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A B S T R A C T   

Introduction: Artificial intelligence (AI) applications in healthcare and medicine have increased in 
recent years. To enable access to personal data, Trusted Research Environments (TREs) (other-
wise known as Safe Havens) provide safe and secure environments in which researchers can 
access sensitive personal data and develop AI (in particular machine learning (ML)) models. 
However, currently few TREs support the training of ML models in part due to a gap in the 
practical decision-making guidance for TREs in handling model disclosure. Specifically, the 
training of ML models creates a need to disclose new types of outputs from TREs. Although TREs 
have clear policies for the disclosure of statistical outputs, the extent to which trained models can 
leak personal training data once released is not well understood. 
Background: We review, for a general audience, different types of ML models and their applica-
bility within healthcare. We explain the outputs from training a ML model and how trained ML 
models can be vulnerable to external attacks to discover personal data encoded within the model. 
Risks: We present the challenges for disclosure control of trained ML models in the context of 
training and exporting models from TREs. We provide insights and analyse methods that could be 
introduced within TREs to mitigate the risk of privacy breaches when disclosing trained models. 
Discussion: Although specific guidelines and policies exist for statistical disclosure controls in 
TREs, they do not satisfactorily address these new types of output requests; i.e., trained ML 
models. There is significant potential for new interdisciplinary research opportunities in devel-
oping and adapting policies and tools for safely disclosing ML outputs from TREs.   
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1. Introduction 

Trusted Research Environments (TRE)s (also termed Safe Havens) are secure and safe platforms that enable researchers to access 
and analyse personal data [1]. An example is the network of Scottish research Safe Havens, in which researchers can access a wide 
range of health records for Scottish individuals [2]. TREs follow a portfolio approach when providing researchers with access to data, 
based on “safe people, safe projects, safe settings, safe data, safe outputs” [3]. 

‘Safe output’ guidelines are typically aimed at traditional statistical outputs such as regressions, graphs, and tables. Such outputs 
are human-readable and can therefore be manually assessed by TRE output checkers to ensure that they do not disclose any sensitive 
information. TREs have typically no experience dealing with outputs that are not amenable to manual validation [4], which risks 
weakening the “safe outputs” pillar unless new assistance can be provided to TRE output checkers. 

Machine Learning (ML) is a subfield of AI in which algorithms are trained to perform tasks by exposing them to large quantities of 
relevant data. It is widely considered that ML systems will play an increasing role across society. It comes as no surprise then that there 
is an increased interest in training ML models on the data that is held within TREs. 

A researcher training an ML model within a TRE is most likely to export the trained ML model, and deploy it into a useable pipeline. 
A trained ML model is typically not stored in a human-readable format; and most models are not amenable to manual checking – due to 
complexity. Determining how to categorise these models (in terms of AI systems), the levels of risk involved (including security risk), 
and the checks and safeguards needed (e.g. human and public oversight), are important initial considerations to make [5]. Stringent 
measures are required to ensure data privacy once the trained model is deployed outside the TREs. 

TREs provide approved researchers with a single location to access datasets where the ML models can be trained on sensitive health 
data. Unlike TREs, Personalised Health Trains (PHTs) enable federated learning by allowing the training of ML models in multiple 
iterations at different secured sites [6]. Both these secure environments enable safe analysis, however, it is unclear if they are 
well-equipped to ensure that the trained model contains no sensitive information and is safe to deploy. 

To understand better how this issue is being addressed in practice, in a recent survey, we interviewed 14 UK and 6 international 
TREs [7] to discover current processes within TREs for AI algorithms disclosure. Our findings showed that, across the board, TREs did 
not have mature processes, tools, or an understanding of disclosure control for AI algorithms, relying on a degree of manual checking 
that is likely not fit for purpose. The disclosure risks posed by trained models can be subtle, and just because an output checker cannot 
“see” something disclosive within the model, does not remotely suggest that it is safe. This demonstrates a worrying gap between how 
ML techniques are being developed and the governance and oversight of the TREs, resulting in risks to privacy, data protection and 
good governance of TREs. 

