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Abstract
We prove existence of solutions, and particularly positive solutions, of initial value
problems (IVPs) for nonlinear fractional differential equations involving the Caputo
differential operator of order α ∈ (0, 1). One novelty in this paper is that it is not
assumed that f is continuous but that it satisfies an L p-Carathéodory condition for
some p > 1

α
(detailed definitions are given in the paper). We prove existence on an

interval [0, T ] in cases where T can be arbitrarily large, called global solutions. The
necessary a priori bounds are found using a new version of the Bihari inequality that
we prove here.We show that global solutions exist when f (t, u) grows at most linearly
in u, and also in some cases when the growth is faster than linear. We give examples
of the new results for some fractional differential equations with nonlinearities related
to some that occur in combustion theory. We also discuss in detail the often used
alternative definition of Caputo fractional derivative and we show that it has severe
disadvantages which restricts its use. In particular we prove that there is a necessary
condition in order that solutions of the IVP can exist with this definition, which has
often been overlooked in the literature.
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1 Introduction

We study the existence of continuous solutions, and particularly non-negative solu-
tions, of initial value problems (IVPs) for nonlinear fractional differential equations
(FDEs) involving the Caputo fractional differential operator of order α ∈ (0, 1),
denoted Dα∗ , as in [6, Definition 3.2] (precise definitions are given in Sect. 2), which
is called a first order FDE in [18–20].

One of our goals is to prove existence for all t in an interval [0, T ], especially in
cases where T can be arbitrarily large, which we call global solutions.

We will employ the standard method of studying solutions via fixed points of the
associated Volterra integral operator N acting in the space of continuous functions,
using fixed point index theory or degree theory.

The IVP is written Dα∗ u(t) = f (t, u(t)) for almost every (a.e.) t ∈ [0, T ], u(0) =
u0, where Dα∗ u is the Caputo differential operator of a continuous function u which
satisfies an extra condition so that Dα∗ u(t) exists a.e., and N is a Volterra integral
operator Nu(t) = u0 + 1

�(α)

∫ t
0 (t − s)α−1 f (s, u(s)) ds involving an integral with a

singular kernel. Most previous works assume that f is continuous. We suppose that
f satisfies an L p-Carathéodory condition for some p > 1

α
(definition is given in

Sect. 2), a weaker condition than continuity. We will rigorously prove the equivalence
of solutions of the IVP and fixed points of N in our case.

The IVP was studied in Diethelm and Ford [7], existence and uniqueness results
are proved in that paper when f satisfies a Lipschitz condition in the u variable. In
the book of Diethelm [6], a local existence theorem (that is, a solution exists on some
(possibly short) interval [0, h]) is proved when f is continuous, see [6, Theorem 6.1].
A global existence result is proved in [6, Corollary 6.3], when the nonlinearity f
satisfies a sublinear growth assumption

| f (t, u)| ≤ c1 + c2|u|μ for each t ∈ [0, T ] and u ∈ R, (1.1)

where μ ∈ (0, 1), c1, c2 ∈ R+ and f : [0, T ] × R → R is continuous.
The existence of global non-negative solutions for the IVP was studied in [29,

Theorem 4.8] under the following weaker conditions on f ,

f (t, u) = t−γ g(t, u) ≤ Mt−γ (1 + u) for (t, u) ∈ [0, T ] × R+, (1.2)

where M > 0, γ ∈ [0, α) and g : [0, T ] × R+ → R+ is continuous, so f has a
singularity when t = 0. A new Gronwall inequality, suitable for fractional problems,
and involving the exponential function, was proved in [29] and used to obtain a priori
bounds.

Eloe and Masthay [10] consider an IVP for a problem with α ∈ (n − 1, n] n ∈ N,
with a nonlinearity which depends on classical derivatives of order at most n−1. They
establish a Peano type local existence theorem, a Picard type existence and uniqueness
theorem, and give some results related to maximal intervals of smooth solutions.

Lakshmikantham and Vatsala [17] investigate the IVP with f continuous and dis-
cuss maximal and minimal solutions assuming a Hölder condition is satisfied, and
they give a global existence result assuming that a maximal solution exists globally.
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964 K. Lan, J. R. L. Webb

One of our main aims is to treat more general nonlinearities, f : [0, T ]×R → R is
assumed to be L p-Carathéodory as in Definition 2 below. We also have less restrictive
conditions on the growthof f in theu variable than (1.1) and (1.2) byusing a newBihari
inequality, replacing a continuity hypothesis by an integrability one, that we prove
here. We will prove a general existence theorem which shows that global solutions
exist when f grows at most linearly in u, and we have local existence when there is
superlinear growth of the form ur for r > 1. A new result we obtain is that global
solutions can also exist in some cases when the growth is faster than linear.

The pioneering work on obtaining a priori bounds for fractional problems was done
by Henry [14], this is applicable to functions with linear growth, the obtained bounds
involve a Mittag-Leffler function. Many generalizations have been given, but we are
not aware of any bounds involving Mittag-Leffler functions which are useful in our
case. Medved′ [22] gave several Bihari type inequalities in the continuous case, with
a more complicated appearance than our result. Zhu [34, Theorem 3.1] proved some
results similar to ours under continuity conditions. Zhu [33] has also given inequalities
of Gronwall type involving the exponential function in the linear growth case.

As an example of our results, we obtain results on the existence of non-negative
solutions of the IVP for first order FDEs with nonlinearities of a type that occur in
combustion theory.

Many papers in the literature have studied solutions of Caputo FDEs with an often
used definition of Caputo fractional derivative, denoted in this paper Dα

C , which was
given in Caputo [3, Eq.(5)]. The mathematical discussions of IVPs usually seek solu-
tions inC[0, T ] of the corresponding integral equation, where f (t, u) is only assumed
to be continuous. We discuss the definition Dα

C in detail in Sect. 9 and we show that
it has severe disadvantages. In particular we show that there is a necessary condi-
tion in order that solutions of the IVP can exist with this definition, which fact has
often been overlooked in the literature. There are many published papers that claim
an equivalence between the IVP and the integral equation, but this is false with the
definition Dα

C without the necessary condition, and there are no known conditions on
a function f (t, u) in order for the necessary condition to be satisfied by Fu (where
Fu(t) = f (t, u(t)), the Nemytskii operator). The related results in these paper there-
fore lack a sound foundation, the definition Dα

Cu for α ∈ (0, 1) should not be used in
the nonlinear case.

Fortunately, the definition ofCaputo differential operator Dα∗ u, as in thewell-known
texts Diethelm [6, Definition 3.2], Kilbas, Srivastava and Trujillo (KST) [15, p. 91],
is appropriate, and this is the definition we shall use to prove our results.

2 Preliminaries

In order to have simpler formulas we consider functions defined on an arbitrary finite
interval [0, T ], which is equivalent to any finite interval [a, b] by the change of variable
(simple translation) τ = a + t for t ∈ [0, T ] where T = b − a.

In this paper it is implicit that all functions are measurable, and that all integrals are
Lebesgue integrals; almost everywhere (and almost every) will be abbreviated a.e..
For 1 ≤ p < ∞, L p = L p[0, T ] denotes the usual space of functions whose p-th
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power is Lebesgue integrable endowed with the norm ‖ f ‖p := (∫ T
0 | f (s)|p ds)1/p

and L∞ is the space of essentially bounded functions with the norm ‖ f ‖∞ :=
esssupt∈[0,T ] | f (t)|.

The space of functions that are continuous on [0, T ] is denoted byC[0, T ] or some-
times simply C and is endowed with the supremum norm ‖u‖∞ := maxt∈[0,T ] |u(t)|.
C1 = C1[0, T ] denotes the space of continuously differentiable functions, first
order derivatives exist and are continuous. A subscript + will denote those func-
tions in the corresponding space that are non-negative (a.e. in L p spaces). For
0 < α < 1, the Hölder space C0,α[0, T ], consists of all functions f such that
| f (t) − f (τ )| ≤ M |t − τ |α for some constant M > 0.

