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Abstract

LiDAR and camera are two modalities available for
3D semantic segmentation in autonomous driving. The
popular LiDAR-only methods severely suffer from inferior
segmentation on small and distant objects due to insufficient
laser points, while the robust multi-modal solution is
under-explored, where we investigate three crucial inherent
difficulties: modality heterogeneity, limited sensor field
of view intersection, and multi-modal data augmentation.
We propose a multi-modal 3D semantic segmentation
model (MSeg3D) with joint intra-modal feature extraction
and inter-modal feature fusion to mitigate the modality
heterogeneity. The multi-modal fusion in MSeg3D consists
of geometry-based feature fusion GF-Phase, cross-modal
feature completion, and semantic-based feature fusion
SF-Phase on all visible points. The multi-modal data
augmentation is reinvigorated by applying asymmetric
transformations on LiDAR point cloud and multi-camera
images individually, which benefits the model training
with diversified augmentation transformations. MSeg3D
achieves state-of-the-art results on nuScenes, Waymo, and
SemanticKITTI datasets. Under the malfunctioning multi-
camera input and the multi-frame point clouds input,
MSeg3D still shows robustness and improves the LiDAR-
only baseline. Our code is publicly available at https:
//github.com/jialeli1/lidarseg3d.

1. Introduction
Scene understanding for safe autonomous driving can

be achieved through semantic segmentation using camera
2D images and LiDAR 3D point clouds, which densely
classifies each smallest sensing unit of the modality. The
image-based 2D semantic segmentation has been developed
with massive solid studies [12, 34, 61, 63]. The camera
image has rich appearance information about the object but
severely suffers from illumination, varying object scales,
and indirect applications in the 3D world. Another modal-
ity, LiDAR point cloud, drives 3D semantic segmentation
with laser points [1, 3, 11, 37]. Unfortunately, irregular

laser points are too sparse to capture the details of objects.
The inaccurate segmentation appears especially on small
and distant objects. The other under-explored direction is
using multi-modal data to increase both the robustness and
accuracy in 3D semantic segmentation [67].

Despite the conceptual superiority, the development of
multi-modal segmentation model is still nontrivial, lagging
behind the single-modal methods [27]. We rationally
attribute the difficulties to the three following aspects. i)
Heterogeneity between modalities. Due to sparse points
and dense pixels, point cloud feature extractors [14, 31]
and image feature extractors [15, 44, 47] are developed
distinctly. Separate intra-modal feature extractors are
used to address the heterogeneity [13, 20, 25, 42, 51],
but the lack of joint optimization leads to suboptimal
features from irrelevant network parameters. ii) Limited
intersection on the field of view (FOV) between sensors.
Only the points falling into the intersected FOV are
geometrically associated with multi-modal data, while
simply considering the intersected multi-modal data is not
sufficient to be practically applicable. Performing fusion
solely in the limited FOV intersection like [20,67] results in
unsatisfactory overall segmentation performance as shown
in Fig. 1. iii) Multi-modal data augmentation. For
example, PMF [67] uses only several 2D augmentations
for spatially aligned point cloud projection image and
camera RGB image. Under the constraint of modal
alignment or 2D representation of point cloud, the multi-
modal segmentation works [20, 25, 67] discard many useful
and critical point cloud augmentation transformations with
sacrificed perception performance [36, 48].

Accordingly, we propose a top-performing multi-modal
3D semantic segmentation method termed MSeg3D, in-
herently motivated by addressing the aforementioned three
technical difficulties. i) Unlike separately extracting modal
features in existing methods [13, 25, 42, 51], we jointly
optimize intra-modal feature extraction and inter-modal
feature fusion to drive maximum correlation and com-
plementarity between heterogeneous modalities. ii) To
overcome the disregarded multi-modal fusion outside FOV



intersection [25, 67], we propose a cross-modal feature
completion and a semantic-based feature fusion phase
SF-Phase to collaborate with the geometry-based feature
fusion phase GF-Phase. For points outside the FOV
intersection, the former completes the missing camera
features using predicted pseudo-camera features, under the
explicit guidance of cross-modal supervision. For all the
points outside and inside the FOV intersection, the later SF-
Phase leverages the multi-head attention [41] to model the
semantic relation between point and interested categories
so that we can attentively fuse the semantic embeddings
aggregated from all the visible fields to each point. iii) The
challenging multi-modal data augmentation is reinvigorated
by being decomposed as the asymmetric transformations
in the LiDAR, camera worlds, and local cameras, which
enables flexible permutation to enrich training samples.

As the proposed components accumulated in Fig. 1,
mIoU and mIoU1 are significantly increased while the gaps
between mIoU and mIoU1 are gradually decreased. Our
contributions are four-fold: i) We propose a multi-modal
segmentation model MSeg3D with joint intra-modal feature
extraction and inter-modal feature fusion, achieving state-
of-the-art 3D segmentation performance on the competitive
nuScenes [3], Waymo [37], and SemanticKITTI [1] datasets
for autonomous driving. The proposed framework won 2nd

place in the Waymo 3D semantic segmentation challenge
at CVPR 2022. ii) We propose a cross-modal feature
completion and a semantic-based feature fusion phase. To
our best knowledge, it is the first time to address the
overlooked and inapplicable multi-modal fusion outside the
sensor FOV intersection. iii) By applying augmentation
transformations asymmetrically on point cloud and images,
the proposed asymmetrical multi-modal data augmentation
significantly increases the diversity of multi-modal samples
for training model with robust improvements. iv) Extensive
experimental analyses on the improvement and robustness
of our method clearly investigate our designs.