This paper differs from a typical review article in its methodological pattern. It focuses on articulating and explaining AI in the 
context of TREs, raising the awareness of associated risks and potential technical and legal controls to a new audience of health data 
researchers, who aim at experimenting with various ML models within TREs and with TRE providers. This is a recent, but rapidly 
growing field of research with relatively few studies. To access these, we used a combination of keyword searches on a range of sources 
including arXiv, IEEE Explore and ACM using the terms Trusted Research Environment, Safe Haven, AI, ML, Data Privacy, and Disclosure 
Control. As TREs can be assumed not to be malicious actors we have excluded work on attacks on Federated Learning from our review. 
Section 2 (Background) discusses some popular ML models and the kind of information present in a saved ML model. We highlight, for 
a non-expert audience, the ways an ML model can disclose personal information regarding the data on which it is trained. Section 3 
(Risks) assesses the risks of such disclosures, but now within the context of TREs. Finally, Section 4 (Discussion) summarises the areas 

Table 1 
Categories of ML models.  

Supervised Learning Algorithms are supplied with a corpus of training examples, each consisting of some input values associated with an output category or 
value (a label). For example, the data about a patient is labelled with whether a patient had cancer or not. The goal is for the algorithm 
to learn a mapping between the input and output that can subsequently be used for prediction. In our example, the input would be the 
data about a patient and the output would be a prediction of cancer. The output is typically either one of several distinct categories 
(classification), e.g., ‘case’ vs ‘controls’, or a real value (regression). This is the most common type of ML [11] and is used for predicting 
risks of future health events. It has been used with a wide range of healthcare and medical data [12–14]. 

Unsupervised Learning Algorithms use unlabelled data to discover patterns in a dataset. The most common example of unsupervised learning is clustering 
[15] which aims to group data instances such that the instances sharing a cluster are similar to one another. Unsupervised learning 
techniques are often used for exploratory data analysis in healthcare and medical applications. For example [16], used k-means 
clustering for identifying several subtypes of Alzheimer’s using Electronic Health Records (EHR). More recently unsupervised learning 
was used to learn appropriate features for COVID-19 diagnosis from CT medical imaging [17]. 

Semi-supervised 
Learning 

Algorithms are applied to datasets in which both labelled and unlabelled examples co-exist, with typically far more unlabelled than 
labelled records. This scenario is common when the cost of labelling data is high which is often the case in the healthcare and medical 
domains [18]. Semi-supervised methods use patterns present in the unlabelled data to improve performance over models trained on 
the labelled data alone. These approaches can also be used iteratively, identifying at each iteration which of the unlabelled points it 
would be best to acquire the label of by, for example, querying a human expert (Active Learning) [19]. 

Reinforcement 
Learning: 

Reinforcement learning (RL) algorithms learn by receiving feedback as they interact with their environment [20], rather than from a 
static collection of training data RL has had high profile success in learning game strategies, where rewards are received at the end of a 
(variable length) game [21]. Examples of RL in healthcare include medical imaging [22], diagnosis systems [23] and precision 
medicine [24]. 

Self-supervised 
learning 

Algorithms (typically deep learning models) derive representations of data without requiring labels. Self-supervised learning (SSL) has 
emerged recently, especially in the computer vision field, and [25,26] proposed the use of SSL method for anomaly detection in 
medical images.  
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where research is needed, to provide the research community and TREs with the knowledge and tools required to safely disclose 
trained ML models. 

2. Background 

2.1. ML in healthcare 

The combination of algorithmic advances and the availability of large datasets has led to increased use of AI and particularly ML. 
This interest is particularly high in the medical and healthcare fields where the adoption of these approaches can potentially improve 
efficiency, reduce the burden on clinicians, and assist more predictive and preventative philosophy to care [8]. However, this use of AI 
must be tempered by due diligence of AI’s strengths and limitations [9]. 

ML is a subset of AI, that encompasses many computational algorithms that automatically learn patterns from datasets [10]. It can 
be used to help humans better understand complex data, or make predictions on new, unseen data. Recent technological advances, 
coupled with the increased availability of large datasets have resulted in increased popularity. 

Table 1 summarises how ML models can be split into various categories, based on the type of problem they are attempting to solve. 

2.2. Common ML models 

Within the broad categories defined in Table 1, ML models can be further grouped according to their purpose, algorithm type and 
how they learn [10]. Table 2 and Table 3 summarise the most common types of ML models categorised by the type of algorithms used, 
and how they handle data for supervised and unsupervised learning. 