We will also use the space of absolutely continuous functions which is denoted
AC = AC[0, T ]. The space AC is the appropriate space for the fundamental theorem
of the calculus for Lebesgue integrals. In fact, we have the following equivalence.

u ∈ AC[0, T ] if and only if u′(t) exists for a.e. t ∈ [0, T ]
with u′ ∈ L1[0, T ] and u(t) − u(0) =

∫ t

0
u′(s) ds for all t ∈ [0, T ]. (2.1)

We write g ∈ Lip and say that g is Lipschitz (or satisfies a Lipschitz condition) on its
domain dom(g) if there is a constant L > 0 such that |g(u) − g(v)| ≤ L|u − v| for
all u, v ∈ dom(g).

The following strict inclusions are well known (on a closed bounded interval).

C1 ⊂ Lip ⊂ AC ⊂ differentiable a.e.,

AC ⊂ uniformly continuous ⊂ C .

It is also known that, on a bounded interval, the sum and pointwise product of functions
in AC belong to AC and if u ∈ AC and g ∈ Lip then the composition g ◦ u ∈ AC ,
but the composition of AC functions need not be AC .

Note that there are functions that are Hölder continuous but are not AC , for example
a Weierstrass function, and AC functions that are not Hölder continuous.

Definition 1 A function f : [0, T ] × R → R (or f : [0, T ] × R+ → R+) is said to
satisfy the Carathéodory conditions if

(C1) f (t, u) is a continuous function of u for almost all t ∈ [0, T ];
(C2) f (t, u) is a measurable function of t for all u ∈ R (respectively, all u ∈ R+).

Definition 2 f is said to be an L p-Carathéodory function for some p ∈ [1,∞] if it
satisfies the Carathéodory conditions and
(L p − C) For each ρ > 0, there exists gρ ∈ L p

+[0, T ] such that

| f (t, u)| ≤ gρ(t) for a.e.t ∈ [0,T] and all u ∈ [0, ρ].

This class strictly contains the class of continuous functions and, if p > 1/α, the
class of functions f having the form f (t, u) = t−γ g(t, u) where g is continuous and
γ < α, considered in [29].
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966 K. Lan, J. R. L. Webb

Given a function f satisfying the Carathéodory conditions and a function u :
[0, T ] → R, define a new function Fu : [0, T ] → R by

(Fu)(t) = f (t, u(t)), F is called the Nemytskii or substitution operator.

If f is L p-Carathéodory, then for u ∈ C[0, T ], Fu ∈ L p.
Since nomenclature is not uniform in the literature we give some definitions. Let

X be a Banach space with norm ‖ · ‖. Recall that a map, nonlinear or linear, N : D =
dom(N ) ⊂ X → X is said to be bounded if it maps each bounded subset S ⊂ D into
a bounded set. N is called compact if N (S) (the closure) is a compact set for each
bounded subset S ⊂ D. N is called completely continuous if N is both continuous and
compact. Obviously a compact linear operator is bounded and completely continuous.

A cone is a closed convex set K ⊂ X such that u, v ∈ K and λ ≥ 0 imply that
u + v ∈ K and λu ∈ K , with K ∩ (−K ) = {0}.

Let K be a cone in X both endowed with norm ‖x‖. For r > 0, let Kr = {x ∈ K :
‖x‖ < r}, Kr = {x ∈ K : ‖x‖ ≤ r} and ∂Kr = {x ∈ K : ‖x‖ = r}.

The following well-known result shows that to prove existence of fixed points of a
nonlinear map N we need two ingredients, a completely continuous operator and an
a priori bound.

Lemma 1 Let r > 0. If N : Kr → K is completely continuous and satisfies the
Leray-Schauder condition:

(LS) u = λNu for all u ∈ ∂Kr and all λ ∈ (0, 1),
then there exists u ∈ Kr such that Nu = u.

The result is a well-known property of fixed point index when we use a cone K , and
of Leray-Schauder degree when K is replaced by X and Kr is replaced by the ball
Br := {x : ‖x‖ < r}, etc..

In our case we will obtain compactness from the properties of fractional integrals,
as in Sect. 3. The a priori bounds we need will come from new Bihari inequalities
which we prove in Sects. 5 and 6.

We often use the elementary inequalities, for x, y ≥ 0, m ∈ [0,∞),
(x + y)m ≤ (xm + ym) if m ≤ 1, and (x + y)m ≤ 2m−1(xm + ym) if m ≥ 1.

3 Fractional integrals and derivatives

In the study of fractional integrals and fractional derivatives, Gamma and Beta func-
tions occur frequently. For x > 0, y > 0, the Gamma function is defined by

�(x) :=
∫ ∞

0
sx−1 exp(−s) ds, (3.1)

and the Beta function is defined by

B(x, y) :=
∫ 1

0
(1 − s)x−1sy−1 ds. (3.2)
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These are well defined Lebesgue integrals for x > 0, y > 0 and it is well known, and

proved in calculus texts, that B(x, y) = �(x)�(y)

�(x + y)
.

Definition 3 The Riemann-Liouville (R-L) fractional integral of order α > 0 of a
function f ∈ L1[0, T ] is defined for a.e. t by

I α f (t) := 1

�(α)

∫ t

0
(t − s)α−1 f (s) ds. (3.3)

The integral I αu is the convolution of the L1 functions h, f where h(t) = tα−1/�(α),
so by the well known results on convolutions Iα f is defined as an L1 function, in
particular I α f (t) is finite for a.e. t . If α = 1 this is the usual integration operator
which we denote I .

Some authors do not state f ∈ L1 but say the R-L integral exists for a function f
“provided that the integral exists for t > 0”; this is not precise, it is not clear which
class of functions is being considered, and if it is intended to be for all t > 0, then it
restricts its applicability.

A standard example is the fractional integral of powers of t . Consider h(t) = tγ

for γ > −1, then h ∈ L1 and for 0 < α < 1, setting σ = ts we have

I αh(t) = 1

�(α)

∫ t

0
(t − s)α−1sγ ds = 1

�(α)
tα+γ

∫ 1

0
(1 − σ)α−1σγ dσ

= tα+γ 1

�(α)
B(α, 1 + γ ) = tα+γ �(1 + γ )

�(α + γ + 1)
.

This shows that I αh ∈ L1, but, since α + γ can be negative, I αh(t) need not exist at
t = 0 and then is not continuous.

We list a few of the useful properties of the fractional integral Iα for 0 < α < 1, see
the texts Diethelm [6], Samko, Kilbas and Marichev (SKM) [25], or the paper [30].

Proposition 1 Let 0 < α < 1.

1. The fractional integral operator Iα is a bounded linear operator from L p[0, T ]
into L p[0, T ] for all 1 ≤ p ≤ ∞.

2. For 1 ≤ p < 1/α, I α is a bounded linear operator from L p[0, T ] into Lr [0, T ]
for 1 ≤ r < p/(1 − α p); if 1 < p < 1/α, then I α maps L p[0, T ] into Lr [0, T ]
for r = p/(1 − α p).

3. For p > 1/α, the operator Iα is bounded from L p into the Hölder space C0,α−1/p,
thus, for f ∈ L p, I α f is continuous. In particular, (I α f )(0) = 0.

4. For p > 1/α, the operator Iα : L p → C[0, T ] is completely continuous.
5. I α maps C[0, T ] into C[0, T ] and AC[0, T ] into AC[0, T ].
6. I α does not map (all of) C1[0, T ] into C1[0, T ] (e.g. constants).
7. I α does not map (all of) C[0, T ] into AC[0, T ]. (Not simple, see Sect.9).
The case of equality for r in 2. is due to Hardy-Littlewood (HL) [13, §3.3. Theorem

4]. The proof of 3. is due to HL [13, §5.1, Theorem 12]) and is given in SKM [25,
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968 K. Lan, J. R. L. Webb

Theorem 3.6]. A slightly weaker result with a simpler proof is given in Webb [32,
Theorem 4.5]. The compactness result 4. is a consequence of 3. since the Hölder
space C0,α−1/p is compactly embedded in C (the simple proof of compactness of the
embedding is given, for example, in [30, Addendum]). A completely different proof
of compactness and continuity is given in Lan [20, Theorem 3.5].

We state another useful property, the semigroup property.

