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Breakdown of Universal Mobility Curves in
Sub-100-nm MOSFETs

Savas Kaya, Asen Asenov, Member, IEEE, and Scott Roy

Abstract—We explore the breakdown of universal mobility
behavior in sub-100-nm Si MOSFETs, using a novel three-dimen-
sional (3-D) statistical simulation approach. In this approach,
carrier trajectories in the bulk are treated via 3-D Brownian
dynamics, while the carrier-interface roughness scattering is
treated using a novel empirical model. Owing to the high efficiency
of the transport kernel, effective mobility in 3-D MOSFETs with
realistic Si–SiO2 interfaces reconstructed from a Gaussian or
exponential correlation function can be simulated in a statistical
manner. We first demonstrate a practical calibration procedure
for the interface mobility and affirm the universal behavior in
the long channel limit. Next, effective mobility in ensembles of
MOSFETs with a gate length down to 10 nm is investigated. It is
found that the random-discrete nature of the Si–SiO2 interface
leads to a distribution of carrier mobility below the interface,
which can deviate considerably from universal mobility curves
when gate 6�, where� is the correlation length for the SiO2

interface.

Index Terms—Brownian dynamics, device simulation, interface
roughness scattering, MOSFET, universal mobility.

I. INTRODUCTION

T HE miniaturization of Si MOSFETs has surpassed even
the expectations of SIA Roadmap and should reach the

sub-25-nm scale by 2007 [2]. The acceleration of the Roadmap
has drawn highlighted attention to intrinsic parameter fluctu-
ations in MOSFETs, because they constitute one of the main
“showstoppers” for conventional CMOS scaling. Although in-
trinsic fluctuations often associated with discrete dopant charges
[3], the atomicity of matter can also introduce substantial varia-
tions in the individual device characteristics [4]. The gate oxide
thickness in 20-nm Intel devices [1], for example, is composed
of only threesilicon atomic layers. An interface roughness of
evenone layer then would have major implications for device
electrostatistics [5] as well as transport adjacent to the Si–SiO
interface [6]. In particular, there is no clarification as to whether
the random nature of the oxide interface can pose a signifi-
cant threat to the universal mobility behavior [7]–[9], which has
proved very useful in commercial device simulators used in con-
ventional Si CMOS designs.

We recently demonstrated an effective approach to address
the transport aspect of this problem and established a three-di-
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mensional (3-D) statistical simulation framework [6]. The ap-
proach we have adapted is based on Brownian particle simula-
tions in 3-D, uses realistic representation of the oxide interface
with appropriate spectral models, and has been extremely ef-
ficient. In this work, we extend this approach to device simu-
lations in order to investigate the impact of a random Si–SiO
pattern on the long-established universal mobility behavior in Si
MOSFETs. We simulate effective mobility in MOSFETs down
to 10 nm in gate length and show that significant departure from
universal curves may occur when gate length is reduced below

6 where is the correlation length assumed for the Si–SiO
interface. In the following, we first introduce basic features of
the simulator, then describe device simulations, and finally dis-
cuss the simulation results. The major conclusions drawn are
summarized at the end.

II. THE SIMULATION APPROACH

In order to treat the universal mobility statistically, three
main requirements may be identified: an accurate 3-D model for
the interface based on its measured properties, a very efficient
3-D particle simulator, and an empirical treatment of surface
scattering. In this section, we deal with these requirements
and demonstrate an efficient simulator, which is then deployed
to address the breakdown of universal mobility in decanano
MOSFETs.

A. Brownian Transport Kernel

The requirements for anexact treatment of the transport
problem associated with random pattern of the Si–SiOinter-
face in sub-100-nm MOSFETs are many-fold and impractical
to address using current simulation techniques. We attempt
to minimize the 3-D transport problem in bulk Si by using
a classical Brownian motion. In Brownian formalism [10],
Langevin’s equation of motion including a damping term asso-
ciated with drift mobility ( , where is momentum
relaxation time), is integrated along with a random force ,
which represents the diffusion term. We use a trapezoidal
integration scheme [10] to obtain the discretized form of the
Langevin equation