2. Related Work
LiDAR-only 3D Semantic Segmentation is promoted

by SemanticKITTI [1], nuScenes [3], and Waymo [37]
datasets. The methods follow the U-Net [33] architecture,
but progress from three point cloud representations. i)
Point. The point methods derived from PointNet++
[31] cost heavy computation on sampling and gathering
disordered neighbors, especially on a large-scale LiDAR
point cloud. The major point methods [17, 32, 39, 53]
perform well on small synthetic point cloud [56] rather
than sparse LiDAR point cloud. ii) 2D images. PolarNet-
series [62, 65] and others [26, 40, 46, 49] project 3D point

1In the following text, mIoU1 denotes the segmentation performance
evaluated on only the points inside FOV intersection by excluding the
points outside like PMF [67] and other methods [20, 25].
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Figure 1. Performance (mIoU and mIoU1) evaluation on nuScenes
[3] (a) and Waymo [37] (b) validation sets. All points are
distinguished as points inside the sensor FOV intersection (points
inside) and points outside the sensor FOV intersection (points
outside). We cumulatively add (“+”) the proposed components.

cloud as 2D images in bird’s-eye-view and range-view,
achieving efficient LiDAR segmentation with 2D CNNs.
But the 3D-to-2D projection damages 3D information
and performance. iii) 3D Voxel. The state-of-the-
art SPVNAS [38], Cylinder3D [66] and SDSeg3D [21]
explicitly explore 3D structure information in different 3D
coordinate systems, which efficiently perform 3D sparse
convolutions on non-empty voxels [8, 54]. The point
and image representations also potentially facilitate voxel
features in RPVNet [50] and AF2-S3Net [7]. We also
perform effective and efficient 3D voxel feature learning.

Multi-modal 3D Semantic Segmentation is investi-
gated in [13, 20, 25, 67] using LiDAR and camera with un-
satisfactory performance. The suboptimal feature sources
of RGB value or separately learned CNN feature are
warped into point cloud range image as additional input
features [20, 25]. Recently, PMF [67] projects point cloud
onto the image plane for fusion with image data, which
is obviously limited by camera FOV. They discard the
fusion and segmentation over points outside. Despite
the improved segmentation performance within the FOV,
another LiDAR model is required to take responsibility
for the remaining area [43, 67]. Such inequity and
inconvenience have prevented researchers from focusing
on multi-modal 3D semantic segmentation. The image
format of point cloud in the aforementioned works limits
them to do only image augmentation such as 2D flipping
rather than 3D point cloud augmentation. Instead, we
point out the necessity of point cloud augmentation for
our 3D segmentation network. Unlike another multi-modal
3D object detector PointAugmenting [43] that preserves
the point cloud augmentation while keeping the image
unchanged, our method starts from both modalities with
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Figure 2. Overview of our multi-modal 3D semantic segmentation model (MSeg3D). For multi-modal feature fusion, GF-Phase mainly
includes the Geometry-based Feature Fusion Module (GFFM), while SF-Phase consists of LiDAR Semantic Feature Aggregation Module
(SFAM), camera SFAM, and Semantic-based Feature Fusion Module (SFFM).

asymmetric transformations. Besides, 2D3DNet [13] aims
to train a 3D model using reduced 3D annotations but more
unlabeled data and additional manual 2D annotations to
train a 2D model for obtaining 2D segmentation in advance.
The 2D segmentation is also painted onto the points as the
additional input of 3D model [42]. Such a phased training
approach lacks joint 2D-3D optimization. Our motivation,
technique, and results are distinguished from them.

3. Method
3.1. Preliminary

Problem Setup. Let {Pin,Xin} be a multi-modal
sample, where Pin ∈ RNpoint×Cin denotes LiDAR point
cloud of Npoint points with Cin-dimensional input fea-
tures (e.g., 3D coordinates and reflectance) and Xin ∈
RNcam×3×Hin×Win denotes multi-camera RGB images of
Ncam cameras. Based on sensor calibration, the point with
3D coordinates (x, y, z) can be projected onto the c-th local
camera image with the pixel coordinates (c, u, v). Ncls
semantic categories for each point in the 3D point cloud.

LiDAR Feature Extraction. Given the input {Pin,Xin}
in Fig. 2, we first conduct intra-modal feature extraction
with parallel backbones for addressing the heterogeneity
between point cloud and images. Due to the superiority of
3D voxel, we perform voxel-based LiDAR feature extrac-
tion by a general sparse 3D U-Net [9,35] in Supplementary
Material (SM). The input point cloud is first divided by a
quantization step d, then grouped into non-empty voxels by
averaging the point-wise initial features of the local points
inside a voxel. These non-empty voxels Vin ∈ RNvoxel×Cin

constitute the sparse tensor input to point cloud backbone
for learning the expressive voxel features V ∈ RNvoxel×Cvoxel .

Camera Feature Extraction. To enhance the LiDAR
features with jointly-optimized camera features, we use a
trainable image backbone (HRNet-w48 [44] by default) to
non-linearly project Xin as X ∈ RNcam×Cimg×H×W , with
down-sampled shape H ×W and increased channels Cimg.

