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This work presents detailed investigations of implicit and adaptive mesh-free CFD modelling
approaches to alleviate laborious mesh generation in modern CFD process. A least-square
based mesh-free discretisation scheme was derived for the compressible RANS equations, and
the implicit dual-time stepping was adopted for improved stability and convergence. The spatial
accuracy and convergence properties were verified using simulations of 2D and 3D benchmark
cases. Impacts of irregular point distributions and various point collocation choices were then
systematically investigated. The mesh-free scheme showed strong flexibility accommodating
various point distributions and collocation configurations, but the modelling was sensitive to the
regularity and reciprocity of the collocation, especially in critical flow regions e.g. boundary
layers. The mesh-free flexibility was exploited for adaptative modelling, and various adaptation
strategies was assessed, combining two different point refinement mechanisms and three different
collocation search methods. Their performance was carefully evaluated using simulations of
the isentropic vortex. The adaptative mesh-free modelling was then successfully applied to
simulations of the transonic RAE 2822 aerofoil with automated point generation. A novel
weighted pressure gradient metric prioritising high gradient region with large point sizes was
introduced to drive the adaptation. The mesh-free adaptation effectively improved the shock
resolution.

I. Introduction

Modern CFD (Computational Fluid Dynamics) workflow depends on mesh generation that affects modelling
capabilities to address complex applications [1]. The meshing process is difficult due to geometric complexity,

and time-consuming due to poor automation. The user dependent meshing is also a major source of uncertainty in
modern CFD workflows. The meshing process is also iterative due to the lack of foreknowledge of the flow solution.
Approaches such as Adaptive Mesh Refinement (AMR) were proposed to tackle this problem by actively evolving the
mesh while the flow solution is in progress, but complex data structures and algorithms must be designed for efficient
implementation. Apart from the meshing difficulty, the stiff connectivity of mesh points is incompatible with problems
involving large domain motions or deformations, such as multi-body dynamics. Complementary techniques such
as sliding or overlapping grids are needed to enable the modelling, although the modelling fidelity may be severely
compromised. Meshing has hence been recognised as a major challenge in the CFD 2030 vision [1].

Mesh-free CFD methods [2–4] can be an effective solution to this mesh-associated bottleneck. Mesh-free methods
solve the governing flow equations on a set of discrete points. Without the need for connectivity, the meshing
process can be simplified as point generation and the mesh-free modelling is naturally compatible with large domain
motions/deformations. Over the past two decades, several studies on mesh-free methods [4–6] have been published , yet
relevant applications are still significantly under-developed at present. Many of the studies focused on verification of
mesh-free discretisation schemes using simple explicit time marching, while complementary research on e.g. point
cloud generation, collocation search and adaptivity has often been ignored. In many cases, the mesh-free solver would
still require connectivity information extracted from meshes to enable stable and high-fidelity simulations. These have
considerably undermined the flexibility of the mesh-free modelling and hindered its practical applications.

This paper presents a detailed investigation of mesh-free CFD modelling, with focuses on implicit time marching
and impacts of point distribution and collocation configurations. A least-square based mesh-free scheme was first
derived and its accuracy was verified using benchmark flow simulations. Random point offsets were then introduced to
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examine irregular point clouds, and various collocation configurations were also tested. Various adaptative modelling
strategies were explored combining two different point refinement mechanisms (Cartesian and mid-point) and three
collocation search methods (distance-based, optimum selection, local Voronoi). Their performance was assessed
through simulations of the isentropic vortex. Adaptive simulations were then applied to transonic simulations of the
RAE 2822 aerofoil with a weighted pressure gradient metric. The adaptation effectively improved the shock resolution.

II. Numerical Methodologies

A. Generalised Finite Differences using Least-square Approximations
The principle of Generalised Finite Differences (GFD) [] is to fit local field data with shape functions upon discrete

points, and to construct the differential operations using the shape function derivatives. Regardless of implementation
details e.g. Radial Basis Functions (RBF) or least-square fitting with various basis functions, GFD mesh-free schemes
face common challenges regarding collocation selection, flow conservation, implicit schemes, adaptation strategies etc.
The current work focuses on the least-square-based GFD as a first step to assess the mesh-free modelling performance
and adaptative simulations.

Given a function 𝜙(𝑥) with 𝑥 = (𝑥, 𝑦, 𝑧) in a Cartesian system, known at a set of 𝑛𝑖 discrete points 𝜙𝑖 = 𝜙(𝑥𝑖) in a
local cloud, and approximation function 𝜙(𝑥) can be constructed using polynomials:

𝜙(𝑥) = 𝑝(𝑥)𝑇𝛼, (1)

where 𝑝(𝑥) is the polynomial basis with 𝑚 terms and 𝛼 is a coefficient vector. By enforcing known values at local cloud
points, the coefficient vector 𝛼 can be determined through the following linear system:

𝜙(𝑥𝑖) = 𝑝(𝑥𝑖)𝑇𝛼 = 𝜙𝑖 , 𝑖 = 1, 2, ..., 𝑛𝑖 , (2)

where the vector 𝑝(𝑥𝑖) contains the basis polynomial values at point 𝑥𝑖 . The linear system is of the size 𝑛𝑖 × 𝑚 and is
not necessarily a square system. We assume that 𝑛𝑖 ≥ 𝑚 so that the system is not under-determined, in which case there
may exist many equally good solutions. In most case, we have 𝑛𝑖 > 𝑚 so that the system is over-determined.

If the point cloud is carefully design to avoid singularity, we can use the weighted least-square approach to determine
a best fit with the minimum L2 normal and solve for the coefficients 𝛼:

𝛼 = (𝑃𝑇
𝑖 𝑊𝑖𝑃𝑖)−1𝑃𝑇

𝑖 𝑊𝑖𝜙𝑖 = 𝐶𝑖𝜙𝑖 , (3)

where 𝐶𝑖 = (𝑃𝑇
𝑖
𝑊𝑖𝑃𝑖)−1𝑃𝑇

𝑖
𝑊𝑖 . The subscript 𝑖 denotes values calculated at the 𝑛𝑖 cloud points. 𝜙𝑖 is the 𝑛𝑖 × 1 vector

of known values at supporting cloud points, and 𝑃𝑖 is the 𝑛𝑖 × 𝑚 polynomial matrix. 𝑊𝑖 is a 𝑛𝑖 × 𝑛𝑖 diagonal weighting
matrix adjusting contributions from cloud points. The choice of the weighting function varies, and the present work
adopted inverse-distance weighting functions.