Lemma 2 Letα, β > 0 andu ∈ L1[0, T ]. Then I α I βu = I α+βu as L1 functions, thus,
I α I βu(t) = (I α+βu)(t) for a.e. t ∈ [0, T ], in fact for every t for which (I α+β |u|)(t)
exists. If u is continuous this holds for all t ∈ [0, T ]. If u ∈ L1 and α +β ≥ 1 equality
again holds for all t ∈ [0, T ].

The proof is by interchanging the order of integration, using Fubini’s theorem, for
example see the details in [30].

As in SKM [25, Definition 2.3], and KST [15, Eq.(2.1.36)], we will write
I α(L1[0, T ]) to denote the space of functions f such that f = I αg for some g ∈ L1.

The following characterization is known, SKM [25, Theorem 2.3], and is also
proved in Lan [18, Proposition 2.2] and Webb [30, Proposition 3.6].

Proposition 2 Let α ∈ (0, 1) and f ∈ L1[0, T ]. Then I 1−α f ∈ AC and
(I 1−α f )(0) = 0 if and only if f ∈ I α(L1[0, T ]).

Let D denote the usual differentiation operator, Du = u′. The Riemann-Liouville
(R-L) fractional derivative of order α ∈ (0, 1) is defined as follows.

Definition 4 For α ∈ (0, 1) and u ∈ L1 the R-L fractional derivative Dαu is defined
when I 1−αu ∈ AC by

Dαu(t) := D I 1−αu(t), a.e. t ∈ [0, T ]. (3.4)

For D I 1−αu(t) to be defined for a.e. t , it is necessary that I 1−αu should be dif-
ferentiable a.e., but that is not sufficient when considering IVPs for R-L fractional
differential equations via a Volterra integral equation. The condition I 1−αu ∈ AC has
often been omitted in definitions in published papers, but its necessity was already
stated in the monograph SKM, see [25, Definition 2.4] and the related comments in
the ‘Notes to §2.6’ [25, p. 83].

Definition 5 [6, Definition 3.2], [15, p. 91]. The Caputo differential operator is defined
by Dα∗ u := Dα(u−u(0))whenever this R-L derivative exists, that is when u(0) exists
and I 1−αu ∈ AC .

Note that (I 1−αu(0))(t) = u(0)tα

�(α+1) ∈ AC , so the condition I 1−αu ∈ AC is the

same as I 1−α(u − u(0)) ∈ AC .
Another often used definition of Caputo derivative is when the derivative and frac-

tional integral are taken in the reverse order to that taken in the R-L derivative.

Definition 6 For α ∈ (0, 1) and u ∈ AC the Caputo fractional derivative Dα
Cu is

defined for a.e. t by Dα
Cu(t) := I 1−αDu(t) = I 1−αu′(t).
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For u ∈ AC , Du ∈ L1 and so Dα
Cu = I 1−α(Du) is defined as an L1 function.

Unfortunately, this definition has severe disadvantages which make its use question-
able, see Sect. 9 for more details.

4 Equivalence of IVP and integral equation

We will study the existence of solutions of initial value problems (IVPs) for fractional
differential equations (FDEs) of order α ∈ (0, 1) of the form

Dα∗ u(t) = f (t, u(t)) for a.e. t ∈ [0, T ], u(0) = u0, (4.1)

where u0 is given, and when f is L p-Carathéodory.

Definition 7 Let f be L p-Carathéodory. A solution of the IVP (4.1) on an inter-
val [0, T ] is a continuous function u with u(0) = u0, I 1−αu ∈ AC , and such that
D(I 1−α(u − u0))(t) = f (t, u(t)) for a.e. t ∈ [0, T ].

Let P denote the standard cone of non-negative continuous functions, that is,

P = {u ∈ C[0, T ] : u(t) ≥ 0 for each t ∈ [0, T ]}. (4.2)

P inherits the norm of C[0, T ].
Since there is almost no difference between the arguments for existence of solutions

in C[0, T ] and the existence of non-negative solutions in P , we will concentrate on
the study of non-negative solutions when f (t, u) ≥ 0 for t ∈ [0, T ] and u ≥ 0.

We will study non-negative solutions of (4.1) via fixed points in the cone P of the
nonlinear integral operator N defined by

Nu(t) = u0 + (I αFu)(t) for each t ∈ [0, T ], (4.3)

where F is the Nemytskii operator (Fu)(t) = f (t, u(t)).
We will prove equivalence of these problems in Lemma 4. First we prove an impor-

tant property of the Nemytskii operator.

Lemma 3 Let f : [0, T ] × R+ → R+ be L p-Carathéodory for some p ∈ [1,∞).
Then the Nemytskii operator F maps P into L p

+ and is bounded and continuous.

Proof Let u ∈ P . By (L p − C), Fu ∈ L p
+, hence, F maps P into L p

+. Let S ⊂ P be
bounded. Then there exists ρ > 0 such that ‖u‖∞ ≤ ρ for every u ∈ S. By (L p −C),
we have

∫ T

0
|(Fu)(t)|p dt =

∫ T

0
| f (t, u(t))|p dt ≤

∫ T

0
|gρ(t)|p dt, for all u ∈ S,

thus F : P → L p
+(0, T ) is bounded. Suppose that un → u in P . Then there exists

ρ > 0 such that ‖un‖∞ ≤ ρ and ‖u‖∞ ≤ ρ. By the Carathéodory conditions
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u �→ f (t, u) is continuous for a.e. t ∈ [0, T ] and we have

lim
n→∞ | f (t, un(t)) − f (t, u(t))|p = 0 for a.e t ∈ [0, T ].

By (L p − C), we have for a.e. t ∈ [0, T ],

f (t, un(t)) ≤ gρ(t) and f (t, u(t)) ≤ gρ(t).

This implies that

| f (t, un(t)) − f (t, u(t))|p ≤ (
f (t, un(t)) + f (t, u(t))

)p ≤ 2pg p
ρ (t), a.e. t ∈ [0, T ].

Since gρ ∈ L p, by Lebesgue’s dominated convergence theorem we have

lim
n→∞

∫ T

0
|(Fun)(t) − (Fu)(t)|p dt =

∫ T

0
lim
n→∞ | f (t, un(t)) − f (t, u(t))|p dt = 0,

which proves that F : P → L p
+ is continuous. ��

We now show the equivalence between solutions of (4.1) and fixed points of N
in (4.3), which will apply to Fu when u is continuous and f is L p-Carathédory for
p > 1/α, the case we study. The result is very similar to Theorem 4.2 in [18]. For
completeness, we provide a proof.

Lemma 4 Let 0 < α < 1 and suppose that f ∈ L p for some p > 1/α. Then the
following assertions are equivalent.

(i) u ∈ C[0, T ] satisfies

u(t) = u0 + I α f (t) for each t ∈ [0, T ]. (4.4)

(i i) u ∈ C[0, T ], I 1−αu ∈ AC, and u is a solution of the IVP

Dα∗ u(t) = f (t) for a.e. t ∈ [0, T ], u(0) = u0. (4.5)

Proof Suppose that (i) holds. For p > 1/α and f ∈ L p[0, T ], we have I α f ∈ C[0, T ]
(Proposition 1 (2)) and so u(0) = u0. Using the semigroup property given in Lemma 2,
we get I 1−α(u − u0)(t) = I f (t) which is valid for every t ∈ [0, T ] since I 1−αu
is continuous and I f ∈ AC . Thus I 1−α(u − u0) ∈ AC and differentiating gives
Dα∗ u(t) = f (t) for a.e. t ∈ [0, T ].