The point cloud and image backbones can be flexibly se-
lected from various mature networks. Moreover, we jointly
optimize both backbones in the overall 3D segmentation
model to learn relevant semantic feature representations
from different modalities. The expressive voxel features
V and image features X guarantee the inter-modal feature
fusion, which consists of GF-Phase, cross-modal feature
completion, and SF-Phase in the right half of Fig. 2.

3.2. GF-Phase: Geometry-based Feature Fusion

The point-centric segmentation motivates us to warp
voxel features V and image feature maps X to points in
Pin as point-wise LiDAR features Flidar ∈ RNpoint×Cvoxel and
point-wise camera features Fcam ∈ RNpoint×Cimg by using the
geometric association of LiDAR and multi-camera.

Learning Point Feature From Voxels and Pixels. We
devoxelize voxel features V as point-wise LiDAR features
Flidar = [flidar,i]

i=Npoint
i=1 ∈ RNpoint×Cvoxel for augmenting the

point-wise fusion and segmentation. Given a point, we
interpolate its point feature from the three nearest neighbor-
ing voxels [22]. For the i-th point (xi, yi, zi) with LiDAR
feature flidar,i in Flidar, we use the known point-wise image
coordinates (ci, ui, vi) to perform bilinear interpolation I
on the image feature maps X[ci] ∈ RCimg×H×W within the
ci-th local camera as Eq. 1. Zeros are temporarily padded
to those points outside the camera FOV, which allows each
point to be decorated with the Cimg-dimensional feature
fcam,i. To distinguish points outside, we set a binary mask
B of Npoint elements with 0 for them and 1 otherwise.

fcam,i = I(X[ci],
H

Hin
ui,

W

Win
vi), (1)

Fcam = [fcam,i]
i=Npoint
i=1 ∈ RNpoint×Cimg . (2)

Geometry-based Feature Fusion Module (GFFM)
first projects flidar,i and fcam,i as Cint-dimensional by
using fully connected layers Flidar and Fcam, and con-
catenates (“©”) them together for subsequent learnable



fusion using another MLP with Cgfused output channels as
fgfused,i = MLP (Flidar(flidar,i)©Fcam(fcam,i)) and Fgfused =

[fgfused,i]
i=Npoint
i=1 ∈ RNpoint×Cgfused . The GF-Phase combines

the multi-modal features as Fgfused mainly with geometry
clues, so-called the geometry-based feature fusion phase.

3.3. SF-Phase: Semantic-based Feature Fusion

Though the simple yet effective GF-Phase yields appre-
ciable performance gains inside FOV intersection through
unbiased considerations of both modalities, three draw-
backs remain to be addressed. i) The points outside still
cannot retrieve their realistic camera features. ii) The
relative importance between modalities varies in different
areas [5, 58], which is overlooked in GF-Phase. iii)
Explicit relational modeling for category-wise semantic
representations [18,19] is not available. As shown in Fig. 2,
we further propose the SF-Phase after GF-Phase. Beyond
the geometric association in euclidean space, we aggregate
LiDAR features and camera features into category-wise
semantic embeddings as Elidar and Ecam for performing
multi-modal fusion in a hidden semantic space.

LiDAR Semantic Feature Aggregation Module (Li-
DAR SFAM) starts from voxel features V and ends with
aggregated Ncls LiDAR semantic embeddings in Elidar.
For Ncls categories, we assume Elidar ∈ RNcls×Cvoxel

and a distribution matrix Dlidar ∈ (0, 1)Ncls×Nvoxel . The
D[j, i] closer to 1 indicates that the i-th voxel is more
likely to belong to the j-th category than other voxels,
so that it contributes more to describing this category in
Elidar[j]. Otherwise, the i-th voxel should contributes less
to Elidar[j]. Now we can compute Elidar by matrix product
as Elidar = DlidarV. Two more steps (Eqs. 3∼4) are
required to compute Dlidar. We first predict an intermediate
segmentation D′

lidar ∈ RNvoxel×Ncls on the voxel features
V using an MLP-based auxiliary voxel segmentation head
Hvoxel. We then perform a spatial softmax among voxels to
normalize the values into (0, 1) for each category.

D′
lidar = Hvoxel(V), (3)

DT
lidar = [Softmax(D′

lidar[:, j])]
j=Ncls
j=1 . (4)

For more accurate Dlidar, we explicitly guide D′
lidar by using

the voxel segmentation supervision in Eq. 15.
Camera Semantic Feature Aggregation Module

(Camera SFAM) similarly aggregates Ecam ∈ RNcls×Cimg

from image feature maps X ∈ RNcam×Cimg×H×W using
another distribution matrix Dcam ∈ (0, 1)Ncls×Npixel

and another auxiliary image segmentation head Himg
implemented with the simple FCN head [34]. The
difference lies in that the camera SFAM is designed with all
the Npixel pixels of image feature maps across Ncam local
cameras, where Npixel is Ncam ×H ×W .

The Himg first predicts the intermediate segmentation
D′

img ∈ RNcam×Ncls×H×W by Himg(X). Note that D′
img

and X are then rearranged into D′
cam ∈ RNcls×Npixel and

X′ ∈ RNpixel×Cimg by transposing and reshaping operations.
The final camera semantic embddings Ecam in Eq. 7 is the
matrix product of Dcam and X′, where the normalized Dcam
is the result of applying spatial softmax on D′

cam as Eq. 6.