(1)

where is discrete time interval, is velocity, is the
electric field, , and . The term

represents the integrated random force and is selected
at each time step from a normal distribution with a variance

. Equation (1) may be considered
equivalent to using DD models in a particle-simulation frame-
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work1 and equivalent to the solution of Boltzmann transport
equation in relaxation time approximation. Using this simple
approach, not only is the phonon and Coulomb-limited bulk
mobility reproduced in a particle simulation framework, but
also the 3-D simulations speed up considerably [11]. As
alternatives, though exact, Monte Carlo techniques would
be substantially slower for a mere reproduction of the bulk
mobility. As a further simplification, we avoid the solution
of self-consistent field distribution in an appropriate doping
landscape and in the presence of carriers, which would have
severe overheads in a 3-D simulation. Thus, we assume a
uniform transverse and longitudinal electric field along the
interface. The limitations of such a simple, equilibrium-only
approach may be justified by the fact that we are interested
only atlow-fieldmobility as a function of “effective” transverse
field at the Si–SiO interface. The main limiting factor in the
Brownian iterations is the choice of. To reduce errors below
0.1%, we find . Also, we simulate up to 20 000
particles to get a reasonable average on the collected histories.
Provided significantly long time is allowed for transients, this
3-D framework can be reliably used in a device configuration,
which should include an accurate description of additional
interface scattering events.

B. Random Interface Generation

Realistic3-Dinterfacesconsideredinthiswork,suchastheone
shown in Fig. 1, have been reconstructed starting from an auto-
correlation function with a given correlation length () and rms
height ( ) [5]. In the Fourier domain, the magnitude of elements
ofatwo-dimensional(2-D)complexarrayrepresentingtheheight
function is determined from the spectral information, while the
phase isselectedat random, imposingnecessarysymmetries.The
2-D inverse Fourier transform is used to obtain a height function
in real space, which is then quantized across one atomic layer of
Si, , which is approximately 3 . A detailed description of the
algorithm can be found elsewhere [5]. The use of random phases
ensures that a statistical ensemble can be built. The two options
for thespectralmodelprovideadditional flexibilityandare in line
with earlier experimental and modeling works [13], [14].

C. Particle-Interface Interaction Scheme

As a viable and efficient interaction scheme, we showed in an
earlier work [6] that “thermalizing” particle energies crossingan
interface and replacing them randomly back in the device within
a distance provides a suitable physical framework. By
choosing an appropriate value for, it is possible to reduce artifi-
cialcarrierheating2 tonegligiblevaluesandobtainstationerydis-
tribution of particles along the transverse direction. The replace-

1Note that (1) accounts for the carrier drift via the second term, while the
diffusion process is modeled via the third term associated with a random walk
in velocity space, which averages to zero in all time scales and has a variance
proportional to the diffusion constant. As a further reading, Ferry explores the
relationship between random Brownian motion and diffusion constant in the
context of solution of BTE [12].

2Occurrence of artificial heating is not innate to (1), but would rather be a
consequence of inaccurate handling of carrier dynamics when Brownian velocity
iterations are halted at the device boundaries. The latter may or may not occur
after particle–boundary interactions are included in 3-D simulations, depending
on the nature of interaction scheme used. See [6] for more discussion.

Fig. 1. Contour plots of realistic 3-D Si–SiOinterface model (top)
reconstructed using Gaussian (right) and exponential (left) autocorrelations
with � = 0:3 nm and� = 12 nm. The equivalent surfaces at the lower half
are digitized across a single Si(001) atomic layer.

Fig. 2. Three-dimensional velocity history collected from 10 000 electrons
undergoing Brownian motion inside a semi-infinite device with an ideal (flat)
Si–SiO interface and� = 1100 cm =Vs. Similar responses in thez
direction for different effective field values are given in the inset.

mentofcarrierscrossingboundariesbackintodeviceisequivalent
to an effective repulsive force at the interface that drives particles
away. We find that is optimum for a wide range of trans-
verse fields and does not have significant influence on the drift
mobility in the direction. The history of particle ensemble ve-
locities in all directions is plotted in Fig. 2 for a device with a flat
interface and . The inset in this figure shows velocity in
the direction for a range of values. This figure essentially
demonstrates the success of our approach for the particle–inter-
face interaction and shows that bulk mobility remains intact for a
fictitious device with an ideal interface.