Now let (i i) be satisfied. Then Dα∗ u(t) = D(I 1−α(u − u0))(t) = f (t) a.e. and
I 1−α(u − u0)(0) = 0. Using the AC property, we can integrate to obtain I 1−α(u −
u0)(t) = I f (t). Applying I α and using the semigroup property proves I (u−u0)(t) =
I I α f (t), differentiating gives u(t) − u0 = I α f (t) for every t ∈ [0, T ], since both
sides are continuous functions. ��
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5 New Bihari inequality for regular kernels

5.1 Theory

The Bihari inequality was proved by Bihari in [1]. It was assumed that a non-negative
continuous function u satisfies the inequality

u(t) ≤ a + b
∫ t

0
φ(s)w(u(s)) ds, for t ∈ [0, T ], (5.1)

where a, b are positive constants, φ is continuous and non-negative, w : [0,∞) →
[0,∞) is a non-negative non-decreasing continuous function and there exists 0 <

x0 ≤ a such that w(x0) > 0. Then for x0 ≤ x1 ≤ a a function W is defined by

W (x) =
∫ x

x1

dy

w(y)
, x ≥ x1, (5.2)

and it is deduced that

u(t) ≤ W−1
(
W (a) + b

∫ t

0
φ(s) ds

)
, t ∈ [0, T1], (5.3)

where T1 is such that the range condition

Wa,b,φ(t) := W (a) + b
∫ t

0
φ(s) ds ∈ range(W ), for all t ∈ [0, T1], (5.4)

holds. Since W is a strictly increasing continuous function, W (x) → W∞ as x → ∞
(whereW∞ = ∞ is allowed) and range(W ) = [0,W∞), hence its inverseW−1 is well
definedwith dom(W−1) = range(W ) andW−1 : [0,W∞) → [x1,∞) is a continuous,
strictly increasing function. The range condition can be written 0 ≤ Wa,b,φ(t) < W∞
for all t ∈ [0, T1]. Since W (a) ≥ W (x1) = 0, T1 ≥ 0 always exists. In the trivial case
where φ(t) = 0 for a.e. t , Wa,b,φ(t) = W (a) ∈ range(W ) for all t and then T1 = T .
From (5.1) we get u(t) ≤ a; the conclusion (5.3) is correct, but no Bihari inequality
is required in this case. We suppose this trivial case does not occur. Note that, either
W∞ = ∞ and so (5.4) always holds and T1 = T , or else W∞ < ∞, then either there
exists T0 ≤ T such that Wa,b,φ(T0) = W∞ so that T1 < T , or Wa,b,φ(T ) < W∞
which gives T1 = T and (5.3) holds for all t ∈ [0, T ].

We need a more general version when φ ∈ L1+ and a, b can be functions in (5.1)
where it is supposed that a(t) ≥ x1 ≥ x0.
Notation For bounded functions a, b : [0, T ] → R+ we denote by A, B the functions
A(t) := sups∈[0,t] a(s), B(t) := sups∈[0,t] b(s).

We use the notations as given above and we write:

WA,B,φ(t) := W (A(t)) + B(t)
∫ t

0
φ(s) ds. (5.5)
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Since A, B are non-decreasing, WA,B,φ is also non-decreasing and WA,B,φ(0) =
W (a(0)) exists and is non-negative since it will be assumed that a(t) ≥ x1 ≥ x0.
WA,B,φ(t) will be positive except in the trivial case where W (A(t)) = 0 and
B(t)

∫ t
0 φ(s) ds = 0. We will exclude this trivial case.

Theorem 1 Let a, b be positive, bounded functions, let u ∈ C+[0, T ], φ ∈ L1+[0, T ]
with φ > 0 on a set of positive measure, and let w be a non-negative, continuous,
non-decreasing function defined on [0,∞) and w(x0) > 0 for some x0 > 0. Suppose
that a(t) ≥ x1 ≥ x0 for every t ∈ [0, T ] and u satisfies the integral inequality,

u(t) ≤ a(t) + b(t)
∫ t

0
φ(s)w(u(s)) ds, for t ∈ [0, T ]. (5.6)

Then, for W defined by W (x) = ∫ x
x1

dy
w(y) for x ≥ x1, we have

u(t) ≤ W−1
(
W (A(t)) + B(t)

∫ t

0
φ(s) ds

)
= W−1(WA,B,φ(t)

)
, (5.7)

for every t ∈ [0, T1], where T1 is such that

WA,B,φ(t) ∈ range(W ) for all t ∈ [0, T1], that is, 0 ≤ WA,B,φ(T1) < W∞. (5.8)

Proof We first consider the case when a, b are positive constants. Define a function v

by

v(t) = a + b
∫ t

0
φ(s)w(u(s)) ds.

Then v(0) = a, v(t) ≥ a ≥ x0 > 0, u(t) ≤ v(t) and v ∈ AC[0, T ] since w(u) is
continuous and φ ∈ L1. Hence v′(t) exists for a.e. t and is an L1 function. Since w is
non-decreasing, we have for a.e. t ,

v′(t) = bφ(t)w(u(t)) ≤ bφ(t)w(v(t)), or
v′(t)

w(v(t))
≤ bφ(t), a.e. t,

where w(v(t)) > 0 for every t ∈ [0, T ]. Note that W is a strictly increasing C1

function, hence is Lipschitz on every bounded interval, therefore W (v) ∈ AC[0, T ].
By integration we obtain

W (v(t)) − W (v(0)) ≤ b
∫ t

0
φ(s) ds, that is W (v(t)) ≤ Wa,b,φ(t).

By the range condition (5.8) and since W−1 is increasing, we deduce that

u(t) ≤ v(t) ≤ W−1(Wa,b,φ(t)
)
, for t ∈ [0, T1]. (5.9)
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Secondly, suppose that a, b are positive functions with a(t) ≥ x1. For τ ∈ [0, T1]
(arbitrary) we have

u(t) ≤ A(τ ) + B(τ )

∫ t

0
φ(s)w(u(s)) ds, for t ∈ [0, τ ].

By the assumption (5.8), for all t ∈ [0, τ ],

W (A(τ )) + B(τ )

∫ t

0
φ(s) ds ≤ W (A(τ )) + B(τ )

∫ τ

0
φ(s) ds < W∞.

Thus, by the case just proved, this gives

u(t) ≤ W−1
(
W (A(τ )) + B(τ )

∫ t

0
φ(s) ds

)
, for t ∈ [0, τ ].

This inequality holds for t = τ , so, since τ ∈ [0, T1] is arbitrary, (5.7) holds. ��
Remark 1 If w(u) > 0 for all u > 0 then we may assume that a is only non-negative
by taking x0 arbitrarily small, replacing a by a + x0 and then let x0 → 0. Of course
A(t) = a(t) and B(t) = b(t) when a and b are non-decreasing functions. It is
necessary that x1 ≤ a so that W (a) ≥ 0 exists according to our definition. We allow
w(0) = 0, but it is only required that w(0) ≥ 0 and w(x0) > 0 for some x0 > 0.

The original result was proved by Bihari who had a, b constants and supposed that
φ is continuous, but it was only implicit that w(x0) > 0 for some x0 > 0. Bihari
showed that although the definition of W depends on x1 > 0 the final estimate (5.9)
does not depend on x1. Since this can easily be mis-stated we give a precise result for
the case when a, b are constants.

Theorem 2 Let the hypotheses of Theorem 1 hold. Suppose there are two possible
initial points x1, x2, with x0 ≤ x1 ≤ a and x2 > x1, with possibly x2 > a, and define
W1,W2 with a common domain of definition [x1,∞) by

Wj (x) :=
∫ x

x j

du

w(u)
, x ≥ x1, j = 1, 2. (5.10)

Then we have

W−1
2

(
W2(a) + b

∫ t

0
φ(s) ds

)
= W−1

1

(
W1(a) + b

∫ t

0
φ(s) ds

)
. (5.11)

Proof Note that W2(x) can take negative values when x1 ≤ x < x2. In fact, thanks to
the common domain of definition we have

W1(x) :=
∫ x

x1

du

w(u)
=

∫ x2

x1

du

w(u)
+

∫ x

x2

du

w(u)
=: δ + W2(x), for x ≥ x1,
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where δ is a positive constant. Then range(W1) = [0, c) implies that range(W2) =
[−δ, c−δ) andW2(a)+b

∫ t
0 φ(s) ds ∈ [−δ, c−δ) if andonly ifW1(a)+b

∫ t
0 φ(s) ds ∈

[0, c). Moreover W−1
2 (y) = W−1

1 (y + δ) for y ∈ [−δ, c − δ). Using this easily gives
the equality (5.11). ��

Remark 2 The common domain of definition is needed otherwise W2(a) might not
be defined. The same result will apply to the case of functions since the proof in
Theorem 1 reduces it to the case of constants.

Butler and Rogers [2] gave a more general version of the Bihari inequality when
φ(s) is replaced by k(t, s) and u is replaced by f (u) for suitable functions f , k. They
considered the case when a, b are positive functions by reduction to the case when
a, b are constants using the same method as in the proof above. They did not check
that certain functions are AC so that the integration step was not shown to be valid,
some extra conditions on their functions are required to justify this.