D′
img = Himg(X), (5)

Dcam = [Softmax(D′
cam[j, :])]

j=Ncls
j=1 , (6)

Ecam = DcamX
′. (7)

Note that the image segmentation annotations are un-
available for guiding the D′

img in such 3D semantic segmen-
tation datasets [3, 37]. Nevertheless, we also address this
by the cross-modal semantic supervision scheme, which is
detailed in Eq. 16 and Eq. 17.

Semantic-based Feature Fusion Module (SFFM). As
shown in the right dashed box in Fig. 2, given the input of
point-wise geometry-based fused features Fgfused, category-
wise semantic embeddings Elidar and Ecam, the SFFM first
projects them into a Csfused-dimensional space as Fproj =
Proj1(Fgfused), and E = Proj2(Elidar)©Proj3(Ecam),
respectively. Before stacking K gray blocks in SFFM,
we concatenate the projected multi-modal semantic embed-
dings together as E ∈ R2Ncls×Csfused , which can be regarded
as a dictionary that describes the typical characteristics for
each category from the perspectives of LiDAR and cameras.

In each gray block, we model the semantic relations
among all the 2Ncls category-wise semantic embeddings
using the Multi-Head Self-Attention (MHSA) [41] as
Eq. 8, where Norm indicates the LayerNorm operation.
Let Cshsa be Csfused/NH , the MHSA can be decomposed
into NH Single-Head Self-Attention (SHSA) operations
with Eh ∈ R2Ncls×Cshsa as

Emhsa = Norm(E+MHSA(E)), (8)

MHSA(E) = [SHSA(Eh)]
h=NH
h=1 , (9)

SHSA(Eh) = Softmax(
QhK

T
h√

Cshsa
)Vh. (10)

Since E includes Elidar and Ecam, the attention matrix
Softmax(

QhK
T
h√

Cshsa
) ∈ R2Ncls×2Ncls intuitively includes four

parts of relation modeling on Elidar → Elidar, Elidar → Ecam,
Ecam → Elidar, and Ecam → Ecam.

After updating E as Emhsa, we perform the further fusion
between the point-wise projected features Fproj and the
semantic embeddings Emhsa, using the Multi-Head Cross-
Attention (MHCA) for semantic relation modeling in
Eq 12 and the Feed-Forward Network (FFN ) for feature
embedding in Eq. 11, respectively.

Fsfused = Norm(Fmhca + FFN(Fmhca)), (11)
Fmhca = Norm(Fproj +MHCA(Fproj,Emhsa,Emhsa)).

(12)



Unlike Eq. 8, the MHCA in Eq. 12 sets the query Q
from point-wise feature Fproj, and sets the key K and value
V from semantic embeddings Emhsa. Thus, an attention
matrix with shape Npoint × 2Ncls is computed to atten-
tively aggregate the more important semantic embeddings
respective to individual points, beyond the paired geometric
association in GF-Phase. Following the common usages of
multi-head attention [4], K (i.e., 6) gray blocks are stacked.

Discussion on SFFM. As a useful and general technique
[4,28,47], multi-head attention [41], although not proposed
in this paper, is effectively tailored to multi-modal feature
fusion with different motivations and designs by us. i)
In Eq. 12, the MHCA enables the point-wise feature to
attend to multi-modal semantic embeddings, so that both
points inside and outside can be consistently supported
by expressive multi-modal semantic embeddings. ii) The
MHCA attention matrix computes the relative importance
of two modalities to each point, improving the unbiased
considerations of modalities in GF-Phase. iii) The MHSA
in Eq. 8 explicitly models the category-wise intra-modal
and inter-modal semantic relations, deriving the common-
ality learning. iv) The LiDAR SFAM and Camera SFAM
aggregate the long sequences of voxel features V and image
features X′ into the short sequences of Elidar and Ecam with
Nvoxel/Ncls and Npixel/Ncls times, which enables efficient
computation of the multi-head attention.

3.4. Cross-modal Feature Completion

As shown in Fig. 2, a cross-modal feature completion
module with pixel-to-point loss Lpixel2point (Eq. 13) is
set, where the point-wise pseudo-camera feature Fpcam
is mapped from the point-wise LiDAR features Flidar by
another MLP-based Hpcam as Hpcam(Flidar). In practice, we
compute the mean square error loss Lmse between the Fpcam
and Fcam of the points inside for learning from the correctly
paired cross-modal features relationship.

Lpixel2point = Lmse(BFpcam,BDetach(Fcam)). (13)
Fcam[i, :] = Fpcam[i, :] |i∈{j|B[j]=0} . (14)

Note that the points outside are ignored by the binary mask
B, which is mentioned in GF-Phase. The gradients of Fcam
are also detached for optimizing the learning of Fpcam.

We employ such a cross-modal feature completion
module due to two motivations: i) Optimizing Lpixel2point
forces LiDAR features Flidar to imitate camera features Fcam
with Hpcam, then the learned pseudo-image features Fpcam
can be switched to replace the padded zeros in Fcam as
Eq. 14 in the inference stage, which serves as the cross-
modal feature completion to enhance the feature learning.
Thus, we further reduce feature gaps between points outside
and inside. ii) Hpcam transfers rich appearance priors from
the camera branch to the LiDAR branch with an effective

consistency constraint for enhancing the intra-modal feature
learning in the training stage.

