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Abstract 

Background Joint modelling combines two or more statistical models to reduce bias and increase efficiency. As 
the use of joint modelling increases it is important to understand how and why it is being applied to heart failure 
research.

Methods A systematic review of major medical databases of studies which used joint modelling within heart failure 
alongside an exemplar; joint modelling repeat measurements of serum digoxin with all-cause mortality using data 
from the Effect of Digoxin on Mortality and Morbidity in Patients with Heart Failure (DIG) trial.

Results Overall, 28 studies were included that used joint models, 25 (89%) used data from cohort studies, the remain-
ing 3 (11%) using data from clinical trials. 21 (75%) of the studies used biomarkers and the remaining studies used 
imaging parameters and functional parameters. The exemplar findings show that a per unit increase of square root 
serum digoxin is associated with the hazard of all-cause mortality increasing by 1.77 (1.34–2.33) times when adjusting 
for clinically relevant covariates.

Conclusion Recently, there has been a rise in publications of joint modelling being applied to heart failure. Where 
appropriate, joint models should be preferred over traditional models allowing for the inclusion of repeated measures 
while accounting for the biological nature of biomarkers and measurement error.
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Background
Heart failure is a condition where there are well docu-
mented inter-relationships between numerous physical, 
biochemical and imaging characteristics and outcomes. 
Many studies tend to examine these associations with 
outcomes using data from one point in time such as ran-
domization in a trial or the start of a cohort study. This 
fails to account for changes in characteristics over time. 
Just as baseline values may be associated with outcomes, 
changes in variables are also associated with changes in 
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outcomes e.g., falling levels of natriuretic peptides are 
associated with lower mortality. However, analysing the 
association between changes in variables and outcomes 
is often performed with traditional time to event models 
using change values and starting follow up for outcomes 
once change has occurred. More recently joint modelling, 
combining two or more statistical models to increase 
efficiency and reduce bias, has gained favour in the lit-
erature as a method of dealing with this issue. The most 
common type of joint modelling within medicine is the 
joint modelling of repeat measure longitudinal data (e.g., 
repeated measures of biomarkers over time) and time-to-
event data (i.e., survival data) which are linked through 
an association structure via shared random effects 
[1–4]. This seeks to improve efficiency and reduce bias 
in respect of treatment effect, censoring and mortality 
when compared against traditional models. Joint models 
(JMs) of this type are formed of two sub models: a longi-
tudinal model such as a linear mixed effect (LME) model 
(which allows the modelling of longitudinal changes in 
biomarkers or other characteristics like blood pressure) 
and a survival model such as a Cox Proportional Hazards 
(Cox PH) model to model the outcome e.g., mortality. 
The LME model allows for both fixed and random effects 
accounting for non-independence of repeated measures 
from the same patient, whilst also allowing for unevenly 
spaced measurement occasions, biological variances, and 
measurement error [5]. The survival model allows for 
covariates and typically includes an association param-
eter representing the association between the longitudi-
nal and survival process [2, 3, 5–7]. JMs which use data 
from randomized controlled trials (RCTs) can also model 
the overall treatment effect as well as the treatment effect 
on both the longitudinal and survival models [3] i.e., the 
effect on the characteristic and the effect on the outcome. 
This is analogous to other JMs which are used in the car-
diovascular literature, for example in recurrent events 
analyses where models that examine the effect of a treat-
ment on recurrent hospitalisations while also estimating 
a treatment effect for a terminal event such as death [8].

Given the increasing use of JMs, the aim of this paper 
is to review the application of joint modelling in heart 
failure and to provide guidance on how to assess and 
interpret results of joint modelling. To achieve this, we 
conduct a systematic review to identify and critically 
review current applications of joint modelling within 
the heart failure population and then present a criti-
cal summary of how joint modelling can be applied to 
heart failure data sets with use of an illustrative example. 
We examine the association between changes in serum 
digoxin levels and mortality in the Effect of Digoxin on 
Mortality and Morbidity in Patients with Heart Failure 
(DIG) trial as prior studies have tried to examine the 

association between digoxin levels and outcomes, and 
suggested that higher levels at one month following ran-
domization may be associated with higher mortality [9].