The computational cost of the matrix inversion is negligible due to its small size, but the point cloud topology or
collocation should be designed with caution so that the inversion operation is feasible. The choice of collocation shapes
is investigated in later sections. Inserting Equation 3 into Equation 1, the function 𝜙(𝑥) is then approximated by 𝜙(𝑥) as

𝜙(𝑥) = 𝑝𝑇 (𝑥)𝛼 = 𝑝𝑇 (𝑥)𝐶𝑖𝜙𝑖 = 𝑁 (𝑥)𝜙𝑖 , (4)

where 𝑁 (𝑥) = 𝑝𝑇 (𝑥)𝐶𝑖 is regarded as the shape function.
The partial derivatives of 𝜙(𝑥) can be determined through the approximation:

𝜕𝜙(𝑥)
𝜕𝑥

≈ 𝜕𝜙(𝑥)
𝜕𝑥

=
𝜕𝑁 (𝑥)
𝜕𝑥

𝜙𝑖 , (5)

where the partial derivatives now depend on the partial derivatives of the shape function 𝑁 (𝑥), which is written as
follows:

𝜕𝑁 (𝑥)
𝜕𝑥

=
𝜕𝑝𝑇 (𝑥)
𝜕𝑥

𝐶𝑖𝜙𝑖 , (6)

here 𝜕𝑝𝑇 (𝑥 )
𝜕𝑥

are the partial derivatives of the basis polynomial. Note that the matrix𝐶𝑖 was considered as a constant while
determining the derivatives. This is often known as the fixed least square approach and it reduces the computational cost.
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B. Spatial Discretisation of Governing Equations
With the least-square approximation of derivatives, the governing flow equations can be discretised in a manner that

is similar to the classic Finite Difference scheme. The inviscid part of the governing flow equations can be written in the
following strong form in a Cartesian frame:

𝜕𝑊

𝜕𝑡
+ ∇ · 𝐹 = 0, (7)

where 𝑊 is the vector of conservative flow variables, and 𝐹 is the convective flux term. Assuming a local point could
Ω𝑖 with the centre point 𝑖 and 𝑗 supporting points, the flow equation can be discretised at point 𝑖 through the following
approximation of the derivatives:

𝑑𝑊𝑖

𝑑𝑡
= −

∑︁
𝑗∈Ω𝑖

𝑑∑︁
𝑣=1

𝜕𝑁

𝜕𝑥𝑣
(𝑥 𝑗 )𝐹𝑣

𝑗 , (8)

where the superscript 𝑣 denotes the number of spatial dimensions from 1 up to 𝑑. However, this scheme is not stable
due to the hyperbolic nature of the governing flow equations, and upwind schemes should be used for stability. This is
realised by evaluating the flux terms at the middle point of 𝑖 and 𝑗 , which denoted as 𝑗 − 1

2 :

𝑑𝑊𝑖

𝑑𝑡
= −

∑︁
𝑗∈Ω𝑖

𝑑∑︁
𝑣=1

𝜕𝑁

𝜕𝑥𝑣
(𝑥 𝑗− 1

2
)𝐹𝑣

𝑗− 1
2
, (9)

where the flux term 𝐹𝑗− 1
2

are the reconstructed flux values at the middle point and Riemann solvers can be used here to
account for the upwind properties. In this work, the Osher’s flux scheme [7] was adopted, where the mid-point flux is
reconstructed as:

𝑓 𝑗− 1
2
=

1
2
( 𝑓 (𝑝𝐿) + 𝑓 (𝑝𝑅)) −

1
2
| �̃�(𝑝𝐿 , 𝑝𝑅) | (𝑝𝑅 − 𝑝𝐿), (10)

where �̃� is the Roe-averaged Jacobian matrix [8]. 𝑝𝐿 and 𝑝𝑅 are the primitive variable vectors on the left- and right-hand
sides of the middle point, respectively. There are various ways to determine of the middle point values. A first-order
reconstruction would simply take the values of the two neighbouring points 𝑖 and 𝑗 , while higher-order reconstruction
such as MUSCL can also be incorporated here. The present work adopted the MUSCL reconstruction.

Note that in Equation 9, the flux term between points 𝑖 and 𝑗 is not reciprocal, as point 𝑖 may not necessarily be in the
point cloud centring point 𝑗 . This leads to the lack of flow conservation and this is an important pitfall of this scheme.

It should also be noted that Equation 9 resembles the popular finite volume scheme in the local point cloud, if we
take the term 𝜕𝑁

𝜕𝑥𝑣
(𝑥𝑣

𝑗− 1
2
) as a virtual edge. This similarity with FVM schemes is an important advantage for numerical

implementation and especially for the realisation of hybrid mesh-based/mesh-free methods.
As for the viscous terms, the flow variables are simply averaged at the midpoint for the flux computation. The

gradient variables, however, adopted slight modifications [9] to avoid the odd-even node decoupling:

∇𝜙𝑖 𝑗 =
1
2
(∇𝜙𝑖 + ∇𝜙 𝑗 ) −

[
1
2
(∇𝜙𝑖 + ∇𝜙 𝑗 ) ·

𝛿𝑥

|𝛿𝑥 | −
𝜙 𝑗 − 𝜙𝑖

|𝛿𝑥 |

]
· 𝛿𝑥

|𝛿𝑥 | (11)

where 𝛿𝑥 = (𝑥 𝑗 − 𝑥𝑖) is the difference between the two points.
RANS turbulence closures are also included in the discretisation as additions sources terms. The one-equation

Spalart-Allmaras model [10] was used in the present work. The convective and diffusive terms were evaluated following
the same procedures described for the inviscid and viscous terms, respectively.