3.5. Cross-modal Semantic Supervision

Point Supervision. Let Y of Npoint elements be the
point-wise 3D semantic segmentation labels. The value
of Y[i] is in [0, Ncls − 1], where 0 denotes the ignored
category. An MLP based point segmentation head Hpoint

is built on Fsfused for the 3D segmentation prediction Ŷ =
Hpoint(Fsfused). Following [6, 21, 66], we adopt point loss
Lpoint as a combination of cross-entropy loss Lce and lovasz-
softmax loss Llovasz [2] as Lce(Ŷ,Y) + Llovasz(Ŷ,Y).

Point-to-voxel Supervision. For guiding the D′
lidar in

Eq. 3, the voxel loss Lp2v is defined as:

Lp2v = Lce(D
′
lidar,Yp2v) + Llovasz(D

′
lidar,Yp2v), (15)

where the voxel labels Yp2v of Nvoxel elements can be
determined from the labels of points in the voxel. To avoid
ambiguity in Lp2v, the label of the voxel containing points
of multiple categories is set to zero as the ignored category.

Point-to-pixel Supervision. The problem of how to
use only point labels to correctly guide D′

img (Eq. 5) is
still unsolved. For D′

img of each training sample, we
initialize a Ncam × H × W map Ypoint2pixel of all zeros
as the image segmentation label. We then project each
point onto the down-sampled image planes and retrieve the
point label Y[i] for the corresponding nearest (⟨·⟩) pixel as
Eq. 16. Although the generated image label Ypoint2pixel is
sparse, it provides sufficient supervision. In SM, Fig. S2
and Fig. S3 provide visualizations of D′

img to show that
these sparse point-to-pixel supervisions can propagate to
other regions with similar appearance, which guides D′

img
correctly. Since Ypoint2pixel is sparse, we only compute the
basic cross-entropy loss Lce in Eq. 17.

Ypoint2pixel[ci, ⟨
H

Hin
ui⟩, ⟨

W

Win
ui⟩] = Y[i], (16)

Lpoint2pixel = Lce(D
′
img,Ypoint2pixel). (17)

Total Loss Function. To jointly optimize all the
modules in the proposed segmentation model, the total loss
combines loss terms across different modalities into L as
α1Lpoint + α2Lp2v + α3Lpoint2pixel + α4Lpixel2point, where
α1 ∼ α4 are set as 1.0, 1.0, 0.5, 1.0 to balance loss terms.

3.6. Asymmetric Multi-modal Data Augmentation

The segmentation output and our multi-modal fusion
mechanism are point-centered. In Eq. 1 and Eq. 16,
the point and the pixel always can be bridged by the
coordinate pair of (xi, yi, zi) and (ci, ui, vi), as long as
we pre-compute the coordinate pairs and keep the order of
coordinate pairs among all the points in synchronization.
With this ordering constraint, we have the flexibility



Table 1. Data augmentation transformations on LiDAR (L) point
cloud and camera (C) images. We only treat random flipping as a
naive symmetric transformation that can be simply applied to both
modalities simultaneously.

L-only

• Global rotation around the Z axis with a random angle in
[
−π

4
,+π

4

]
.

• Global translation with a random vector (∆x,∆y,∆z) sampled
from a Gaussian distribution with mean zero and the standard deviation 0.5.
• Global scaling with a random scaling factor in [0.95, 1.05].
...

Symmetric • Random flipping along the X,Y axis with probability 0.5.

C-only

• Scaling with a random ratio in [1.0, 1.5].
• Horizontal rotation with a random angle in [−1◦, 1◦].
• Random cropping with a size (Hin,Win).
• Color jitter from torchvision [30] with random parameters of

0.3 for brightness, 0.3 for contrast, 0.3 for saturation, 0.1 for hue.
• JPEG with a random compression ratio in [30, 70] and probability 0.5 [64].
...

to decouple multi-modal data augmentation: i) We can
preserve all the LiDAR transformations in Tab. 1 with the
images and the coordinates (c, u, v) unchanged. ii) Once
coordinates (c, u, v) are synchronously transformed with
images, we can further apply the camera-only transforma-
tions in Tab. 1 to images, which are asymmetric to the
LiDAR transformations. iii) We can apply independent
transformations between the images of local cameras since
the image view is naturally sliced by local cameras.

The asymmetry lies in not only the LiDAR and camera
world but also the local cameras. Thus, we significantly di-
versify the multi-modal data augmentation for 3D semantic
segmentation using the introduced camera transformations
with the preserved LiDAR transformations. More potential
transformations can be exploited beyond Tab. 1.

4. Experiment
4.1. Experimental Setup

nuScenes Dataset splits 28,130 training samples, 6,019
validation samples, and 6,008 testing samples [3, 11]. Each
nuScenes sample contains relatively sparser point cloud
of 32 beams and RGB images captured by 6 cameras:
front, front-left, front-right, back, back-left, and back-right.
Points outside are projected below the image bottom due to
different vertical FOVs of LiDAR and cameras. Following
official protocol, the Ncls is 17. Semantic segmentation
annotations are only on point clouds and not on images.

Waymo Dataset for 3D semantic segmentation includes
23,691 training samples, 5,976 validation samples, and
2,982 testing samples [37]. Each sample contains the point
cloud of 64 beams and the RGB images captured by 5
cameras: front, front-left, front-right, side-left, and side-
right. There is no rear camera on Waymo ego-vehicle, hence
more points outside unfairly increase the difficulty of multi-
modal segmentation. The Ncls is 23. Similarly, semantic
segmentation annotations are only on point clouds.