2.3. ML model development 

Fig. 1 shows the steps in the development of a ML model from data collection through to final deployment. For a model trained 
within a TRE all steps apart from initial collection and deployment would occur within the TRE, and deployment would necessitate 
removing of the model from the TRE. 

Trained ML models are defined by values for parameters that are optimised during learning. This process is governed by hyper- 
parameters (e.g. learning rates for neural networks) that are usually set based on expert or domain knowledge or through trial and 
error. Thus, finding the model with the best-estimated performance for the desired task is often an iterative process. 

Table 2 
Supervised ML model types.  

Algorithm type Definition Models Examples Reference 

Traditional regression/ 
parametric based 
methods. 

Typically, a single parameter needs to be learnt per 
input feature. 

Linear Regression 
Logistic Regression 
Stepwise Regression 
Multivariate Adaptive Regression 

Medical images 
landmark detection 

[27] 

Instance/non- 
parametric based 
classification 
methods. 

Methods based on a ‘similarity’ measure between 
data instances. Predictions are made by 
summarising the outputs for training examples. 
Weights are increased for data that is more similar 
to new observation. 

K-nearest Neighbor (KNN) 
Self-Organising Map (SOM) 
Support Vector Machines (SVM) 

Decision-making in 
mental health systems 
using SOM 

[28] 

Tree-based Algorithms Methods that make decisions based on traversing a 
tree. The value of features at each node is used to 
decide the direction of the decision. Typically, 
recursive search methods are used to successively 
grow trees, or select nodes. 

Classification and Decision Tree 
Chi-squared Automatic Interaction 
Detection (CHAID) 
Conditional Decision Trees 

Analysis of adverse drug 
reaction using CHAID 

[29] 

Bayesian Algorithms Probabilistic algorithms based upon Bayesian 
statistical principles. These methods operate by 
using data to update prior probabilities (e.g. class 
membership) to posterior probabilities. 

Naïve Bayes 
Bayesian Belief Network (BBN) 
Gaussian Naïve Networks 

Modelling fetal mortality [30] 

Neural Networks and 
Deep learning 

Loosely inspired by biological neural networks, 
they consist of non-linear ‘neurons’ organised into 
layers. Typically an input layer, is connected to one 
or more hidden layers, followed by an output layer. 
Deep neural networks have many hidden layers and 
provide state-of-the-art performance for complex 
data such as images, text and audio. 

Convolution Neural Networks 
(CNN), 
Recurrent Neural Networks (RNNs) 
- for example, Long Short-Term 
Memory networks (LSTM), 
Auto-Encoders, 
Deep Belief Network (DBN) 

CNN for the classification 
of skin cancer 
LSTM for predictive 
medicine from EHR. 
Genomic data imputation 
using autoencoders 

[31] 
[32] 

Natural Language 
Processing (NLP) 

NLP methods aim to process and understand 
language in the form of text or speech and are 
widely used in the medical field. Classical statistical 
and rule-based approach to NLP, have recently been 
augmented by ML, especially the use of 
transformers 

Computational linguistics 
Statistical and ML models 
Deep learning and transformers 

Computational 
linguistics to extract 
cancer phenotypes 
Use of BERT in EHR for 
disease prediction 

[33] 
[34]  
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A key step in model development, particularly for supervised models, is validation of the model’s performance. Performance on 
previously unseen test data should be used to estimate how well the model will generalise to unseen data, and hence evaluate its 
performance on deployment. The validation process also highlights when models have simply memorised the training data rather than 
learning useful structure, an issue known as overfitting [39]. 

2.4. Outputs of a ML training process 

A researcher wishing to deploy a trained ML model outside TRE may export two types of output: performance analysis, and the 
trained model itself. The former would fall within the remit of traditional output checking. However, the latter would not, and we will 
now explore what kind of information would be held within a trained model file. 

2.4.1. Architecture 
This is most relevant in neural network (and therefore deep learning) models where the architecture defines the number of nodes in 

each layer, how they are connected, and the activation functions used in each layer. In our definitions we consider architecture to be 
defined by hyper-parameters, and set before training so, e.g., the definitions of the nodes (features and thresholds) in a decision tree are 

Table 3 
Unsupervised ML categories.  

Algorithm type Definition Models Examples Reference 

Non-parametric 
Clustering 
Algorithms 

Group (partition) the data observations according to similarity 
between them. 