III. V ERIFICATION: UNIVERSAL MOBILITY

Next, we investigate the universal mobility behavior of the
random interfaces. For sufficient realism, we use a single-step
interface having Gaussian or exponential autocorrelation func-
tions and and throughout. The only ad-
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Fig. 3. Simulated effective mobility in a semi-infinitely long device, which
has a random interface having a correlation length� = 6 nm. Gaussian and
exponential correlations compared with experimental data [7] from a MOSFET
with a bulk doping of 2�10 cm .

justable parameter is the correlation length (), which is not
widely agreed upon, with conflicting values reported by various
experimental methods and AFM measurements. However, cal-
ibrated MC simulations [15], [16] indicate that falls in the
range of 1–3 nm, and so does the HRTM data [13]. To mimic
an infinitely long device, we use cyclic boundary conditions in
the – direction of the motion. The simulator tracks particle
trajectories in the vicinity of the interface steps, detects colli-
sions, and implements the interaction scheme described above.
Collision detection relies on the knowledge of the location of
interface steps and takes into account multiple collisions at the
corners. After the transients, ensemble average of the carrier ve-
locities are collected while is altered in successive runs on
the same device to build the universal mobility picture.

Fig. 3 shows the effective field dependence of the simulated
mobility for a device with a bulk mobility 1100 cmVs, which
corresponds to a doping level of 210 cm in Si. Both expo-
nential and Gaussian correlation models are simulated for

nm. A surprisingly good agreement is obtained between our
simulations and experimental data [7] for this value of correla-
tion length, with the exponential model performing marginally
better. Both the qualitative and quantitative features of the data
are satisfactory for the chosenand values. Fig. 4 shows the

dependence of the simulated mobility for the same conditions
as in Fig. 3. Correlation lengths above 9 nm appear to have little
influence in the surface limited mobility captured in this simple
model.

The empirical interface scattering scheme we adapted above
can be tuned successfully for a given set of parametersand

in a MOSFET. Even though there is no universalvalue
applicable to all cases, an appropriate set ofand values may
always be found for the chosen device parameters ( and

) [6]. Therefore, the simulation framework presented here can
still be adequately used to analyze the impact of atomicity of the
Si–SiO interface on the interface roughness limited mobility in
a decanano MOSFETs.

IV. DEVICE SIMULATIONS

Two major modifications required for the adaptation of the
above simulation method in device simulations are the imposi-

Fig. 4. Correlation length dependence (exponential model) of the simulated
mobility in a semi-infinite device for a bulk mobility of 1100 cm=Vs. The
mobility in the case of a flat interface (� ! 1) and experimentally recorded
mobilities are also shown.

tion of proper boundary conditions at the source and drain end
of a MOSFET and an appropriate collection of statistics in the
“active” region of the channel. In device simulations, carriers are
injected from the source with a shifted Maxwellian, while they
are removed at the drain end and reallocated to the source at the
next time step. To isolate the impact of source injection velocity
from the effective mobility purely due to the SiOinterface, we
first inject carriers from the source to a 200-nm “buffer zone”
under the gate, which is immediately to the left of the actual “ac-
tive” gate area. The interface above the buffer and active zones
have similar statistical features and are reconstructed at the same
time. Carrier statistics are collected only from the “active” area,
which varies in size according to the gate length in question. Ac-
cordingly, “active” carrier number fluctuates during the simula-
tion and becomes relatively low at small devices, for which sim-
ulation times must be sufficiently long to build proper averages.
Finally, simulations are repeated for each MOSFET technology
generation for up to 300 times so that average quantities may be
built from large ensembles. For the device examples considered
in the following, nm and all other parameters are cali-
brated as before.