We have not been able to find the results of Theorems 1 and 2 in the literature when
φ ∈ L1; we welcome any information. The method of the proof is the standard one
but with some extra care needed.

5.2 Examples

We first consider three standard examples when w(u) = ur for r > 0, for 0 < r < 1,
for r = 1, and for r > 1. The first two cases give global estimates valid for arbitrary
T , the third only gives a local estimate. We then give a fourth family of examples with
wk(u) = (k + u) ln(k + u) where k ≥ 1 and again we get a global estimate valid for
arbitrary T . These are cases where w(u) grows faster than linear, but to be valid for
any T , such a function w must grow more slowly than ur for any power r > 1.

In all the examples it is supposed that the hypotheses and notation of Theorem 1
hold.

Example 1 w(u) = ur for 0 < r < 1. This case is well-knownwhen a, b are constants
and is easy to calculate, we only state the result. In this case range(W ) = [0,∞) and
the range condition is always satisfied. The result is that if

u(t) ≤ a(t) + b(t)
∫ t

0
φ(s)ur (s) ds, t ∈ [0, T ], (5.12)

holds for an arbitrary T > 0, then, from Theorem 1,

u(t) ≤
(
A(t)1−r + (1 − r)B(t)

∫ t

0
φ(s) ds

)1/(1−r)
, for all t ∈ [0, T ]. (5.13)

Example 2 w(u) = u, theGronwall inequality. Since thefinal estimate does not depend
on the initial point x0, we choose x1 = 1 and let W (x) = ∫ x

1
1
u du = ln(x). Then

range(W ) = [0,∞) so the range condition is always satisfied andW−1(y) = exp(y),
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y ≥ 0. Let u ≥ 0 be continuous and satisfy the inequality

u(t) ≤ a(t) + b(t)
∫ t

0
φ(s)u(s) ds, for t ∈ [0, T ], (5.14)

for an arbitrary T > 0. Then we have

u(t) ≤ A(t) exp
(
B(t)

∫ t

0
φ(s) ds

)
, for t ∈ [0, T ]. (5.15)

The easy calculation is omitted.

Example 3 w(u) = ur for r > 1. This case is known when a, b are constants and φ is
continuous, we give some details to illustrate that the bound obtained does not depend
on the choice of initial point x0. The result is as follows. If

u(t) ≤ a + b
∫ t

0
φ(s)ur (s) ds, t ∈ [0, T ], (5.16)

then

u(t) ≤ 1
(

1
ar−1 − b(r − 1)

∫ t
0 φ(s) ds

)1/(r−1)
, t ∈ [0, T1], (5.17)

where T1 is such that ar−1b(r − 1)
∫ T1
0 φ(s) ds < 1.

In fact, let 0 < x0 ≤ a and let

W (x) :=
∫ x

x0

du

ur
= 1

r − 1

[ 1

xr−1
0

− 1

xr−1

]
.

Then range(W ) = [0, 1
(r−1)

1
xr−1
0

), and for y ∈ range(W ),

W−1(y) = x0
(
1 − xr−1

0 (r − 1)y
)1/(r−1)

.

Then we obtain

W−1(W (a) + b
∫ t

0
φ(s) ds

)

= x0
(
1 − xr−1

0 (r − 1)
[

1
r−1

( 1
xr−1
0

− 1
ar−1

) + b
∫ t
0 φ(s) ds

])1/(r−1)
.

(5.18)

Simplifying, the x0 term on upper and lower part of the fraction cancels, and we get
the final result (5.17).
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In this case, for a given T , it can happen that T1 = T , for example when a, b and∫ T
0 φ(s) ds are sufficiently small, but the result will usually not apply for an arbitrary
T > 0.

Example 4 Letw(u) = (1+u) ln(1+u) so thatw is positive and increasing for u > 0.
Suppose u ≥ 0 is continuous and satisfies the inequality

u(t) ≤ a + b
∫ t

0
φ(s)w(u(s)) ds, for t ∈ [0, T ], (5.19)

for an arbitrary T > 0. Let 0 < x0 ≤ a and define

W (x) =
∫ x

x0

du

w(u)
= ln(ln(1 + x)) − ln(ln(1 + x0)), with dom(W ) = [x0,∞).

Then u satisfies the bound

u(t) ≤ (1 + a)exp(b
∫ t
0 φ(s) ds) − 1, for all t ∈ [0, T ]. (5.20)

We show how the Bihari inequality applies. Since the final estimate does not depend
on the initial point x0, we choose x1 = exp(1) − 1 and consider W1(x) = ∫ x

x1
du

w(u)
=

ln(ln(1 + x)). Then the range condition is satisfied and W−1
1 (y) = exp(exp(y)) − 1

for y ≥ 0 and from Theorem 1, after some simplification, we obtain the conclusion

u(t) ≤ W−1
1

(
W1(a) + b

∫ t

0
φ(s) ds

)
= (1 + a)exp(b

∫ t
0 φ(s) ds) − 1, (5.21)

for all t ∈ [0, T ].
Similarly, we can considerwk(u) = (k+u) ln(k+u) for any constant k ≥ 1. From

the inequality

u(t) ≤ a + b
∫ t

0
φ(s)wk(u(s)) ds, for t ∈ [0, T ], (5.22)

by essentially the same calculation we obtain the conclusion

u(t) ≤ (k + a)exp(b
∫ t
0 φ(s) ds) − k, for all t ∈ [0, T ]. (5.23)

We can replace the constants a, b by functions A, B as in Theorem 1. The inequality
(5.23) is an explicit a priori bound, which is valid for every T > 0.

Remark 3 Aslightly less general result than that ofExample 4was proved,with another
notation, in Engler [11, p.257] by a direct integration, which improved on a result in
Haraux [12, p.139]. Engler does not give the case when the constants are replaced by
functions. We believe this is the first time the result has been shown as a corollary of
Bihari’s inequality.
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6 New Bihari inequality for singular kernels

To obtain a priori bounds for the fractional integral equation

u(t) = u0 +
∫ t

0
(t − s)α−1 f (s, u(s)) ds, (6.1)

when f is L p-Carathéodory and satisfies some growth condition, we will apply a
suitable Bihari inequality. The following new result fits our needs.

Theorem 3 Let 0 < α < 1, 1/α < p < ∞ and q = p/(p − 1). Let u ∈ C+[0, T ],
φ ∈ L p

+[0, T ] with φ > 0 on a set of positive measure, and let ŵ : [0,∞) → [0,∞)

be a function such that ŵ p(u) ≤ w(u p) for all u > 0, where w is a non-decreasing
continuous function and w(x0) > 0 for some x0 > 0. Let a, b be positive bounded
functions such that 2p−1a p(t) ≥ x0 for t ∈ [0, T ] and suppose that

u(t) ≤ a(t) + b(t)
∫ t

0
(t − s)α−1φ(s)ŵ(u(s)) ds, for t ∈ [0, T ]. (6.2)

Define W (x) := ∫ x
x0

dy
w(y) . Then we have

u(t) ≤
(
W−1[W (2p−1Ap(t)) + 2p−1C(t)

∫ t

0
φ p(s) ds

])1/p
, for t ∈ [0, T1]

(6.3)

where T1 is such that the following range condition holds

W (2p−1Ap(t)) + 2p−1C(t)
∫ t

0
φ p(s) ds ∈ range(W ), for t ∈ [0, T1], (6.4)

where

C(t) := B p(t)
( tq(α−1)+1

q(α − 1) + 1

)p−1
. (6.5)

Proof Applying Hölder’s inequality in (6.2) gives

u(t) ≤ a(t) + b(t)
(∫ t

0
(t − s)q(α−1) ds

)1/q(∫ t

0
φ p(s)ŵ p(u(s)) ds

)1/p
.