SemanticKITTI Dataset is collected by a LiDAR with
64 beams [1]. Following [10, 50, 66, 67], we use sequences

00 to 10 (excluding 08) with 19,130 training samples and
sequence 08 with 4,071 validation samples. It provides only
the images of the front-view camera. The Ncls is 20.

Evaluation Metric is the mean Intersection-over-Union
(mIoU) defined as 1

C

∑Ncls−1
c=1

TP c

TP c+FP c+FNc
, where TP c,

FP c, FN c denote the number of true positive, false
positive, and false negative predictions for the c-th category
out of Ncls−1 valid categories. Besides, nuScenes computes
another metric fwIoU by weighting category-wise IoU with
the point frequency of its category.

Settings. Although lightweight LiDRA-only baseline
models can be trained with larger batchsize and more
epochs to obtain relatively better results, we still train all
the models under the same schedule: a batch of 32 random
samples distributed on 16 Tesla V100 GPUs with 24 epochs.
More implementation details on point cloud voxelization,
network architecture, model training, and inference are all
included in SM.

4.2. Comparison with State-of-the-art Methods

Results on nuScenes. From Tab. 2, multi-modal meth-
ods counterintuitively lag far behind LiDAR-only methods.
In the top-20 submissions on nuScenes benchmark [27],
there are only four multi-modal methods. Details of Cylin-
der3D++, SPVCNN++, LIFusion, and CPFusion are not
available till submission. Our framework achieves the best
mIoU and fwIoU with multi-modal fusion mechanism and
asymmetric multi-modal data augmentation. Especially,
our method achieves superior performance on challenging
small objects such as pedestrians and traffic cones, where
the laser points are typically insufficient for LiDAR-only
methods. Our method also significantly outperforms all
public and private multi-modal submissions in Tab. 2.

Results on Waymo. We perform evaluation on Waymo
benchmark [45] in Tab. 3, where the LiDAR sensor
provides denser laser points and the multi-camera excludes
the rearview. Such denser point cloud and incomplete
camera FOV unfairly weaken the advantages of multiple
modalities. Although, our method still achieves state-of-
the-art performance using a general point cloud backbone
network [9, 35]. We believe that the performance can be
improved by incorporating stronger point cloud backbone
networks from other state-of-the-art LiDAR-only methods.

Results on SemanticKITTI. While comparisons on
the highly competitive nuScenes and Waymo datasets
validate the effectiveness of our method, Tab. 4 shows the
experimental comparison on SemanticKITTI [1]. Since
SemanticKITTI provides only front-view images, PMF [67]
evaluates the multi-modal segmentation performance on
points inside the FOV intersection. We follow PMF to
report mIoU1 on points inside in Tab. 4. Our method not
only shows improvements to the LiDAR-only methods but
also outperforms other multi-modal methods.



Table 2. Performance comparison on nuScenes testing set [27]. The modalities available on nuScenes include LiDAR (L), Camera (C),
and Radar (R). Top-1 results are in bold. *Submission entries without a published paper by the CVPR 2023 deadline of Nov 11, 2022.
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PolarNet [62] L 69.42 87.38 72.16 16.81 77.01 86.53 51.14 69.65 64.80 54.11 69.70 63.53 96.64 67.14 77.70 72.13 87.13 84.47
JS3C-Net [52] L 73.60 88.06 80.14 26.15 87.79 84.54 55.17 72.56 71.28 66.26 76.79 71.11 96.80 64.47 76.86 74.09 87.48 86.10

Cylinder3D [66] L 77.16 89.92 82.76 29.75 84.34 89.41 63.03 79.29 77.21 73.40 84.55 69.17 97.66 70.24 80.29 75.51 90.41 87.55
AMVNet [24] L 77.27 90.08 80.64 31.96 81.73 88.93 67.07 84.33 76.11 73.48 84.87 67.30 97.37 67.37 79.41 75.45 91.45 88.69
SPVNAS [38] L 77.35 89.68 80.00 29.98 91.92 90.81 64.68 78.99 75.62 70.94 81.01 74.64 97.44 69.23 79.95 76.10 89.28 87.06

Cylinder3D++ [66] L 77.86 89.93 82.76 33.89 84.34 89.41 69.63 79.42 77.26 73.40 84.55 69.41 97.66 70.24 80.29 75.51 90.42 87.55
AF2S3Net [7] L 78.34 88.51 78.87 52.21 89.93 84.17 77.42 74,30 77.32 71.95 83.88 73.78 97.13 66.47 77.51 74.01 87.69 86.80

SPVCNN++ [38] L 81.12 90.97 86.35 43.13 91.90 92.18 75.90 75.72 83.44 77.31 86.82 77.36 97.69 71.22 81.08 77.19 91.67 88.98

LIFusion∗ [27] LC 75.74 89.32 58.13 36.30 86.67 84.28 59.96 79.69 80.30 77.77 83.23 68.74 97.18 68.19 77.04 74.45 91.03 88.95
PMF [67] LC 77.03 89.34 82.11 40.33 80.94 86.42 63.72 79.22 79.75 75.86 81.17 67.05 97.28 67.69 78.05 74.48 89.94 88.46

CPFusion∗ [27] LCR 77.72 89.19 83.67 37.03 89.02 86.24 70.08 77.47 78.07 74.53 82.78 67.94 96.64 68.24 79.53 74.91 90.47 86.95
2D3DNet [13] LC 79.96 90.08 83.01 59.35 87.99 85.09 63.70 84.39 81.95 75.96 84.79 71.93 96.88 67.35 79.81 75.96 92.05 89.18

MSeg3D LC 81.14 91.35 83.11 42.46 94.92 92.01 67.10 78.58 85.66 80.47 87.53 77.32 97.74 69.82 81.22 77.83 92.35 90.07

Table 3. Performance comparison on Waymo testing set [45].
*Submission entries without a published paper by the CVPR 2023
deadline of Nov 11, 2022.