C. Implicit Temporal Discretisation
The temporal discretisation in this work adopted implicit schemes that are rarely used for mesh-free schemes due to

complexity. The classic dual time-stepping concept [] was used here. Taking the RHS of Equation 9 as a residual vector
−𝑅, and applying an implicit temporal discretisation to the ODE, we shall have:

𝐷𝑡 (𝑊) = −𝑅𝑛+1, (12)
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where 𝐷𝑡 () is an implicit finite difference operator about the real time 𝑡, and the superscript 𝑛 + 1 denotes the 𝑛 + 1 time
step in real time. Regrouping this equation to form a pseudo steady residual as follows:

𝑅∗ = 𝐷𝑡 (𝑊) + 𝑅𝑛+1 = 0, (13)

where 𝑅∗ is a pseudo residual term. By adding a temporal term and apply another temporal discretisation 𝐷𝜏 , both
about the pseudo time 𝜏, a steady flow problem can be formulated:

𝐷𝜏 (𝑊) = −𝑅∗(𝑙+1) , (14)

(𝑙 + 1) is the 𝑙 + 1 time step in the pseudo time step. The 𝑅∗(𝑙+1) can be approximated using second-order linearisation:

𝑅∗(𝑙+1) ≈ 𝑅∗𝑙 + 𝜕𝑅∗

𝜕𝑝
(𝑝𝑙)Δ𝑝, (15)

where 𝜕𝑅∗

𝜕𝑝
is the Jacobian matrix relative to the primitive variables 𝑝 = [𝜌, 𝑢, 𝑣, 𝑤, 𝑃]𝑇 , and Δ𝑝 = 𝑝𝑙+1 − 𝑝𝑙 . The steady

discretisation then becomes:

𝐷𝜏 (𝑊) = 𝑅∗𝑙 + 𝜕𝑅∗

𝜕𝑝
(𝑝𝑙)Δ𝑝, (16)

where the operator 𝐷𝜏 can take simple forms such as the backward Euler since this is essentially a steady problem, and
the term Δ𝑝 can be easily solved as a large linear system. A particular advantage here is that acceleration techniques can
be adopted to accelerated the solution process. In this work, the local time step approach is adopted. When handling
essentially steady problems, the temporal discretisation can directly follow Equation 13 by dropping the first level of
discretisation in Equation 12.

The major difficulty here is the determination of the Jacobian matrix 𝜕𝑅𝑖

𝜕𝑝 𝑗
at each supporting point 𝑗 , which can be

expanded as
𝜕𝑅𝑖

𝜕𝑝 𝑗

=
∑︁
𝑗∈Ω𝑖

𝑑∑︁
𝑣=1

𝜕𝑁

𝜕𝑥𝑣
(𝑥𝑣

𝑗− 1
2
)
𝜕𝐹𝑣

𝑗− 1
2

𝜕𝑝 𝑗

, (17)

where we can notice that the shape function terms are irrelevant to the Jacobian computation as they are purely geometric.
While following Eulerian descriptions, the Jacobian computation depends solely on the flux reconstruction and the
Riemann solver.

D. Point Adaptation Strategies
The mesh-free modelling is particularly suitable for adaptative modelling considering its strong flexibility to

accommodate points without connectivity constraints. Therefore, this work will assess various adaptation strategies
for the mesh-free modelling. In general, adaptative modelling requires a refinement mechanism to insert or remove
elements where necessary, and a metric to indicate where to insert or remove. This section first details the refinement
mechanisms to be evaluated in this work. The first refinement mechanism is illustrated in Figure 1. In 2D, when a point
is tagged to be refined, 8 additional points are inserted along all orthogonal directions to form a local Cartesian cloud (in
3D, 26 points will be added). This refinement/de-refinement approach can be recursively performed and shrinks the
local collocation size by a constant factor of 2. This is analogous to the conventional adaptive Cartesian grid approach,
and can be implemented using a similar tree-like structure. However, it is obvious that it is incompatible with arbitrary,
irregular baseline point distributions. Still, it is important to investigate this mechanism as evenly distributed point
clouds are desirable for off-body regions.

A more universal mechanism to introduce additional points is illustrated in Figure 2. When a point is tagged to be
refined, this mechanism identifies its local collocation configuration and inserts the middle point of each connection.
Further refinement is realised by repeating the middle point insertion, and coarsening can be achieved by removing these
additional points. This approach is extremely easy to implement and is suitable for arbitrary point distributions. The
drawback, however, is that the middle points may damage the orthogonality of point clouds. For a evenly distributed
baseline point cloud in Figure 2, large point density differences may arise after a few refinement iterations.

In the current study, near-body or boundary layer point clouds are generated by projecting point rays along the
surface norms and removing overlapping/in-body points. It is hence straightforward to implement near-body refinements
by adding boundary points where necessary and repeating the projection process. Additional boundary points are added
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Baseline Refinement 1 Refinement 2

refine refine

coarsencoarsen

Fig. 1 Cartesian point adaptation. Different markers and colours denote points added in different refinement
levels.

Fig. 2 Middle point adaptation. The dashed lines represent connections in a local point cloud. Different markers
and colours denote points added in different refinement levels.

either through parametric definitions (e.g. splines or NURB surfaces) or through interpolation (e.g. moving-least-square
or linear). The adapted near-body and off-body points clouds then blended for mesh-free simulations.

E. Collocation Search Methods
When additional points are introduced through adaptation, local point collocations must be re-established. As will

be discussed in Section IV.B, the choice of collocation configurations is vital to the mesh-free modelling. Although the
present least-square based mesh-free approach prefers reciprocity and orthogonality, collocations including critical
members have tolerance for slight non-reciprocity. In light of this, this sections introduces different collocation search
methods based on distance and local Voronoi tessellation.

1. Distance-based collocation search
The distance-based search is simple and straightforward: take all points within a certain distance about the centre

point as the local collocation. This is illustrated in Figure 3. For collocations centring at points 𝑖, 𝑗 , and 𝑘 in Figure 3.
The lines represent connections between the collocation centre and the members, with arrows pointing to the centre. A
connection is reciprocal when it is double-arrowed. The search distance, which are represented by circles in Figure 3,
varies according to the local point density to ensure compact support.