Note that q(α − 1) > −1 since we are taking p > 1/α, so the first term is integrable.
Thus we obtain

u(t) ≤ a(t) + b(t)
( tq(α−1)+1

q(α − 1) + 1

)1/q(∫ t

0
φ p(s)w(u p(s)) ds

)1/p
.
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Raising both sides to the power p and using the inequality (x+ y)p ≤ 2p−1(x p + y p),
(x, y ≥ 0, p ≥ 1), we obtain

u p(t) ≤ 2p−1a p(t) + 2p−1bp(t)
( tq(α−1)+1

q(α − 1) + 1

)p/q(∫ t

0
φ p(s)w(u p(s)) ds

)

= 2p−1a p(t) + 2p−1c(t)
(∫ t

0
φ p(s)w(u p(s)) ds

)
,

where

c(t) := bp(t)
( tq(α−1)+1

q(α − 1) + 1

)p−1
.

This is now the Bihari inequality of Theorem 1. Hence we deduce that

u p(t) ≤ W−1[W (2p−1Ap(t)
) + 2p−1C(t)

∫ t

0
φ p(s) ds

]
, for t ∈ [0, T1],

with C(t) = sup0≤s≤t c(s) is as given in (6.5). This gives (6.3). ��
Remark 4 When ŵ is continuous and non-decreasing the optimal choice of w is to
take w(v) = ŵ p(v1/p). However it is possible to apply simple inequalities to get a
suitable w when ŵ is not non-decreasing; see Remark 6 below.

Remark 5 This gives a result similar to Zhu [33, Theorem 3.1], who had ŵ(u) = u.
Our result is more general and we also have a simpler form of conclusion.
Our result generalizes and corrects the similar result of [24, Theorem 2.3], in which a
is a constant, b = 1, and it is assumed that φ is continuous, ŵ is non-decreasing and
ŵ(0) = 0. The statement of Theorem 2.3 in [24] does not give the important domain
condition without which the result is not correct, and it is stated that the final inequality
holds on [0, T ]which is false in general. The proof uses Hölder’s inequality, as above,
and then essentially gives the proof of the original Bihari inequality. In the equations
(2.3), (2.4) of [24], there are actually two different functions both called . There are
also several minor typos.

Remark 6 For the examples ŵ(u) = ur with r > 0 we have w = ŵ and we can apply
the results of Examples 1,2,3. A new family of examples is ŵk(u) = (k1/p+u)(ln(k+
u p))1/p for k ≥ 1. Then ŵ

p
k (u) ≤ wk(u p) for wk(v) = 2p−1(k + v) ln(k + v) where

we can use Example 4.
An example where ŵ is not increasing, but w can be easily given, is

ŵ(u) = (1 + u + 3 sin2(u))(ln(1 + u p))1/p.

ŵ is not an increasing function but we have

ŵ p(u) ≤ (4 + u)p ln(1 + u p) < 2p−1(4p + u p) ln(4p + u p)

and we may take w(v) = 2p−1(4p + v) ln(4p + v) and use Example 4.
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7 Global existence results

We will work in the space C[0, T1] for suitable T1 ≤ T . In particular we study non-
negative solutions of the IVP

Dα∗ u(t) = f (t, u(t)) for a.e. t ∈ [0, T1], u(0) = u0, (7.1)

where α ∈ (0, 1), u0 ∈ R+ is given.

Theorem 4 Assume that u0 ∈ R+, f ≥ 0 is L p-Carathéodory for p > 1/α and there
exist ξ, φ ∈ L p

+[0, T ] with ∫ T
0 φ p(s) ds > 0, such that

f (t, u) ≤ ξ(t) + φ(t)ŵ(u) for a.e. t ∈ [0, T ] and u ∈ R+, (7.2)

where ŵ : [0,∞) → [0,∞) is such that ŵ p(u) ≤ w(u p) for all u > 0, where w is a
non-decreasing continuous function with w(x0) > 0 for some x0 > 0. Then (7.1) has
a solution u ∈ C+[0, T1], where T1 ≤ T is given in (7.4) below.

Proof Let N : P → C[0, T ] be defined by

Nu(t) := u0 + I αFu = u0 + 1

�(α)

∫ t

0
(t − s)α−1Fu(s) ds,

where F is the Nemytskii operator. As f is L p-Carathéodory, F is continuous from
C[0, T ] into L p[0, T ] by Lemma 3 and I α is completely continuous from L p[0, T ]
into C[0, T ] by Proposition 1 4., so N is completely continuous. Now suppose that
u(t) = λNu(t) for some λ ∈ [0, 1]. Then we have

u(t) = λNu(t) ≤ Nu(t) ≤ u0 + 1

�(α)

(∫ t

0
(t − s)α−1(ξ(s) + φ(s)ŵ(u(s))

)
ds

)

= u0 + I αξ(t) + 1

�(α)

(∫ t

0
(t − s)α−1φ(s)ŵ(u(s)) ds

)
.

Noting that I αξ is continuous (Proposition 1, 3.), hence bounded on [0, T ], this is
exactly the situation of Theorem 3 with a(t) = u0 + I αξ(t), b = 1

�(α)
. Therefore we

can conclude that

u(t) ≤
(
W−1[W (2p−1Ap(t)) + 2p−1C(t)

∫ t

0
φ p(s) ds

])1/p
, for t ∈ [0, T1],

(7.3)

where W (x) := ∫ x
x0

du
w(u)

, and C(t) = ( 1
�(α)

)p[ tq(α−1)+1

q(α−1)+1

]p−1, and T1 is such that

W (2p−1Ap(t)) + 2p−1C(t)
∫ t

0
φ p(s) ds ∈ range(W ), for every t ∈ [0, T1].(7.4)
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We have shown that, for T1 as in (7.4), there is a constant M = M(T1) such that if
u = λNu then u(t) ≤ M for 0 ≤ t ≤ T1. Now consider N on the space C[0, T1] with
non-negative cone Q = C+[0, T1]. Taking R > M , we have shown that u = λNu for
all u ∈ ∂QR . By Lemma 1, N has a fixed point in QR which is a solution of (7.1) on
the interval [0, T1]. ��
Remark 7 We will have A = a when ξ ≥ 0 is a non-decreasing function, since then
I αξ(t) is a non-decreasing function of t , for example see [30, Addendum].

Corollary 1 Consider growth assumption (7.2) in the following cases.

1. w(u) = ŵ(u) = ur for r ≤ 1. Then by Examples 1 and 2, (7.1) has a global
solution, that is, exists on [0, T ] for an arbitrary T > 0.

2. ŵk(u) = (k1/p+u)(ln(k+u p))1/p for k ≥ 1, or ŵ(u) = (1+u+3 sin2(u))(ln(1+
u p))1/p; then (7.1) has a global solution by Remark 6.

3. w(u) = ŵ(u) = ur for r > 1; (7.1) has a local solution in this case, solution
exists on some interval [0, T1] with T1 < T .

Another variant where we can get global solutions is by using a special case of a
Gronwall inequality for singular kernel integrals due to Webb [31, Theorem 5.1].

Theorem 5 [ [31]] Let a > 0, b > 0, 0 < α < 1 and let φ be non-increasing,
φ ∈ L1+[0, T ] for T > 0. Suppose that u ∈ C+[0, T ] satisfies the inequality

u(t) ≤ a + b
∫ t

0
(t − s)α−1φ(s)u(s) ds, for t ∈ [0, T ]. (7.5)

If (I αφ)(t) → 0 as t → 0+, then for any r ∈ (0, 1), there exists tr > 0 such that

u(t) ≤ a

1 − r
exp

( b

t1−α
r (1 − r)

∫ t

0
φ(s) ds

)
, for every t > 0. (7.6)

The condition (I αφ)(t) → 0 as t → 0+ holds when φ ∈ L p[0, τ ] for some
p > 1/α and some (small) τ > 0, which is similar to our general assumptions.

Theorem 6 Suppose that u0 ∈ R+, f ≥ 0 is L p-Carathéodory for p > 1/α and there
exist ξ, φ ∈ L1+[0, T ] with φ non-increasing and (I αφ)(t) → 0 as t → 0+, with I αξ

is bounded on [0, T ] such that

f (t, u) ≤ ξ(t) + φ(t)u for a.e. t ∈ [0, T ] and u ∈ R+. (7.7)

Then (7.1) has a global solution u(t), that is, the solution exists on [0, T ].
Proof The proof is very similar to the proof of Theorem 4, without applying Hölder’s
inequality, and using the Gronwall inequality of Theorem 5 instead of the Bihari
inequality to obtain an a priori bound, hence is omitted. ��
Remark 8 Since L1 is a larger space than L p for p > 1, the result of Theorem 6 is
different from Theorem 4. When φ(t) = Mt−γ for some γ < α and constant M > 0,
and ξ > 0 is a constant, Theorem 6 was obtained in [29, Theorem 4.8].