Method mIoU

LiDARMultiNet∗ [55] 71.13
HorizonSegExpert∗ [45] 69.44

SPVCNN++ [38] 67.70
PolarFuse∗ [45] 67.28
SalsaNext [40] 55.85

MSeg3D 70.51

Table 4. Performance comparison on SemanticKITTI [1]
validation set following PMF [67]. The results of the other
methods are from PMF paper.

Method Modality mIoU1

SalsaNext [10] L 59.4
SPVNAS [38] L 62.3

Cylinder3D [66] L 64.9
PointPainting [42] LC 54.5

RGBAL [25] LC 56.2
PMF [67] LC 63.9

L-Baseline L 64.8
MSeg3D LC 66.7

Table 5. Analysis on the performance gap on all points and points
inside, and the data augmentation (DA). Only GF-Phase is simply
used for multi-modal fusion (M-Fusion) here. DA includes LiDAR
DA (L-DA) and Multi-modal DA (M-DA).

LiDAR M-Fusion DA nuScenes Waymo

mIoU mIoU1 mIoU mIoU1
√

× L-DA 72.00 70.76 67.48 67.41√
GF-Phase × 68.10 76.68 59.77 64.79√
GF-Phase L-DA 71.35 77.48 60.34 65.70√
GF-Phase M-DA 72.39 78.65 63.97 67.94

Table 6. Analysis on multi-modal feature fusion of GF-Phase,
cross-modal (CM) feature completion, and SF-Phase. The
supervised CM feature completion is decomposed as Lpixel2point

(Eq. 13) and “Comp.” (Eq. 14). The gap can be formulated as
mIoU - mIoU1.

LiDAR
M-Fusion CM Feature Completion nuScenes Waymo

GF-Phase SF-Phase Lpixel2point Comp. mIoU mIoU1 Gap mIoU mIoU1 Gap√
× × × × 72.00 70.76 +1.24 67.48 67.41 +0.07√ √

× × × 72.39 78.65 -6.26 63.97 67.94 -3.97√ √
×

√
× 76.44 79.10 -2.66 67.13 69.06 -1.93√ √

×
√ √

78.28 79.10 -0.82 67.89 69.06 -1.17√ √ √ √ √
80.00 80.10 -0.10 69.63 70.19 -0.56

4.3. Ablation Study
Difficulties Arising from Multi-modality are investi-

gated in Tab. 5 from two perspectives of the performance
gap between all points and points inside, as well as the
multi-modal data augmentation. The experiments in Tab. 5
start with a vanilla variant of the multi-modal model using
the basic GF-Phase fusion without the multi-modal data
augmentation. The mIoU is relatively worse than the
mIoU1, since the geometry-based feature fusion ideally
ignores the inevitable points outside with the missing
camera features [20, 25, 67], which also motivates us to
close the performance gaps between mIoU and mIoU1 by
using the cross-modal feature completion and semantic-
based SF-Phase. Besides, in rows 2 and 1, the multi-
modal segmentation performance will be worsened if we
deprecated the augmentation transformations that cannot be
directly applied to both modalities. However, the proposed
asymmetric multi-modal data augmentation allows the
accumulation of the transformations on point cloud and
image, achieving the best performance on both datasets.

Multi-modal Feature Fusion Modules. Tab. 6 shows
that our supervised cross-modal feature completion and
SF-Phase benefit both mIoU and mIoU1 with gradually
narrowed gaps. In row 3, Lpixel2point can also bring
improvements, which indicates that transferring appearance
information from dense image to sparse point cloud is
applicable and beneficial for joint feature learning. In row
4, completing camera features with pseudo-camera features
facilitates the feature gap reduction between points inside
and outside. Eventually, the SF-Phase further narrows
the gaps between mIoU and mIoU1 to the smallest values
of 0.10 and 0.56, addressing the limitation of geometric
associations by semantic-based feature fusion. Thus, we set
the model in the last row as our final framework.

mIoU Breakdown Over Distance. Fig. 3 presents
the distance-based evaluation corresponding to the models
in Tab. 6. The LiDAR-only model degrades at long
distances due to more sparse points. Instead, the multi-
modal model in row 5 effectively alleviates the performance
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Figure 3. Distance-based mIoU evaluation on nuScenes and
Waymo validation (Val.) sets using the models in Tab. 6.

Table 7. Robustness analysis on MSeg3D by removing some
cameras as malfunction. “#Camera” denotes the number of
available cameras. “×” denotes LiDAR-only baseline.