Hierarchical 
Clustering 
Kernelized K-means 

Alzheimer’s structural 
imaging phenotype 
Detection using 
hierarchical clustering. 
Diabetes diagnosis 
using K-means 
clustering 

[35] 

Parametric Clustering 
Algorithms 

Define groups of data using parametric model. Data is assigned to 
cluster using the largest prior probability 

K-means 
K-medians 
Statistical Mixture 
models 
Gaussian Mixture 
Models 

Diabetes diagnosis 
using K-means 
clustering 

[36] 

Admixture models Whereas clustering assumes that each data point belongs to a 
single cluster, admixture approaches allow each data point to take 
contributions from multiple clusters (aka topics). Popular in 
natural language processing. 

Latent Dirichlet 
Allocation 

Modelling tabular 
healthcare data 

[37] 

Dimensionality 
reduction 

Algorithms that compress high-dimensional data into a low- 
dimensional representation. The aim is to preserve all useful 
structures of the data in an unsupervised way. The resulting low- 
dimensional representations are used for data exploration and 
visualisation. They can also be used as features for other ML 
models 

Principal Component 
Analysis (PCA) 
Multi-dimensional 
Scaling (MDS) 
T-Stochastic Neighbor 
Embedding (TSNE) 

Brain tumour 
segmentation 

[38] 

Neural Networks and 
Deep Learning 

These methods have been defined in Table 1. They can have both 
supervised or unsupervised learning     

Fig. 1. ML model development pipeline.  
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parameters rather than architecture. 

2.4.2. Parameters 
A model’s parameters are variables within a model that are optimised during training. For example, in logistic regression, these are 

the weights that each input variable is multiplied by in the decision function. For a neural network, these are the weights on the 
connections between neurons. 

2.4.3. Configuration 
Many models save the details of any additional parameters that were set by the user for training, possibly including some infor-

mation regarding the dataset that was used for training, for example variable names. 

2.4.4. Optimiser and its state 
To facilitate ongoing/restarting training, some models (especially neural networks) will by default store the state of the optimi-

sation process at the time it is stopped. This can include which optimiser was used, associated parameters (e.g., learning rate), how 
many iterations the optimiser ran for, and why it terminated (convergence, the maximum number of iterations was reached, etc). 
Saving the optimiser state can be useful if further training is desired. 

2.4.5. Training data 
Some algorithms require storing some or all training examples to make predictions (e.g., KNN and SVMs). There are various stages 

in the ML development/deployment cycle when the models become vulnerable to attack. For example, the training phase can be 
compromised if training sets are poisoned, and deployed systems can be subject to adversarial attacks. Although these threats are 
important, we are interested in specific risks around disclosure of personal data once a model is outside a TRE, which arise through 
membership inference (MEI) and model inversion attacks (MOI) [40,41,]. For a comprehensive review of all vulnerabilities of trained 
ML models, the reader is referred to [42]. 

Below, we describe MEI and MOI attacks in more detail. In both cases, we assume the attack is undertaken by a malicious actor (the 
attacker) outside the TRE with access to the trained model, either directly, or by sending a query with data through an interface and 
recording its predictions. Note that such attacks require some effort on the part of the attacker (computational or otherwise). This is 
different from other breaches where a record is made available in ‘raw form’ (the classic ‘laptop on a train’ scenario and more modern 
variants) – which should be covered by standard data management policies. 

2.4.6. MEI attacks 
MEI attack was introduced by [43], where an attacker having access to some particular data instances attempts to determine if they 

were part of training data. 
MEI attacks leverage the observation that models will often make more confident predictions on data that they were exposed to in 

training than unseen data. Therefore, high predictive confidence can infer the likelihood of a data point belonging to a training set. 
Overconfidence in training examples is associated with model overfitting [44] resulting due to poor design of model architecture or 
fewer training examples. This has been demonstrated by [45], who also experimented with MEI attacks on federated learning systems 
where a model is trained on data from various locations simultaneously. To perform MEI attacks, an attacker would train an attack 
model with the predictive probabilities produced by the model being attacked (the target model) for data that was included and not 
included for training. As the attacker cannot access training data, they typically train their own versions of the target model (known as 
shadow models). Although the attacks are still possible based on shadow models that neither share architecture nor training data with 
the target model [46], the more information attacker have about the original data and the target model, the higher the success rate. 