However, this simple approach has no guarantee on the regularity and reciprocity. For instance, the connection
between points 𝑖 and 𝑗 in Figure 3 has only one arrow, meaning that point 𝑖 will receive contributions from point 𝑗 but it
never contributes to point 𝑗 . Increasing the search radius of point 𝑗 may include 𝑖 in its collocation, but may result in
non-reciprocity elsewhere and damage the compactness.
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i j

k

Fig. 3 Collocation search based on distance. The circles denote the search radius. The lines denote connections
between the collocation centre and its members, with arrows pointing to the centre. A double-arrowed connection
is reciprocal.

2. Distance-based collocation search with configuration selection
The distance-based search simply includes all points within the search radius, but the least-square approximation

may be improved through biased weighting or selection. This study proposes a selection scheme that improves the
orthogonality of the collocation and maintain small collocation sizes.

i

Fig. 4 Collocation search based on distance with configuration selection. The shaded area represents candidate
regions, and the dashed lines denote candidate configuration. The solid lines with arrows denote the final selected
configuration.
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The selection process starts from preferring points closer to orthogonal directions, as shown in Figure 4. Points
within certain angles about the Cartesian axes, e.g. ±30◦, are marked as candidates, while all points outside these
regions are excluded. The next step is to select one point in each region, together with the centre point, to comprise the
local collocation. This process is realised by testing all possible combinations, and selecting the one that gives the
best fit of the local field using the given basis. If no point can be found in a region, the search radius and angle will be
enlarged until more points are included.

Although this approach cannot improve the reciprocity, it ensures points that are critical to the local approximation are
included in the collocation, while trivial points are excluded. This process could be coupled with the flow computation
to realise configuration adaptation. The drawback of this approach is associated with the large computational cost
testing all possible combinations. As a first step, the current work only used this approach as a static searching algorithm
to accommodate point refinements.

3. Collocation search using local Voronoi tessellation
Voronoi tessellation is a domain decomposition approach. Upon a given set of points, the tessellation decomposes

the domain into Voronoi cells consisting of points closer to the cell centre than any other points in the domain. For a
given collocation centre, these neighbouring points can be used as a collocation for the mesh-free modelling. For a
global Voronoi tessellation using all points in the domain, the neighbouring relation for a point couple is reciprocal,
thereby ensuring the reciprocity of the collocation. Moreover, the Voronoi tessellation for a given domain upon given
points is unique []. This property indicates that even if the tessellation is performed locally, it is possible to have
the same global results, as long as the local domain is sufficiently large. This has enabled the local Voronoi-based
collocation search in this work.

i j

k

Fig. 5 Collocation search based on local Voronoi tessellation. The circles denote the search radius. The solid
lines denote connections between the collocation centre and its members, with arrows pointing to the centre. The
dashed lines represent the local Voronoi cells.

The local Voronoi-based collocation search is illustrated in Figure 5. Similar to the distance-based search, a group
of points are first selected based on a search radius. The search radius can adopt a deliberately large value, e.g. the
lowest point density in the domain, to ensure the uniqueness of the tessellation. Upon these selected points, a Voronoi
tessellation is conducted. Neighbours of the Voronoi cell enclosing the centre are selected as the local collocation. As
shown in Figure 5, the Voronoi cells of nearby collocations have conforming boundaries, thereby ensuring reciprocal
contributions. Compared to the simple distance-based search in Figure 3, the non-reciprocal connection between 𝑖 and 𝑗

has been avoided.
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III. Numerical Verification

A. Transonic ONERA M6 Wing
This section presents 3D mesh-free simulations of transonic flows passing the classic ONERA M6 wing. The M6

wing surface geometry is shown in Figure 6 along with point distributions and boundaries. The wing surface points
were manually distributed following the sectional curvatures, while spatial points were grown along the wing surface
norm until they reached the semi-spherical far-field boundary, which was about 5 times the wing span away in all
directions. The computational domain consisted of 182,853 points in total, with 4,425 points on the wing surface. Note
that the wing surface in Figure 6 was for illustration purposes only. In the mesh-free computation, all geometries were
represented with discrete points.

Fig. 6 Point cloud and boundaries for simulations of the ONERA M6 wing.

Fig. 7 Surface pressure coefficient solutions from the mesh-free simulation.

The simulations were conducted at 𝑀𝑎 = 0.8395 with an 𝐴𝑜𝐴 = 3.06 using Euler equations. This is a classic
transonic case where multiple shock waves would form at the wing surface. This is shown in the surface pressure
solution in Figure 7. The mesh-free simulation resolved two shock waves at the wing root near the leading-edge and the
mid-chord sections, respectively, and the shock waves gradually merged towards the wing tip.

Sectional pressure coefficient distributions were extracted and compared with experimental measurements in Figures
8(a) to 8(f). The mesh-free results showed excellent agreement with the measurements, especially for the wing lower
surface and leading-/trailing edge regions. Light discrepancies were noticed near the shock waves, particularly in Figure
8(d) at section 𝑦/𝑏 = 0.8 where the shock waves merge. Increasing the local point density in these regions can help
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improve the shock wave resolution. Nonetheless, these results provide excellent validation for the present mesh-free
solver for complex 3D simulations.
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Fig. 8 Comparisons of wing sectional pressure coefficient distributions between the experimental and mesh-free
numerical results.

B. Inviscid Flow past a Circular Cylinder
This section presents mesh-free modelling of inviscid flows passing a circular cylinder at 𝑀𝑎 = 0.38. This is a

classic case for validation as well as error quantification. The modelling parameters are presented in Table 1. Three sets
of point clouds of increasing point density were used for the simulation to quantify the spatial accuracy, as shown in
Figures 9(a) to 9(c).

The cylinder surface was first discretised by 𝑁𝑎 points equally distributed along the angular or azimuthal direction.
𝑁𝑟 points were then popped out along the surface outer normal direction following an exponential growth, extended to
about 20 diameters away. The overall relative entropy product, i.e. 𝑑𝑆 =

𝑝

𝑝∞
( 𝜌∞

𝜌
)𝛾 − 1, was computed to quantify the

spatial accuracy of the mesh-free scheme, because the inviscid flow remain isentropic and any increase in the entropy is
associated with the numerical error.

Table 1 Modelling parameters for simulations of the flow past a circular cylinder.