#Camera 6 5 4 3 2 1 0 ×
nuScenes 80.00 78.69 77.62 76.69 76.01 75.44 74.47 72.00
Waymo - 69.63 69.18 68.86 68.13 68.09 68.04 67.48

Table 8. Robustness analysis on MSeg3D with multi-frame point
clouds input. “#L-Frame” is the frame number for LiDAR.

nuScenes
#L-Frame 1 10 20 25 30 40 25
Camera × × × × × ×

√

mIoU 72.00 74.66 75.37 75.77 75.28 75.15 81.12

Waymo
#L-Frame 1 5 10 15 20 30 10
Camera × × × × × ×

√

mIoU 67.48 69.18 69.45 68.88 68.78 68.64 70.20

degradation. In Fig. 3 (a) and (b), improvements between
the multi-modal model in row 5 and the LiDAR-only model
in row 1 are also increased along the distance due to
increased sparsity. The reasons why the improvement of
the multi-modal model on Waymo is not as similar as that
on nuScenes are further analyzed in Fig. 3 (c) and (d).
The Waymo point cloud has denser points, which reduces
the dependence on the image. More points outside are
distributed along different distances due to no rear cameras
on Waymo. Although more points outside hinder the
applicability of multi-modal fusion, our final multi-modal
model still yields a low-performance gap of 0.56 mIoU on
Waymo in row 5.

Robustness Against Camera Malfunction. In Tab. 7,
our MSeg3D performs properly under the unfavorable
condition of camera malfunction, and it can easily deal
with the practical situation without switching the model.

Table 9. Scalability analysis by barely varying the backbone
settings on nuScenes validation set.

Image Backbone mIoU #Params(M) Latency(s)

× 72.00 21.28 0.083
SegFormer-B0 [47] 78.14 25.33 0.204
SegFormer-B5 [47] 78.89 103.48 0.479

HRNet-w18 [44] 79.21 31.56 0.265
ResNet101 [15] 79.36 64.60 0.567
HRNet-w48 [44] 80.00 87.34 0.445

Note that even with all cameras removed, MSeg3D still
outperforms the LiDAR-only baseline, where our cross-
modal feature completion supervision provides effective
cross-modal information transfer in training.

Robustness Against Multi-frame Point Clouds In-
put. Since the densified points alleviate the sparsity,
collapsing laser points from neighboring frames usually
boosts LiDAR-only 3D perception [16, 52]. In Tab. 8,
we follow [57] collapsing multiple previous frames to
the current frame from the provided ego-vehicle motion
information. For LiDAR-only model, the improvements are
saturated with 25 and 10 frames on nuScenes and Waymo.
Under such conditions, our MSeg3D still achieves further
improvements in the last column, which shows that multi-
frame point clouds input can be an optional extension.

Complexity Scalability. From Tab. 9, a lightweight
image backbone also delivers significant performance gains
due to multi-modal input. The best-performing HRNet-w48
is our default image backbone. However, the multi-camera
image input makes the efficiency bottleneck lie in the image
backbone, which deserves in-depth study for autonomous
driving [23]. We believe that real-time image segmentation
networks such as BiSeNet [59,60] and Fast-SCNN [29] can
accelerate our approach. Overall, our MSeg3D can adapt
to complexity scalability among various backbones, which
flexibly trades off performance and efficiency.

5. Conclusion
We propose a novel multi-modal 3D semantic segmen-

tation method termed MSeg3D for autonomous driving,
based on LiDAR and multi-camera sensors. Our cross-
modal feature completion and semantic-based feature fu-
sion solve the overlooked problem, where multi-modal
fusion can occur only in the sensor FOV intersection. The
proposed asymmetric multi-modal data augmentation en-
ables the multi-modal segmentation model to be effectively
trained with reliable performance. Our method achieves
state-of-the-art performance on nuScenes, Waymo, and
SemanticKITTI. The comprehensive experiments validate
improvements and robustness. We hope that our work can
inspire further investigation into multi-modal fusion for 3D
semantic segmentation in autonomous driving.
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Multimodal virtual point 3D detection. In NeurIPS, pages
16494–16507, 2021. 4

[59] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu,
Chunhua Shen, and Nong Sang. BiSeNet V2: bilateral
network with guided aggregation for real-time semantic
segmentation. IJCV, 129(11):3051–3068, 2021. 8

[60] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. BiSeNet: Bilateral segmentation
network for real-time semantic segmentation. In ECCV,
volume 11217, pages 334–349, 2018. 8

[61] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
ECCV, volume 12351, pages 173–190, 2020. 1

[62] Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue,
Zerong Xi, Boqing Gong, and Hassan Foroosh. PolarNet:
An improved grid representation for online LiDAR point
clouds semantic segmentation. In CVPR, pages 9598–9607,
2020. 2, 7

[63] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, pages 6230–6239, 2017. 1

[64] Stephan Zheng, Yang Song, Thomas Leung, and Ian J.
Goodfellow. Improving the robustness of deep neural
networks via stability training. In CVPR, pages 4480–4488,
2016. 6

[65] Zixiang Zhou, Yang Zhang, and Hassan Foroosh. Panoptic-
PolarNet: Proposal-free LiDAR point cloud panoptic
segmentation. In CVPR, pages 13194–13203, 2021. 2

[66] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin
Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical
and asymmetrical 3D convolution networks for LiDAR
segmentation. In CVPR, pages 9939–9948, 2021. 2, 5, 6,
7

[67] Zhuangwei Zhuang, Rong Li, Kui Jia, Qicheng Wang,
Yuanqing Li, and Mingkui Tan. Perception-aware multi-
sensor fusion for 3D LiDAR semantic segmentation. In
ICCV, pages 16260–16270, 2021. 1, 2, 6, 7


	Enlighten Accepted coversheet
	296472