MEI attacks can be performed on NLP applications such as in [47], where Carlini et al. demonstrated that even without overfitting, 
large language models such as GPT-2 can still memorise sensitive data. Similarly, Vakili et al. [48] investigated the privacy preser-
vation of language models such as BERT in clinical data. 

2.4.7. MOI attacks 
MOI attacks, (also known as attribute inference attacks) attempt to infer aspects of the input training data. These attacks can be 

particularly dangerous for private and confidential data [49]. For example, an attacker might attempt to infer some particularly 
sensitive model inputs for one or more individuals based on other input values and the model’s predicted output, both of which may be 
straightforward to obtain e.g., through social media or from news stories (for famous individuals). 

Fredrikson [50] introduced the concept of MOI by showing how a model that predicted drug dosage could be inverted to leak 
sensitive data about individuals in training data. Recent examples include Nigesh et al. [51] who analysed deep learning models 
trained on 3D brain image segmentation tasks. Knowledge of the model type and architecture can assist MOI attackers in reproducing 
the parameters or functionality of a model. For example, knowing the model is a logistic regression classifier, the attacker knows the 
structure and, by presenting sufficiently diverse inputs to the model and recording the outputs, can construct a series of equations from 
which the regression weights can be reverse-engineered. If attackers are just interested in mimicking the functionality, presenting 
many input examples, and recording the outputs would train a completely new model. 
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3. Risks 

3.1. Risks of exporting training ML models from TREs 

Based on the background presented in the previous sections, we believe that there are significant risks that must be addressed 
before TREs can safely allow export of trained ML models. In this section, we summarise these challenges, categorised under users, data 
and ML models. 

3.1.1. Users 
Threats around trained ML model disclosure can emerge from different users and actors, of whom we identify four (Table 4). 

3.1.2. Data 
The application of ML in healthcare represents more challenges when disclosing models from TREs. Electronic Health Records can 

be highly heterogenous and includes both structured and unstructured data such as medical images, and large genomic databases. 
Within TREs, data is safeguarded and follows strict protocols such as de-identification [52], anonymisation, and pseudonymisation 
[53]. De-identification consists of removing any personal direct identifiers. Anonymisation aims at removing any personal identifiers 
from data resulting in individuals being completely unidentifiable. 

Pseudonymisation on the other hand represents the process of replacing certain identifiers, where data can no longer be linked to 
personal identifiers without recourse to further processing [54]. 

Depending on the data types being considered, TRE operators need to adopt appropriate methods for removing personal data. 
Whereas in traditional analysis, an output checker could see the output and assess if the process followed by the researcher was 
exposing sensitive data, this is substantially more challenging with a trained ML model. 

3.1.3. ML models 
Privacy-breaching the model, where they cannot access the model file itself but only query the model. Attackers can therefore use 

the model (present inputs and be provided with outputs) but cannot observe its inner workings. In some cases, an attacker might get 
access to the model file (a white box attack) and therefore to model parameters and architecture. White box attackers can both use and 
inspect the model [39]. In general, white box access confers greater risk. However, black box attacks can also represent a significant 
risk but can require more effort to be successful. 

The challenge of disclosing ML models varies between different models and training regimes. Some models are more prone to 
attacks than others, although model configuration (architecture and setting of model hyper-parameters) also plays a significant role. 
Disclosing an SVM or a tree-based algorithm may be riskier than disclosing more complex models [55]. More work is required to better 
understand the risk of a wide range of models and configurations. 

3.2. Legal and regulatory considerations 

The personal data used in TREs, which may be exported in a trained ML model, will be governed by data protection law if it exists in 
a particular jurisdiction. Internationally, the European Union’s General Data Protection Regulation (GDPR) is the most prominent data 
protection framework, and the UK implemented it into domestic law in the Data Protection Act 2018. Given our focus on UK-based 
TREs, we proceed with some key points about its application. 

The key challenge is responsibility for a possible data breach resulting from the export of a ML model. Understanding that the 
disclosure of a trained ML model, which works differently from the disclosure of standard statistics (e.g. graphs and tables etc.), is 
important. The security of processing is a responsibility attributed to the controller and the processor, as outlined in Article 32 of the 
GDPR. The controller and processor must take “state of the art”, technical and organisational measures into account. These include 

Table 4 
Different users and actors who are potential threats.  