123



A new Bihari inequality... 981

Corollary 2 Assume that u0 ∈ R+, f ≥ 0 is L p-Carathéodory for p > 1/α and there
exist ρ > 0 and φ ∈ L p

+[0, T ] with ∫ T
0 φ p(s) ds > 0, such that

f (t, u) ≤ φ(t)ŵ(u) for a.e. t ∈ [0, T ] and u ∈ [ρ,∞), (7.8)

where ŵ : [0,∞) → [0,∞) and ŵ p(u) ≤ w(u p) for all u > 0, where w is a non-
decreasing continuous function with w(x0) > 0 for some x0 > 0. Then (7.1) has a
solution u ∈ C+[0, T1], where T1 ≤ T is such that the range condition as given in
Theorem 4 is valid.

Proof Since f ≥ 0 is L p-Carathéodory for p > 1/α, there exists gρ ∈ L p
+[0, T ] such

that

| f (t, u)| ≤ gρ(t) for a.e. t ∈ [0, T ] and all u ∈ [0, ρ].

This, together with (7.8), implies

f (t, u) ≤ gρ(t) + φ(t)ŵ(u) for a.e. t ∈ [0, T ] and all u ∈ R+

and (7.2) holds with ξ = gρ . The result follows from Theorem 4. ��
Corollary 3 Let E ⊂ [0, T ] be a fixed subset of measure zero. Suppose that u0 ∈ R+,
f ≥ 0 is L p-Carathéodory for some p > 1/α and there exist r > 0, andψ ∈ L p

+[0, T ]
with ψ(t) > 0 for t ∈ [0, T ]\E, such that

lim sup
u→∞

sup
t∈[0,T ]\E

f (t, u)

urψ(t)
< ∞. (7.9)

If r ≤ 1 then (7.1) has a global solution, the solution exist on all of [0, T ]. If r > 1 a
local solution exists on [0, T1] for some T1, as in Corollary 1.
Proof By (7.9), there exist M > 0 and ρ > 0 such that

f (t, u) ≤ Mψ(t)ur for a.e. t ∈ [0, T ] and u ∈ [ρ,+∞).

Hence, (7.8) with φ = Mψ and ŵ(u) = ur holds. The result follows from Corollaries
1 and 2. ��
Remark 9 We have proved results for existence of non-negative solutions. By the
same methods exactly similar results hold in C[0, T1] by replacing u(t) by |u(t)| in
the inequalities, and assuming inequalities on | f | such as

| f (t, u)| ≤ ξ(t) + φ(t)ŵ(|u|) for a.e. t ∈ [0, T ] and u ∈ R,

in Theorem 4, similarly in Theorem 6. We do not state the obvious results.
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8 First order FDEs with nonlinearities from combustion theory

Motivated by some nonlinearities that arise in combustion theory, we study IVPs of
first order FDEs of the form

Dα∗ u(t) = ν
(
1 + ε(t)u(t)

)m exp
( u(t)

1 + ε(t)u(t)

)
for a.e. t ∈ [0, T ], (8.1)

subject to the initial condition

u(0) = u0. (8.2)

The nonlinear reaction term f (u) = ν(1+ εu)m exp( u
1+εu ) arises in combustion the-

ory, where ν is known as the Frank-Kamenetskii parameter, u is the dimensionless
temperature, and ε the reciprocal activation energy, often taken to be a positive con-
stant. The case m = 0 is known as the Arrhenius reaction rate and the case m = 1/2
is called the bimolecular reaction rate, see [8, 28]. The reaction rate with m < 0
is physically meaningful and has been widely studied, see [23, 27] for m = −1 or
m = −2, [27] for m ∈ [−2, 2.67], and [23] for m ∈ [−10.31, 2.81].

The existence and uniqueness of nonzero non-negative solutions of one or higher
dimensional elliptic equations in combustion theory have been widely studied, for
example in [8, 9, 16, 21, 28]. For elliptic equations, ε not constant corresponds to the
reciprocal activation energy depending on the location.

We apply the results obtained in Sect. 7 to study a more general problem than
(8.1)-(8.2), namely

Dα∗ u(t) = ν
(
1+ε(t)g(u(t)

)m exp
( h(u(t))

1+ε(t)h(u(t))

)
:= f (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u0,

(8.3)

where u0 ≥ 0, ν > 0, m > 0, ε ∈ L p/m
+ for some p > 1/α, with ε(t) ≥ ε0 > 0, g

is continuous, g(u) ≥ 0 and is non-decreasing for u ≥ 0, and h is continuous with
h(u) ≥ 0 for u ≥ 0.

We say a solution u ∈ C+[0, T1] is positive if u(t) > 0 for t ∈ (0, T1].
Theorem 7 Under the above hypotheses the IVP (8.3) has a positive solution defined
on some interval [0, T1].
Proof Note that f satisfies the Carathéodory conditions since g, h are continuous.
Also we have

exp
( h(u(t))

1 + ε(t)h(u(t))

) ≤ exp
( 1

ε(t)

) ≤ exp
( 1

ε0

)
, for all t .
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For M1 := max{1, 2m−1}, we have

f (t, u) ≤ ν exp(1/ε0)(1 + ε(t)g(u(t))m ≤ ν exp(1/ε0)M1
(
1 + εm(t)gm(u(t))

)
,

hence f is L p-Carathéodory since εm ∈ L p. Define

ξ = ν exp(1/ε0)M1, φ(t) := ν exp(1/ε0)M1ε
m(t), w(u) = ŵ(u) := gm(u).

(8.4)

Thus f (t, u) ≤ ξ + φ(t)w(u) with φ ∈ L p, w continuous and non-decreasing. By
Theorem 4 the problem has a solution which exists on some interval [0, T1]. Since
Fu(t) > 0 for every t ∈ [0, T1] and u = u0 + I αFu, the solution satisfies u(t) > u0
for every t ∈ (0, T1]. ��
Remark 10 For a fixed α ∈ (0, 1) it cannot be inferred from Dα∗ u(t) > 0 that the
solution u is increasing, as shown by counter examples in [5, Example 2.1] and [30,
Proposition 7.2]. Monotonicity of functions related to the signs of their Caputo deriva-
tives is discussed in detail in [5].

We give a general example to illustrate how we can get global solutions in some
cases when m ∈ R and the reciprocal activation energy ε is a function of t , that is, we
consider the problem

Dα∗ u(t)=ν(1 + ε(t)ur (t))m exp
( h(u(t))

1+ε(t)h(u(t))

)
for a.e. t ∈ [0, T ], u(0)=u0,

(8.5)

where ν, r are positive parameters, m ∈ R, h is continuous and h(u) ≥ 0 for u ≥ 0,
and ε(t) ≥ ε0 for some ε0 > 0, also εm ∈ L p[0, T ] when m > 0 for some p > 1/α.

Theorem 8 Assume that above hypotheses hold and u0 ≥ 0.
(1) If rm ∈ (−∞, 1], then (8.5) has a global positive solution, that is, for arbitrary

T > 0, a positive solution exists on [0, T ].
(2) If rm > 1 then (8.5) has a positive solution on some interval [0, T1]

Proof Let f : [0, T ] × R+ → R+ be defined by

f (t, u) = ν(1 + ε(t)ur )m exp
( h(u(t))

1 + ε(t)h(u(t))

)
. (8.6)

Ifm ≤ 0 then (1+ε(t)ur )m ≤ 1 and f (t, u) ≤ ν exp(1/ε0), so f is globally bounded
and a solution exists on [0, T ]. Now suppose that m > 0. Let M1 := max{1, 2m−1},
then we have

f (t, u) ≤ ν exp(1/ε0)(1 + ε(t)ur )m ≤ ν exp(1/ε0)M1(1 + εm(t)urm), (8.7)

hence f is L p-Carathéodory. Let ξ = ν exp(1/ε0)M1, φ(t) = ν exp(1/ε0)M1ε
m(t)

and w(u) = urm . From (8.7) we see that, for case (1), mr ≤ 1, Corollary 1 (1.)
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applies, a solution exists on [0, T ], and is positive for t > 0. For case (2), mr > 1,
Corollary 1 (3.) applies and we conclude that there is a solution in C+[0, T1] for some
interval [0, T1]. ��
Remark 11 Clearly we could replace ur in this example by a function g(u) under
suitable restrictions.