𝑀𝑎∞ 0.38
Flow model Compressible Euler

Outer boundary distance 20D
First-layer point wall distance 0.001D

Radial growth rate Exponential

Point cloud density
(Angular × Radial)

100×50 (coarse)
200×100 (medium)

400×200 (fine)

Figure 10(a) presents the convergence history of the flow simulations using coarse, medium, and fine point clouds.
The coarse cloud had difficulty converging, and the residual stagnated around an order of -4. This should be related to
larger numerical viscosity leading to small unsteadiness in the cylinder flow. As the point density increased, the residual
quickly converged to the order -8.

Figure 10(b) presents the cylinder surface pressure coefficient distributions for more quantitative comparisons. The
pressure distribution agreed well with theoretical solutions, and the downstream stagnation pressure was only slightly
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Fig. 9 Coarse, medium, and fine point clouds for the cylinder flow simulation. The numbers 𝑁𝑎 × 𝑁𝑟 denote 𝑁𝑎

and 𝑁𝑟 points along azimuthal and radial directions, respectively.

under-recovered. The coarse-point results showed slight discrepancies near 𝑥 = 0 where the pressure is lowest. The
medium- and fine-point results were identical. Figure 10(c) presents the pressure field resolved using the medium point
cloud and the mesh-free modelling. The flow solution showed symmetry along the horizontal and vertical axes.
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(b) Cylinder surface pressure coefficient distributions. (c) Medium point cloud pressure coefficient contours.

Fig. 10 Mesh-free modelling results of inviscid flow passing a circular cylinder.

The spatial accuracy of the mesh-free scheme was measured and presented in Figure 11. The modelling error was
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measured using the overall entropy product, while the spatial size ℎ was defined as ℎ = 1/
√
𝑁𝑎 × 𝑁𝑟 . The slope of

the modelling error relative to the spatial size was about 2, which is consistent with the second-order least-square
approximation in the mesh-free scheme. This shows that the designed spatial accuracy in the mesh-free scheme was
successfully achieved.
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Fig. 11 Accuracy measurements using the circular cylinder flow simulations.

IV. Assessment of Point Cloud Distributions and Configurations

A. Irregular Point Distributions
For non-trivial geometries, such as wing flaps and landing gears, it is difficult, if not entirely impossible, to maintain

regular spatial point distributions. This section therefore assesses the impacts of irregular point clouds on the mesh-free
modelling through manually introduced disturbances. The investigation here focused on the aforementioned medium
point cloud (200 × 100 in Table 1). Irregular point distributions were introduced by adding random offsets of about 0.3
times the local radial size (in both x and y directions), as shown in Figure 12. To study how the results change with
different degrees of irregularity, the number of point layers that were disturbed off the wall the boundary was varied, as
detailed in Table 2. Four different point clouds with 100, 90, 80, and 70 layers (out of 100) of disturbed points were
compared here. Points on the wall boundary remained unchanged since they have to represent the boundary shape.
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Fig. 12 Irregular point clouds with layers of random point offsets for the circular cylinder flow simulations.

The flow convergence history using these irregular point clouds is presented in Figure 13(a). The 100% and 90%
irregular point clouds had difficulty in converging, while the 80% and 70% irregular point clouds converged smoothly to
the order -8. Figure 13(b) presents the surface pressure coefficients resolved on point clouds with different extents of
irregularity. It shows that the fully random points led to poor results that had large discrepancies from the theoretical
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Table 2 Introduction of irregular point distributions through different levels of random point offsets. 𝛿r denotes
the local distance between two adjacent radial points.

Irregularity level Layers of un-disturbed/disturbed points off wall Disturbance level

100% 0/100

0.3×𝛿r
90% 10/90
80% 20/80
70% 30/70

solution and failed to capture the symmetry of the solution. Flow solutions of the 100% and 90% irregular points are
presented in Figure 13(c) and 13(d), respectively. The modelling results showed strong asymmetry due to irregular
point distributions near the wall. As the randomness was reduced near the wall boundary, the results were significantly
improved. 20 layers of regular points near the wall provided results with negligible differences.

This investigation suggests that the current mesh-free method is compatible with irregular point distributions, but is
still sensitive to the distributions in critical regions such as wall boundaries. This could be addressed via adapted clouds.
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Fig. 13 Mesh-free modelling results with different extents of irregularity.
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B. Irregular Collocation Configurations
The least-square approach 1 approximates local functions and derivatives using a set of neighbouring points, i.e. the

collocation. The choice of member points of the collocation, i.e. the collocation configuration, has critical impacts on
the approximation accuracy. In terms of flow physics, the collocation configuration is also vital to the flow conservation
as indicated by Equation 9. The global flow conservation is strictly maintained only when the connection between
two points is reciprocal. This eventually causes the method edge-based and semi-mesh-free, and represents a strong
restriction on the mesh-free flexibility. Therefore, this section investigates how various point collocations affect the
solution upon the same point cloud (the medium point cloud 200×100 of Figure 9(b) was used). Figures 14(a) to 14(e)
present five different collocations with different orthogonality and reciprocity as detailed in Table 3.
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(a) ‘+’ collocation.
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(b) ‘x’ collocation.
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(c) ‘star’ collocation.
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(d) ‘+x’ mixed collocation.
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(e) ‘+-star’ mixed collocation.

Fig. 14 Various local point collocation shapes (point clouds coarsened for clarity).

Table 3 Properties of different collocation in Figures 14(a) to 14(e).

Collocation shape ‘+’ ‘x’ ‘star’ ‘+x’ mixed ‘+-star’ mixed

Orthogonal Y N Y N Y
Reciprocal Y Y Y N N

The ‘+’ collocation in Figure 14(a) has been used in previous sections. This collocation is analogous to typical finite
differences using structured grids. The ‘x’ collocation in 14(b) is still regular and reciprocal (i.e. the centre point is
aways a member of all collocations centring at its members), but it has worse orthogonality and more distant supporting
points. Figure 14(c) shows a star-shaped collocation merging the ‘+’ and ‘x’ shapes, which has an extended range of
support and is also reciprocal.
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Figures 14(d) and 14(e) present mixed collocations along the radial direction. Figure 14(d) shows a mixture of
2 layers of ‘+’ collocations and 1 layer of ‘x’ collocations, while Figure 14(e) shows a mixture of 2 layers of ‘+’
collocations and 1 layer of ‘star’ collocations. Both configurations were not reciprocal when switch from one collocation
type to another.