Non-malicious 
researchers 

Many TRE users will likely have little awareness of threats introduced by trained ML models. For example, it is easy to imagine a 
researcher training a SVM, unaware that the saved SVM has to include a copy of at least part of the training dataset for it to operate - a 
considerable disclosure risk. Similarly, although most ML developers would understand the concept of over-fitting, they are unlikely to 
realise its link with vulnerability to MEI attacks. 

Malicious researchers These are users who deliberately hide data inside disclosed models and outputs. They directly cause a data breach, by dissimulating 
data inside other outputs. To a certain extent, malevolent behaviour is guarded against, through the existing TRE safeguarding 
procedures [1]. However, these guidelines were designed for aggregated results (tables, plots, or summary statistics), in which the 
possibility of hiding large quantities of data was insignificant. This is different when disclosing ML models, where files being disclosed 
could be large and not necessarily human-readable. 

External attackers The third actor is an external attacker who has access to trained models after they have been disclosed from the TRE, through either 
model deployment (e.g., via an accessible application programming interface; API) or model sharing. Attacks can be carried out in 
various forms as described above. 

TRE output checkers The final actors are the TRE output checkers themselves. Given the complexity of ML models, it is highly likely that the majority have 
little or no familiarity with those types of outputs and are thus being asked to check things that they do not understand, to assess risks 
that they also do not understand.  
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“appropriate” measures commensurate with the risks, in terms of (a) pseudonymisation and encryption, (b) ongoing resilient systems 
and services, (c) ability to restore personal data (PD), and (d) regular testing for effectiveness of the security of the processing [56]. For 
a trained ML model, the chain of responsibility may be unclear where the initial data controller and TRE processor are no longer 
involved when the ML model has been transferred out of the TRE, and if the responsibility for any potential future personal data breach 
has not been identified nor allocated correctly in the terms of an agreement that a TRE operator has made with a TRE user. Assessing 
the level of risk as to whether the trained ML model and/or its output are inextricably linked to potentially disclosive personal data 
[57] it was trained on will determine how the law categorises the model. We consider there are 3 categories:  

1. A trained ML model can be considered to only contain anonymous data and therefore GDPR does not apply [58].  
2. A trained ML model is considered to potentially contain pseudonymised personal data, therefore requiring specific technical and 

organisational measures to ensure the processing is GDPR compliant. In particular, whether appropriate data security measures 
have been adopted to reflect the risk of a data breach.  

3. A trained ML model is considered to carry more risk of including disclosive personal data (pseudonymised) therefore requiring 
extra layers of protection in terms of the transfer of responsibility, obligations and rights to a new data controller/processor, with 
prior written authorisation or consent from the controller, or indeed the retention of responsibility, obligations and rights by the 
original data controller in the contract [59]. 

3.3. Risk analysis in disclosing models from TREs 

Preserving data privacy when disclosing ML models is challenging. For a model to be effective, it must retain some aspects of the 
data on which it was trained [41]. Disclosing ML models from safe environments, therefore, carries risks that must be accounted for, 
analysed and mitigated. We have identified various factors that may affect the level of risks such as data types, ML type or attack type. 
Fig. 2 summarises the above-mentioned factors. 

In addition, the combination of different factors contributes to the level of risk. For example, disclosing an SVM model trained on 
brain MRI data could represent a higher risk of re-identification than a deep learning model using genomic data as medical images can 
contain hidden biometrics [60], and pose a higher risk to privacy if reconstructed via a MEI attack [61]. 

To assess the risk of disclosure, TREs need to consider the severity of the different factors (alone or in combination) and the impact 
of a data breach, which would primarily concern the re-identification of individuals and subsequent loss of trust in TREs. This can be 
achieved by conducting a thorough risk analysis before the disclosure of ML models. 

4. Discussion 

In this paper, we have drawn attention to a new problem facing TREs: the output of trained ML models. Our previous research [4] 
has demonstrated that TREs are ill-equipped for this task, although it is likely that requests to remove trained models from TREs will 
become increasingly common. As well as describing TREs, we have provided a brief introduction to ML, and the privacy risks that a 

Fig. 2. Factors that impact the disclosure of trained ML models.  