9 The Caputo fractional derivative

TheCaputo fractional derivative is frequently definedwith the derivative and fractional
integral taken in the reverse order to that of the R-L derivative, that is as D̂α

Cu(t) :=
I 1−αu′(t). For this fractional integral to be defined we require u′ ∈ L1. Therefore we
have

Provisional Definition For α ∈ (0, 1) and u′ ∈ L1[0, T ] the Caputo fractional deriva-
tive D̂α

Cu is defined for a.e. t by

D̂α
Cu(t) := (I 1−αu′)(t).

A severe problem is that there exist singular functions where the derivative exists a.e.,
for example Lebesgue’s singular function ϕ (also known as the Cantor-Vitali function,
or Devil’s staircase) which is (Hölder) continuous but not AC , ϕ(0) = 0, ϕ(1) = 1,
and ϕ′(t) = 0 for a.e. t , so we would have D̂α

Cϕ(t) = 0, ϕ(0) = 0. Hence this
operator can never be invertible, the problem D̂α

Cu(t) = 0, u(0) = 0 has infinitely
many non-zero solutions.

It has often been claimed that for 0 < α < 1 and f continuous

D̂α
Cu(t) = f (t), u(0) = u0 is equivalent to u(t) = u0 + I α f . (9.1)

However, the ‘solution’ on each side of the equation (9.1) has different meanings.
Usually a solution of the equation u(t) = u0+ I α f is a function inC[0, T ]. If f ∈ L1

and u ∈ C[0, T ] satisfies D̂α
Cu(t) = f (t) a.e., then, by the definition, I 1−αu′(t) =

f (t) a.e., and clearly f ∈ I 1−α(L1). By the semigroup property, I α f (t) = (I u′)(t)
so that I α f ∈ AC . Thus to have any hope of an equivalence being valid we must have
u = u0 + I α f ∈ AC .

Therefore the definition must be as follows.

Definition 8 For α ∈ (0, 1) and u ∈ AC[0, T ] the Caputo fractional derivative Dα
Cu

is defined by

Dα
Cu(t) := I 1−αu′(t), a.e. t ∈ [0, T ].

For u ∈ AC , u′ ∈ L1 and so Dα
Cu = I 1−α(u′) is defined as an L1 function, hence

Dα
Cu(t) is defined for a.e. t .
This definition prevents having functions such as Lebesgue’s singular function.

Moreover, it now follows simply that if u ∈ AC , f ∈ C[0, T ] and Dα
Cu(t) = f (t)
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a.e. and u(0) = u0 then indeed u(t) = u0 + I α f (t), as in the first part of the proof of
Theorem 9 below.

However, the converse fails. If u ∈ C[0, T ] is a solution of u(t) = u0 + I α f (t)
with f continuous, then clearly u ∈ AC if and only if Iα f ∈ AC . This has been
claimed many times but has never been proved for a very good reason: it is false in
general, so the derivative Dα

Cu(t) is not shown to exist. I α does not map all of C[0, T ]
into AC[0, T ] as shown in Cichoń-Salem [4, Counter-Example 1], and independently
in [30, Addendum] who quoted an example of aWeierstrass type function from Hardy
and Littlewood [13, §5.5]. Thus f continuous and u(t) = u0 + I α f (t) does not imply
that u ∈ AC without extra conditions on f . In other words, it is impossible to prove
the often claimed equivalence (9.1).

To get a useful equivalence it is necessary to use the definition Dα∗ u of Caputo
differential operator as done in Diethelm’s book [6] and as we have done. As shown in
Diethelm [6, Theorem 3.1], or [30, Proposition 4.4], for 0 < α < 1 the two definitions
Dα
Cu and Dα∗ u coincide when u ∈ AC , so there is no reason to consider Dα

Cu as
defined in Definition 8.

We do have an equivalence result, with a necessary condition f ∈ I 1−α(L1), but
it not known how it can be applied in the important case when f (t) is replaced by
f (t, u(t)) when u is only known to be continuous, see Remark 13 below. The result
can be proved using [18, Theorem 4.4] and [18, Corollary 4.3]. We give a direct proof
to emphasize the necessary condition.

Theorem 9 Let u ∈ AC, f ∈ L1 and Dα
Cu(t) = f (t) for a.e. t and u(0) = u0. Then

f ∈ I 1−α(L1) and u(t) = u0+ I α f (t) for all t ∈ [0, T ]. Conversely, if f ∈ I 1−α(L1)

and u is continuous and satisfies u(t) = u0 + I α f (t) for t ∈ [0, T ], then u ∈ AC,
Dα
Cu(t) = f (t) for a.e. t , and u(0) = u0.

Proof If u ∈ AC and Dα
Cu(t) = f (t) for a.e. t , then I 1−αu′ = f thus f ∈ I 1−α(L1),

say f = I 1−αg for g ∈ L1 (of course g = u′ here). Applying the operator I α and using
the semigroup property gives I u′ = I α f = Ig. Sinceu ∈ AC , I u′(t) = u(t)−u(0) =
Ig = Iα f . Conversely, if f ∈ I 1−α(L1), say f = I 1−αg for g ∈ L1, and u is
continuous and satisfies u(t) = u0 + I α f (t), then u = u0 + I α f = u0 + Ig ∈ AC
and u′ = g a.e.. Thus u(0) = u0 and Dα

Cu = I 1−αu′ = I 1−αg = f a.e.. ��
In particular this gives a nonexistence result.

Proposition 3 If f ∈ C\ I 1−α(L1), then the IVP: Dα
Cu(t) = f (t) for a.e. t , u(0) = u0,

has no solutions.

As mentioned above, there exist continuous functions f such that Iα f /∈ AC ,
therefore C \ I 1−α(L1) is nonempty.

Remark 12 Apaper ofVainikko [26] investigates the existence of fractional derivatives
particularly when such derivatives are continuous. For example, Theorem 5.2 of that
paper shows that having a function v ∈ I α(C[0, T ]), that is v = I αg for some
g ∈ C[0, T ], is equivalent to some structure conditions and also to having Dα∗ v

continuous. In this case v = I αg is Hölder continuous, so v(0) = 0 and then Dα∗ v(t) =
D(I 1−αv)(t) = D(Ig)(t) = g(t) for every t since Ig ∈ C1, which shows that Dα∗ v is
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continuous. However we do not know that v′ is in AC so Dα
Cv might not exist. When

u ∈ C[0, T ] is a solution of the Volterra integral equation u(t) = u0 + I αFu, where
F is the Nemytskii operator, and f is continuous, Fu is continuous and this would
give Dα∗ u is continuous. For the case we study, f is L p-Carathéodory, we only have
Fu ∈ L p and Dα∗ u ∈ L1.

Remark 13 Whenwe consider f (t, u(t))with u continuous, f (t) is replaced by Fu(t).
Then a necessary and sufficient condition for Dα

Cu(t) = Fu(t), u(0) = u0, to have
solutions is that Fu ∈ I 1−α(L1); Proposition 2 shows that this requires I αFu ∈
AC . This is a strong condition, and when u is only known to be continuous, explicit
assumptions on f to achieve this are not known, for example f ∈ C∞ does not imply
this. There are many papers in the literature, too many to be cited in this paper, where
solutions of Dα

Cu(t) = f (t, u(t)), u(0) = u0 (or D̂α
Cu(t) = f (t, u(t)), or even

less precise definitions) are studied via solutions u in C[0, T ] of the integral equation
u(t) = u0 + I αFu(t), when f is only assumed to be continuous, but these papers do
not consider the necessary condition Fu ∈ I 1−α(L1). In fact this ‘false equivalence’
is often used as a first step in studying many types of problems involving the Caputo
fractional derivative, such as boundary value problems. Therefore, the claimed results
in these paper are based on a false premise.
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