
and BinsMAP = 5.
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TABLE II: AUC, in %, for the baseline method denoted by SG, and the proposed approaches (ML and MAP layers). The
results refer to the true positives and have been achieved by the YOLOV4 implementation using 2D representations.

RGB Modality
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 75.48 75.93 75.95 Car 70.67 70.90 71.00 Car 63.04 63.36 63.36
Cyc 45.47 47.20 47.20 Cyc 45.47 46.83 46.99 Cyc 40.94 42.09 42.22
Ped 61.84 63.05 63.05 Ped 52.27 51.25 51.24 Ped 45.65 44.52 44.52

RaV Modality
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 82.99 81.13 83.21 Car 71.07 72.16 71.78 Car 62.97 62.80 63.53
Cyc 40.48 44.80 44.73 Cyc 32.28 32.74 32.43 Cyc 28.13 30.39 29.99
Ped 66.27 66.45 66.60 Ped 52.56 52.22 52.22 Ped 45.57 44.93 44.96

ReV Modality
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 74.42 72.68 73.92 Car 58.13 56.14 56.35 Car 50.83 50.69 50.52
Cyc 30.80 31.00 31.25 Cyc 24.65 26.46 26.86 Cyc 22.73 24.21 24.53
Ped 43.51 44.35 44.26 Ped 33.62 35.44 35.45 Ped 29.32 30.88 30.87
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Fig. 15: Precision-recall curves considering 2D bounding
boxes after SECOND detector training.
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Fig. 16: Precision-recall curves using the SECOND detec-
tor to detect 3D bounding boxes.

to observe that the proposed probabilistic inference (ML,
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Fig. 17: Precision-recall curves considering BEV detec-
tion.

and MAP layers) outperformed the baseline (SG layer)
in almost all modalities and for most of the difficulty
levels, particularly for the cyclist class, which has the
smallest amount of objects in both training and test sets.
To facilitate the comparison analysis, Table II contains
the AUC from these experiments, where the best achieved
detection performances are highlighted in bold. The AUC
metrics show that ML and MAP achieved very satisfactory
performance for different levels of difficulties and classes,
as well as for different modalities. Additionally, the graphs
in figures 18 and 19 show, when using the YOLOV4
detector, the distribution of the output-scores for the
proposed approach and the baseline (i.e., using Sigmoid).
We can see that the baseline results achieved by YOLOV4
(shown in the first row) present many false positives (FP)
with overconfident scores, while the ML and MAP layers
have reduced the overconfidence on the FPs, whereas
the performance on the true positives (TP) is relatively
unaffected, according to Table III.
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TABLE III: The average of the scores after the proposed approach, considering the results from the YOLOV4.

True
Positives

Modality RGB RaV ReV
Approach SG ML MAP SG ML MAP SG ML MAP
Average 0.947 0.950 0.950 0.974 0.940 0.955 0.970 0.934 0.951
Variance 0.007 0.006 0.006 0.004 0.010 0.011 0.005 0.011 0.012

False
Positives

Modality RGB RaV ReV
Approach SG ML MAP SG ML MAP SG ML MAP
Average 0.788 0.806 0.806 0.867 0.780 0.786 0.872 0.795 0.817
Variance 0.013 0.013 0.013 0.015 0.037 0.044 0.014 0.034 0.030

The SECOND detector receives 3D point-clouds as
input thus, besides 3D detection, we have converted the
3D representation to 2D and Bird’s Eye View (BEV ) for
completeness of the results and benchmarking analysis. At
first glance, the ML, and MAP approaches when applied
to SECOND demonstrate to be less effective in improving
the detection performance. This is due to the amount of
high-scoring (i.e., highly confident) false positives is small
in SECOND, as can be analyzed in Fig. 20 - this is more
evident on the car category. Conversely, a bigger overlap of
a relatively less distinguishable score range (0.4-0.6) can
be improved by reweighing the scores. In this way, the
probabilistic approach proposed in this work was applied
to perform a ‘smoothing’ on the classification scores to
mitigate overconfidence, as can be seen from Fig. 20,
regarding the pedestrian class. Overall, we can say that the
results achieved by the ML and MAP layers for the car and
cyclist categories showed quite similar results compared
to the baseline. Such results can be seen in Table IV,
this implies that the approach may compromise slightly
the overall performance. The ML and MAP layers were
compiled considering λML = 5 × 10−3, BinsML = 22,
λMAP = 1× 10−4, and BinsMAP = 24.

The proposed technique for the SECOND detector tends
to perform better on the ‘hard’ level objects. We can
conclude that, because the baseline implementation on
SECOND does not attained overconfident behaviour, as
shown by the results, the proposed approach degraded a
bit the overall performance for that particular detector
but, on the other hand, it smoothed the scores for the false
positives (which is very desirable in autonomous driving),
according to Table V. Furthermore, the proposed approach
has the advantage of giving probabilistic interpretation to
the detectors.

As the SECOND detector provides a relatively regu-
larized scores across the classes, the ML and MAP ap-
proaches have limited improvement by eliminating the
high-scoring FPs. However, the probabilistic approach is
able to distinguish the ambiguous scores from the pedes-
trian class. This can be shown by the more overlap score
range of true and false positive objects (Figures 15, 16, 17,
and 20).