Figure 15(a) presents the convergence history of simulations using different collocations. Worst convergence
behaviour was observed for the ‘+x’ mixed collocation, which stayed around an order of -2.5 with small oscillations.
The ‘x’ collocation converged slightly better to an order of -2.9 and stayed constant. As for the star-shaped and the
‘+-star’ mixed collocations, the residual was quickly reduced to the order of -8 following similar patterns.

The cylinder surface pressure coefficient distributions were further extracted and presented in Figure 15(b) for more
quantitative comparisons. The ‘+x’ mixed stencil offered the worst prediction with discrepancies and oscillations all
around the surface, and the symmetry was not well preserved. Figure 15(c) presents the flow solutions using the the
‘+x’ mixed collocation. The solution suffered from strong dispersions, especially near the front and aft stagnation
points. Small asymmetry and oscillations were also noted in solutions using the ‘x’ collocation and the ‘+-star’ mixed
collocation. The star collocations showed the best result with fine symmetry.
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Fig. 15 Mesh-free modelling results using different collocation shapes (inviscid flow over cylinder).

This investigation of different collocation shapes using the same point cloud demonstrates the flexibility of the present
mesh-free modelling. However, it also suggests that the method is sensitive to choices of collocations for least-square
computation. Collocations with poor orthogonality and reciprocity seriously deteriorate the modelling results and vice
versa. The collocation should also include essential points reflecting critical properties such as up-winding.
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V. Assessment of Adaptive Point Clouds
The mesh-free modelling is particularly suitable for adaptative modelling considering its strong modelling flexibility.

Moreover, compared to conventional Adaptive Mesh Refinement approaches, mesh-free CFD methods have greater
freedom and flexibility for adaptation. The adapting parameters could include point distributions, point numbers,
collocation sizes, shape functions etc. As a first step, the present work explores the mesh-free adaptation by adding
additional points when necessary.

A. Assessment of Adaptive Simulations
This section assesses the adaptive mesh-free simulation strategies using the isentropic vortex transport problem [11].

The problem has a analytical definition as follows:

𝜌 =
[
1 − (𝛾 − 1)𝑏2

8𝛾𝜋2 𝑒1−𝑟2 ] 1
𝛾−1

𝑢 = 𝑢∞ − 𝑏

2𝜋
𝑒

1−𝑟2
2 (𝑦 − 𝑦𝑐)

𝑣 = 𝑣∞ + 𝑏

2𝜋
𝑒

1−𝑟2
2 (𝑥 − 𝑥𝑐)

𝑝 = 𝜌𝛾

(18)

where 𝑏 is the dimensionless vortex strength, (𝑥𝑐, 𝑦𝑐) is the vortex centre, 𝑟 =
√︁
(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 is the distance

from the centre, and (𝑢∞, 𝑣∞) is the convection speed. 𝛾 = 1.4 is the specific heat ratio. 𝜌 and 𝑝 are the density and
pressure, respectively. The vortex is placed at the centre of the computational domain with all outer boundaries set
periodic. Without numerical dissipation and dispersion, the vortex should maintain the initial strength during the
convection without any decay.

In this study, the convection speed was (𝑢∞, 𝑣∞) set zero, so that the vortex was preserved at the initial position.
The vortex would still decay due to numerical viscosity. The adaptation was expected to improve the spatial resolution
and reduce the dissipation, thereby preserving the vortex shape over longer durations. The vortex strength was set as
𝑏 = 5. The adaptation performance was examined through differences between the numerical and exact solutions after a
constant 500 time steps, with the same dimensionless time step size of 0.1 large enough for the decay.

Table 4 presents the test matrix of adaptive strategies combining different adaption mechanisms and collocation
search methods. The simulation was initialised on a baseline coarse point cloud consisting of 21× 21 points covering the
domain [−5, 5] × [−5, 5]. This coarse point cloud would quickly dissipate the vortex. For Cases 1 to 3, the adaptation
was successively conducted in regions where 𝑟 < 4, 3, 2, 1, 𝑟 =

√︁
(𝑥2 + 𝑦2), so that these cases have the same point

clouds to highlight differences in collocation search methods. For Case 4, a fifth adaptation for the region 𝑟 < 0.5 was
conducted since the mid-point mechanism introduces fewer additional points than the Cartesian approach.

Table 4 Test matrix of mesh-free adaptive simulations.

Cases Adaption Mechanism Collocation Search

C1 Cartesian Distance
C2 Cartesian Distance with selection
C3 Cartesian Voronoi
C4 Mid-point Voronoi

Figures 16(a) to 16(d) illustrate the point clouds for Cases 3 and 4 in Table 4 after the first and second adaptation
iterations. The contours denote the relative pressure difference 𝛿𝑝 = |𝑝𝑛𝑢𝑚/𝑝𝑒𝑥𝑎𝑐𝑡 − 1| × 100% between the numerical
solution 𝑝𝑛𝑢𝑚 and the exact solution 𝑝𝑒𝑥𝑎𝑐𝑡 . The point sizes were scaled by the local point size.

Figures 16(a) and 16(b) illustrate the Cartesian point adaptation mechanism. It can be observed that adaptation
preserved the initial regular point distribution with uniform density. Irregular distributions were only encountered in
transitional regions where two refinement levels meet. Through the adaptation from Figure 16(a) to Figure 16(b), the
pressure error was effectively reduced from about 10% maximum to 5% maximum.
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Figure 16(c) and 16(d) illustrate the mid-point adaptation mechanism. In Figure 16(c), after the first adaptation
iteration, the point distribution remained mostly uniform. However, with the second adaptation iteration in Figure
16(d), small local clusters formed centring the previous collocation centres, and this led to irregularity over the domain.
Although the adaptation managed to shrink the high-error area near the centre, the global error was raised in larger
domain.
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(a) Case 3 Cartesian adaptation iteration 1.
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(b) Case 3 Cartesian adaptation iteration 2.

x/[]

y
/[

]

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5
dp/[%]: 0 1 2 3 4 5 6 7 8 9 10

(c) Case 4 mid-point adaptation iteration1.
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(d) Case 4 mid-point adaptation.