V. RESULTS AND DISCUSSIONS

Fig. 5 shows the distribution of carrier effective mobility in
300 (50 100 nm) MOSFETs, each possessing a unique inter-
face with a Gaussian autocorrelation. Note that mobility his-
togram fits reasonably well to a normal distribution, which is
used to extract the average value and standard deviation of mo-
bility in the ensemble. Such distributions are reminiscent of
MOSFET threshold variations, which have been investigated in
an earlier work [5] dealing with the electrostatic consequences
of random interfaces in ultrasmall MOSFETs.

The dependence of average value and standard deviation of
effective mobility on the gate length is studied in Figs. 6 and 7
for exponential and Gaussian autocorrelations. Both figures
have common features: the average electron mobility and
standard deviation rises as the channel length is reduced down
to 10 nm. However, the exponential model reveals a sharper
increase for the standard deviations below 30 nm as compared
to the monotonous increase in the Gaussian case. In all cases,
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Fig. 5. Mobility histogram corresponding to 300 (50� 100 nm) MOSFETs,
each having a unique interface with a Gaussian autocorrelation (� = 6 nm).
Effective mobility below the Si–SiOinterface distributes around a mean value
expected from the universal mobility curves. Also shown in the background is
a Gaussian fit intended as a guide to the eye.

Fig. 6. Dependence of average mobility and standard deviation in sub-100-nm
MOSFETs with an exponential interface autocorrelation (� = 6 nm) function.
Standard deviation increases significantly for MOSFET gate length shorter than
30 nm.

Fig. 7. Dependence of average mobility and standard deviation in sub-100-nm
MOSFETs with a Gaussian interface autocorrelation (� = 6 nm) function.
Standard deviation in this case increases in a monotonous fashion.

standard deviation appears to be limited to 10%. As the gate
dimensions decrease in MOSFETs, carriers experience less
number of scattering events with the interface during their
journey from source to drain. This explains the increase in
mobility. The standard deviation grows in size because in

short-gate devices actual details of the interface are discernable
and electron trajectories do not average out to a common
behavior over many collisions. While this intuition is helpful, it
is only through the statistical 3-D simulations we can describe
the mobility distributions quantitatively.

It is also important to reconcile the difference between
the meaning of in this work and that of experimental and
MC-based mobility calculations. Due to relative simplicity
of the transport model and of the empirical carrier–interface
interaction scheme used in this work, should really be
thought as a fitting parameter. Then all conclusions on the
actual device scales may be normalized with respect to,
hence eliminating concerns about the interpretation of this
parameter. Accordingly, we observe that universal mobility
curves are more readily violated in MOSFETs when the gate
length reaches below 6 scale (30–35 nm in this work). If
value is indeed limited to 1–2 nm in modern MOS structures,
then our analysis would suggest that universal mobility curves
will be reliable in MOSFETs as small as 10 nm in channel
length. Thus, the approach presented here provides an answer to
the original question regarding the extent of universal mobility
curves in modern MOSFETs.

Despite their significance, results reported so far can be re-
fined considerably if we introduce two significant changes to
the simulator: 1) a self-consistent field solution in the channel
which will take into account particle-mesh corrections, variation
of transverse field across the channel and inclusion of random
atomistic doping effects and 2) a quantum mechanical correc-
tion term which will alter particle distribution around the inter-
face. Such refinements, which must be carefully optimized to
retain the computational efficiency of the statistical simulator,
are already underway and will allow a comparison between the
classical and rigorous treatment of the problem.

VI. CONCLUSION

We have presented a 3-D statistical particle simulation frame-
work for the investigation of universal mobility in the pres-
ence of realistic Si–SiOinterfaces. The framework is based
on 3-D Brownian dynamics, is very fast, and can incorporate
Gaussian or exponential correlations for the interface recon-
struction. It employs a simple, efficient empirical algorithm for
the particle–interface interactions, which results in proper distri-
butions in velocity and real space and can be calibrated to repro-
duce MOSFET universal mobility behavior in the long-channel
limit. We used this framework to investigate the statistical limit
to the universal mobility curves in sub-100-nm MOSFETs. Sta-
tistical simulation of effective mobility below the Si–SiOin-
terfaces indicate that mobility fluctuations grow steadily in size
and becomes more effective for devices with , where

refers to the correlation length of the Si–SiOinterface.
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