• Data types: The heterogeneity of healthcare and medical data contribute to the different levels of risks associated with disclosing models from 
TREs. In fact, some types of data can pose greater risks than others. Clinical text and clinical images have a different level of risk in the re- 
identification of personal and private data, for example, an X-ray of a knee is less disclosive than clinical phenotype for rare diseases.  

• ML types: In addition to different data types, using different ML models can alter the risk level. Some models pose more risks than others as 
demonstrated in [47], where large language models may remember data even if overfitting is reduced.  

• Actor types: Different actors will have different effects on preserving privacy in ML models. Outsider attackers will aim at reconstructing part or 
all of the training data. This would negatively affect the risk of disclosure of models. Similarly, a user that follows processes to create privacy- 
preserving models would pose a lower risk than a less knowledgeable user. 
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trained ML model can present. 
The challenges and risks described in this paper create new opportunities for interdisciplinary research. We have recently carried 

out preliminary research in this area developing a set of implementable recommendations for the disclosure of trained models from 
TREs [62]. We investigated not only disclosure controls but also model query controls as methods which could be adopted. Others have 
also developed methods for auditing the risk of ML models [63], but not in the context of TREs. However, there remains much need for 
research in this area:  

• Data privacy research: Various opportunities exist in providing more secure processes at the data level. This could include 
encryption of the data and enabling the application of ML algorithms directly on encrypted data e.g. homomorphic encryption. 
Adding digital watermarks enables data tracking that could help detect privacy leaks [64]. ML models could also be trained on 
synthetic data. However, this method can only be applied to very limited types of data and applications applying synthetic data in 
the medical field can lead to algorithm bias [65]. TREs can also provide guidelines for researchers and users to ensure data privacy 
throughout the whole ML models life cycle; where users need to ensure data privacy during training, input privacy, output privacy 
and models privacy.  

• ML Model evaluation: The community needs large-scale evaluation studies to attempt to uncover the vulnerabilities of common ML 
models. Although this area has progressed, much more experimental work is needed to assess the wide range of models that re-
searchers may wish to use in TREs. New methods of training models that aim to improve privacy (e.g., differentially private model 
training [49,67], and federated learning [66]) must also be evaluated. The results of these analyses must be made accessible to TREs 
controllers.  

• Automatic ML model privacy assessment: Quantifying risks from ML models is impossible using human controls only. Providing 
TREs and researchers with tools that help assess risk factors for models can help quantify, manage and mitigate risks in the 
disclosure of such models, e.g., the tools provided in [68]. Various ML attack metrics tools have been proposed in the literature such 
as those in [12].  

• AI responsibility and accountability: Exploring areas such as accountability, and explainability, from both, technical and legal 
point of view. In addition to explainable AI, the legal community will need to be able to prove who and/or what was responsible for 
a data breach (causality) [69]. If we consider that the GDPR allocates responsibility to a person (con-
troller/processor/sub-processor) when determining who is responsible for a breach in testing the effectiveness of the 
de-identification of personal data, it is clear that current UK GDPR law regulates for responsibility to be attributed to a person [70].  

• Model-based mitigation strategies and guidelines: Develop methodologies for mitigating risks linked to model disclosure such as 
restricting types of models that can be used. Some model types such as KNN and SVM represent a higher risk and need tighter 
control.  

• Effective manual disclosure procedures: This could include model/code inspections before disclosure. This requires experts within 
the disclosure teams, and the technical infrastructure to generate and store code snapshots for inspection. Ideally, the disclosure 
team would also use the model, independently evaluating model performance on both the data that was provided to the researcher 
and a subset of unseen data. For example, 10% of the examples could be withheld from the researcher for use by the disclosure 
team. 

5. Summary table  

What was already known on the 
topic 

• AI/ML is increasingly being used in healthcare provision and there is a demand to train new algorithms on health data. 
• Trained AI/ML models can potentially encode personal data and be attacked. 
• TREs do not have mature processes, tools, or an understanding of disclosure control for AI/ML algorithms, relying on a degree 
of manual checking that is likely not fit for purpose. 

What this study added to our 
knowledge 

• A new understanding of the risks to disclosing personal data from trained ML models within the new context of TREs. 
• Research is urgently needed to form the basis of new output checking procedures for TREs.  
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