Fig. 16 Point clouds of Cases 3 and 4 in Table 4 after the first and second adaptation iterations. Point sizes were
scaled with the local point size. Contours denote the relative pressure differences between the numerical and
exact solutions 𝛿𝑝 = |𝑝𝑛𝑢𝑚/𝑝𝑒𝑥𝑎𝑐𝑡 − 1| × 100%.

The pressure profiles across the vortex centre extracted from cases in Table 4 are plotted in Figures 17(a) to 17(d).
Different combinations of adaptation mechanisms and collocation search methods clearly displayed strong impacts on
the adaptation solutions. Through the adaptation, Case 1 managed to improve the resolution of the central pressure
valley, but solution of outer regions deviated further from the exact solution due to large point density transitions and
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strong non-reciprocity in the collocations. Case 2 converged to the exact solution in the last iteration, but the solution
showed very slight asymmetry. This was associated with asymmetric collocation configurations through the search.
Case 3 smoothly converged to the exact solution since the third iteration using regular point distributions and reciprocal
collocations. As for Case 4, the numerical solution gradually approached but was yet to conform to the exact solution
through the adaptation. This was due to the poorer regularity, as well as the lower amount of additional points inserted
as shown in Figure 18.
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Fig. 17 Comparisons of pressure profiles across the vortex centre between numerical and exact solutions from
adaptation cases in Table 4.

The overall performance of each adaptation strategy in Table 4 was measured using the overall relative pressure
differences

𝜖𝑝 =

∫
𝛿𝑝𝑑𝑠∫
𝑑𝑠

, (19)

where 𝛿𝑝 is the point-wise relative pressure difference. 𝑑𝑠 is the local point size that reflects the area a point occupies.
In the work, 𝑑𝑠 was defined as

𝑑𝑠 = 𝜋𝑟2
𝑖 /𝑛𝑖 , (20)

where 𝑟𝑖 is the radius of a small reference circle centring any point of interest, and 𝑛𝑖 is the number of points covered by
this circle.

Figure 18 presents the 𝜖 𝑝 convergence history through the adaptation iterations for cases in Table 4. Case 3,
combining Cartesian adaptation and local Voronoi search, showed the best convergence behaviour among all cases.
This result highlights the importance of regular point distributions and reciprocal collocations. The adaptation brought
the overall error 𝜖 𝑝 to almost zero from the initial 13% on the coarse point cloud. Case 2 showed the second best
convergence. Note that in this case, the reciprocity was not globally guaranteed. Nonetheless, with uniform point
distribution and carefully optimised collocation configurations, the adaptation successfully reduced the final error to
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about 1%. However, the computational cost of the configuration selection was much higher than that of the local Voronoi
search.
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Fig. 18 Adaptation convergence of cases in Table 4. The overall relative pressure difference is defined as
𝜖𝑝 =

∫
𝛿𝑝𝑑𝑠/

∫
𝑑𝑠, where 𝛿𝑝 = |𝑝𝑛𝑢𝑚/𝑝𝑒𝑥𝑎𝑐𝑡 − 1| is the relative pressure difference and 𝑑𝑠 is the local point size.

Case 1, combining Cartesian adaptation and distance-based search, failed to converge using the same point clouds
but with the distance-based search. The first two adaptation iterations reduced the overall error to about 3%. However,
with more points added in the last two iterations, the error jumped to about 7%. The errors were mostly associated with
the oscillations in regions near 𝑟 = 3 and 𝑟 = 4. These are transitional regions bridging areas with large point density
differences, and are therefore particularly sensitive to collocation configurations. These again highlight the importance
of the collocation configuration for the current mesh-free method.

Case 4, combining mid-point adaptation and local Voronoi search, also exhibited convergence behaviour, but the
final overall error was about 3% and was higher than those of Cases 2 and 3. This was partially due to the lower number
of additional points through the mid-point mechanism. In the last three iterations, the performance is similar to that of
Case 2. It is interesting to notice that the first iteration brought the sharpest drop in the error compared to all other
cases using the Cartesian adaptation. This should be associated with the more uniform global point distribution in
this iteration as shown in Figure 16(c). However, as the regularity was damaged by further adaptation iterations as
shown in Figure 16(d), the global error was slightly increased. As the point number increases, the solution of central
pressure valley gradually approached the theoretical exact as shown in Figure 17(d), but the outer solutions improved
little. These results highlight the importance of regular point distributions for the current mesh-free modelling.

B. Application to Aerofoil Simulations
This section applies the adaptive mesh-free modelling to more practical simulations of the RAE 2822 aerofoil at

transonic conditions. The computational domain and initial point cloud are shown in Figure 19. Near-body points were
generated by projecting point rays along the surface norm up to 0.1 𝑐 (𝑐 is the aerofoil chord), and were then blended
with the successively coarsened Cartesian background points. The simulations were conducted at 𝑀𝑎 = 0.73 and
𝐴𝑜𝐴 = 2.31◦ using Euler formulations. The initial point cloud had 13,244 points with 125 points on the aerofoil surface.

For near-body points, the adaptation was realised by introducing new points to the surface through linear interpolation
and re-projecting the point rays. For off-body point clouds, the adaptative simulation combined mid-point adaptation
with local Voronoi search. Although the Cartesian adaptation showed the best performance in the previous assessment,
it was not suitable for this case due to the irregular transition areas between near-body and multiple levels of background
points. The mid-point adaptation is more universal and suitable for this case. To alleviate the point density difference
issue, a point size constraint was introduced in the adaptation, i.e. if the local point size is smaller than the minimum
allowed (0.012 𝑐 in the current case), no further adaptation will be conducted.

The current work used a weighted pressure gradient (WPG) metric to guide the output-based adaptation iterations.
The metric 𝜔𝑝 is defined as
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Fig. 19 RAE 2822 computational domain and point clouds. The points were scaled with the point size 𝑑𝑠.