B. Calibration Error
Typically, the calibration of probabilistic predictions

(which relates the model’s prediction scores to the true
correctness likelihood [79]) is analyzed by the Expected

Calibration Error (ECE) metric [31]. The ECE is obtained
from a histogram with M bins, where each bin contains
a group of scores (predicted values). Each object with
its respective classification score is allocated within a
bin, according to the prediction confidence i.e., maximum
prediction value. Each bin Bm is defined through a range
Im =

( (m−1)
M , mM

]
, where m = 1, ..,M . The average

accuracy - acc(Bm) - is obtained for each bin Bm, as well
as the average confidence conf(Bm) = 1

|Bm|
∑
i p̂i, where

p̂i is the confidence for classified object i and |Bm| is the
amount of objects in each bin Bm. From the acc(·) and
conf(·), the ECE is obtained according to (13):

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|, (13)

where n is the total the number of objects. Thus, the
proposed approach can be compared quantitatively with
the baseline through the ECE, as shown in Table VI
(RGB, RaV and ReV modalities) and Table VII (3D
Point clouds). Based on the results shown in Table
VI, considering the YOLOV4 detector, we can see that
the ECE was reduced for the proposed methodology.
However, for the SECOND detector applied to point-cloud
representation, the achieved ECE remained close to the
baseline - as shown in Table VII.

VI. Concluding Remarks
Many machine learning models, particularly deep learn-

ing ones, have the tendency of regarding the values of the
detected objects’ scores as being a degree of confidence (or
related to a probability) without any level of uncertainty
i.e., many deep models are not formulated to provide un-
certainties associated with the predicted results. One way
to ensure that the classification scores of detected objects
can be interpreted as probabilistic values or have some
level of uncertainty is through calibration/regularization
techniques. However, the developments of such techniques
are quite challenging, for instance because there is no
ground truth available on uncertainty data for - and it
is still an open problem.

The state-of-the-art formalism to capture model un-
certainties (calibration/regularization techniques), during
training or at the time test phase, aim to ensure confi-
dence measures for the predictions of the models. In this
way, this paper proposes a formulation considering the
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TABLE IV: AUC for the SG, ML and MAP layers, using the SECOND detector, considering the true-positive objects.

2D Detection
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 96.88 93.09 96.57 Car 95.42 93.61 95.24 Car 93.02 91.89 92.88
Cyc 92.66 91.91 92.44 Cyc 80.27 79.65 80.14 Cyc 76.65 76.11 76.52
Ped 70.77 67.22 70.87 Ped 67.74 65.35 67.78 Ped 64.09 62.36 64.16

3D Detection
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 91.80 79.40 87.27 Car 82.86 75.57 80.32 Car 79.86 75.16 78.15
Cyc 84.21 81.89 82.88 Cyc 67.99 66.59 67.31 Cyc 64.03 62.80 63.50
Ped 57.19 51.45 57.11 Ped 52.39 48.60 52.41 Ped 47.42 44.43 47.38

BEV Detection
Easy Moderate Hard

Case SG ML MAP Case SG ML MAP Case SG ML MAP
Car 93.67 86.44 91.55 Car 89.81 85.64 88.49 Car 88.90 86.24 88.02
Cyc 89.30 87.24 88.59 Cyc 72.41 71.17 72.04 Cyc 68.14 67.07 67.85
Ped 61.98 57.26 62.07 Ped 57.82 54.83 57.89 Ped 53.39 51.11 53.41

TABLE V: The average of the scores after the proposed approach, considering the results from the SECOND detector
for 3D point clouds.

True
Positives

Approach SG ML MAP False
Positives

Approach SG ML MAP
Average 0.860 0.570 0.310 Average 0.258 0.161 0.091
Variance 0.030 0.017 0.008 Variance 0.026 0.017 0.005

TABLE VI: ECE on the different modalities, when using
YOLOV4 as detector.

RGB Modality
Method: SG (baseline) ML MAP

ECE 0.007 0.005 0.005
RaV Modality

Method: SG (baseline) ML MAP
ECE 0.036 0.013 0.027

ReV Modality
Method: SG (baseline) ML MAP

ECE 0.031 0.013 0.031

TABLE VII: ECE for the detector SECOND - 3D point
clouds.

3D - PointCloud
Method: SG (baseline) ML MAP

ECE 0.196 0.323 0.208

concepts of Maximum Likelihood (ML) and Maximum a-
Posteriori (MAP) to reduce the overconfidence of detected
false positive objects from the classification scores i.e.,
the ML/MAP layers are be able to reduce confidence in
incorrect predictions. The formulation takes into account
a probabilistic inference through two models, one being
non-parametric (normalized histogram) and the other is
parametric (Gaussian density to model the priors for the
MAP).

As a way to present the efficiency of the proposed prob-
abilistic inference approach, this work considered different
modalities, as RGB imagens, RaV, and ReV maps, as
well as 3D point clouds data i.e., datasets with different
characteristics. In the case of RGB images, the character-

istics are obtained directly from the camera, while RaV
and ReV maps are obtained from depth (range-view) and
intensity (reflectance-view) data, respectively. In addition,
this paper has considered the detection of objects directly
on 3D point clouds, as input, processed by a LiDAR-based
pipeline - SECOND [77].

The results achieved by the proposed approach are very
satisfactory, specially for the cyclists class (for YOLOV4),
and pedestrian case (for SECOND), as evidenced by the
improvements in general performance (evaluated with the
Pr-Rc curves and AUC), reduction of overconfidence (il-
lustrated in Figures 18, 19 and 20) and a general reduction
in the calibration error (evaluated using the ECE). Finally,
a key advantage of the proposed approach is that there is
no need to perform a new network training, that is, the
approach has been applied in already trained networks.
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(a) RGB modality.

(b) RaV modality.

(c) ReV modality.

Fig. 18: Score distributions considering TP objects from
YOLOV4 detector.

(a) RGB modality.

(b) RaV modality.

(c) ReV modality.

Fig. 19: Score distributions considering FP objects from
YOLOV4 detector.



14

(a) TP objects.

(b) FP objects.

Fig. 20: Score distributions considering objects from SEC-
OND detector.
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