𝜔𝑝 =
|∇𝑝 |

√
𝑑𝑠∫ √
𝑑𝑠

, (21)

where |∇𝑝 | is the pressure gradient magnitude, and 𝑑𝑠 is the local point size. This metric denotes the local pressure
gradient weighted by the local point size. It prioritises high gradient regions with large point sizes (i.e. low point
densities). It leads to more uniform point distributions driven by both flow and geometric features.

Figures 20(a) to 20(d) present the point cloud evolutions through the adaptation along with the weighted pressure
gradient metric contours. The points were scaled by their sizes 𝑑𝑠 for illustration purposes. In each adaptation, points
with 𝜔𝑝 ≥ 0.05 were tagged for refinement.

For the baseline case in Figure 20(a), points near the leading edge and the shock wave were tagged due to the high
pressure gradient. Points in the coarse background region above the suction peak were also tagged due to the large point
sizes. Additional points were inserted around these tagged points in the first adaptation as shown in Figure 20(b). The
adaptation closely followed the flow features and also reduced the geometric differences thanks to the weighting by
point sizes.

As the adaptation progressed from Figures 20(b) to 20(d), the point sizes became more uniform and smaller, and
high 𝜔𝑝 regions shrank to focus more on the flow features. Note that from iteration 3 to iteration 4, only near-body
points were refined since off-body points had reached their minimal point size limits. The final aerofoil surface points
were increased to 145 from the initial 125.

Flow solutions through the adaptive mesh-free modelling are shown in Figures 21(a) to 21(d). It is clearly shown that
the 𝜔𝑝 metric drove the adaptation to closely follow the shock wave. It also eliminated sharp point size transitions in
critical regions and avoided excessive irregularity with the help of the point size constraint. The adaptation considerably
improved the shock wave resolution in both near-body and off-body regions compared to the initial solution in Figure
21(a).

Figure 22 compares the aerofoil surface pressure coefficient distributions over the adaptation iterations and with
experimental data []. The numerical results showed excellent agreement with the experimental data, with small
discrepancies due to the inviscid modelling. The adaptation mostly influenced the shock wave resolution at the upper
surface. As the adaptation progressed, it is clear that the shock resolution progressively improved. The final resolution
in iteration 3 was almost a vertical line.

Figure 23 further presents the convergence history of lift and drag coefficients. The lift and drag predictions showed
trends to convergence. The final 𝐶𝑙 and 𝐶𝑑 values were about 0.714 and 0.01467 and were close to the experimental
results [] of 0.731 and 0.0121. The discrepancies were mostly due to the inviscid modelling for the current case.
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Fig. 20 The weighted pressure gradient (WPG, 𝜔𝑝) metric and point distributions for each adaptation iteration.
Points with 𝜔𝑝 ≥ 0.05 were tagged to be refined in each iteration. Points were scaled by the local point size.

VI. Conclusions
This work presented an investigation into implicit and adaptive mesh-free CFD modelling based on the Generalised

Finite Difference Methods. The least-square-based spatial discretisation of the governing flow equations were presented
in detail. The implicit temporal discretisation was also derived and presented. This work also explored various
adaptation strategies and collocation search methods exploiting the mesh-free flexibility. The following conclusions can
be drawn from the present study:

1) The numerical schemes and code implementations were validated and characterised using practical and benchmark
test cases. For the ONERA M6 wing at transonic conditions, the mesh-free modelling resolved the multiple shock
waves with excellent correlations with experimental data. Simulations of inviscid flows past the circular cylinder
using point clouds of varying densities characterised the convergence and accuracy of the current realisation.
The spatial accuracy was measured as second-order as intended and was consistent with the least-square basis.

2) This work also assessed the impacts of irregular point distributions and various collocation configurations.
Simulations of the cylinder flow suggests that the current mesh-free modelling is sensitive to point distributions
near wall boundaries. Regular and shape conforming point distributions are preferred in these regions. The
current mesh-free modelling showed strong tolerance for irregular points in off-body regions. Investigations of
various collocation configurations suggest that the current mesh-free modelling prefers regular and reciprocal
configurations. Irregular and non-reciprocal configurations may lead to non-physical numerical results, due to
poor approximations and the lack of flow conservation. However, slight non-reciprocity seemed can be tolerated
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Fig. 21 Pressure coefficient contours of the transonic RAE 2822 aerofoil in each adaptation iteration. Points are
scaled by local point sizes.
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Fig. 22 RAE 2822 pressure coefficient comparisons.

as long as the collocation contains critical points.
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Fig. 23 RAE 2822 lift and drag convergence through the adaptative simulation.

3) This work further investigated adaptive mesh-free modelling with various adaptation strategies. The study
examined point refinement mechanisms based on Cartesian points and middle point insertion, and collocation
search methods based on distance, optimum selection, and local Voronoi tessellation. For the isentropic vortex
simulation, the simple distance-based collocation search was unable to improve the resolution with uniform
Cartesian points due to the lack of reciprocity. Selecting optimum members for the collocation managed to
converge the solution with slight non-reciprocity. The combination of Cartesian-based refinement and local
Voronoi collocation search offered the best performance. However, when replaced with mid-point refinement, the
adaptive model showed slightly poorer performance. These results highlighted that regular point distributions
and reciprocal collocations should be maintained as much as possible for successful and efficient adaptative
mesh-free modelling based on GFD.

4) The mid-point refinement and local Voronoi search strategy was successfully applied to simulations of the
classic RAE 2822 aerofoil at transonic conditions. A weighted pressure gradient metric was proposed to drive
the adaptation iterations. This metric priorities high pressure gradient regions with large point sizes, thereby
smoothing the point distributions while following the flow features during the adaptation. For the transonic
aerofoil simulation, the adaptation closely followed the shock wave and reduced sharp point size transitions
where necessary. The shock wave resolution was effectively improved through the adaptation.

Overall, these assessments demonstrated the accuracy, convergence, and flexibility for adaptive simulations of
GFD-based implicit mesh-free methods. They also highlighted the methods’ strong sensitivity to regular point
distributions and reciprocal collocation configurations. The Voronoi-based collocation search maintains the reciprocity
but effectively makes the methods edge-based and semi-mesh-free. Future work will continue and attempt to reduce the
reciprocity dependency in the numerical schemes.
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