Methods
Systematic review: joint modelling applications 
within heart failure
Our systematic review was conducted following the Pre-
ferred Reporting Items for Systematic Reviews (PRISMA) 
framework [10] and the protocol is registered with 
PROSPERO, registration number: CRD42020210056. 
The aim of the review was to identify journal articles 
which employed joint modelling on an adult heart fail-
ure population to review how joint modelling was being 
applied to heart failure.

Searches
Our search strategy is provided in the figure S1, Addi-
tional file  1. Medline, Embase, Scopus and Google 
Scholar were searched, with the last search being con-
ducted on  10th December 2021.

Screening
Articles were screened by two reviewers and full text 
was accessed for relevant articles. To capture all available 
articles no date limit was set and only English language 
articles were included. Only full text journal articles 
where joint modelling was applied to an adult heart fail-
ure population were considered for inclusion. Data were 
extracted by two reviewers.

Exemplar: joint modelling of serum digoxin concentration 
and all‑cause mortality
To demonstrate applications of JMs on heart failure data, 
the ‘The Effect of Digoxin on Mortality and Morbidity in 
Patients with Heart Failure’ (DIG) [11] trial was used. The 
dataset was obtained from the Biologic Specimen and 
Data Repository Information and Coordinating Center 
(BIOLINCC) under application #9257.

Statistical methods
Only data from patients on the treatment arm with at 
least one measurement of serum digoxin concentration 
(SDC) was used. SDC measurements were right skewed 
and therefore a square root (sqrt) transformation was 
applied. For this illustrate example, only patients with no 
missing covariates were included.

The JM Package was used to fit all joint models, this 
package allows the fitting of joint models of longitudinal 
and time-to-event data in R under a maximum likelihood 
approach [12].

Time must be modelled on the same scale for both 
models, and was modelled in the form of months (28 day 
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calendar month) since randomisation; for SDC, time was 
taken as the specimen time. While the JM package allows 
for non-linear effects of time; for simplicity and ease of 
interpretation only linear terms were included.

The JM package requires an LME as fitted by the ‘LME’ 
function from the nlme package for the longitudinal sub-
model [12]. For this example, both an unadjusted and 
adjusted LME model were fitted. With all models using 
sqrt SDC as the response variable. The unadjusted model 
included random intercepts as random effects. The 
adjusted model included the main effects of: estimated 
Glomerular Filtration Rate (eGFR), patient reported self-
adherence, hours since last dose of the study drug and 
dose as fixed effects and included random intercepts 
and slopes for random effects. Full model equations for 
the LMEs and all other models are included in Table S1, 
Additional file 1.

Time-to-Event models for the JM package can be fit 
using either the ‘coxph’ or ‘survreg’ functions from the 
Survival package. For simplicity, Cox PH models fitted 
by the ‘coxph’ function were used. Like the LME both an 
unadjusted and adjusted model were fitted. The adjusted 
model containing the covariates of age, sex, ejection frac-
tion, New York Heart Association class, history of hyper-
tension, ischemic etiology of heart failure and body mass 
index. These covariates were selected on the basis of clin-
ical relevance and prior knowledge of factors associated 
with outcomes in heart failure. The outcome examined 
was all-cause mortality.

Three JMs were constructed from both the unadjusted 
and adjusted LMEs and Cox PH Models as previously 
defined. Table 1 summarises the formulation of the JMs.

As an additional analysis the JMs were compared 
against traditional models. The traditional models were 
Cox PH models using first and last measurements of 
sqrt SDC as a covariate and an extended Cox PH model 
including sqrt SDC as a time varying covariate. All mod-
els were adjusted for the same clinical covariates as the 

adjusted time-to-event models from the JMs. The model 
fit of the JMs were compared against each other using the 
Akaike Information Criterion (AIC). Likewise, the model 
fit of the traditional models were compared against each 
other using AIC. All models were compared for perfor-
mance using a discrimination index: c-index for the tra-
ditional models and a dynamic discrimination index for 
the JMs. The dynamic discrimination index was obtained 
using the function ‘dynCJM’ from the JM package. Based 
on the time dependant discrimination index proposed 
by Antolini et  al. the dynamic discrimination index in 
this context provides a single statistic to summarise the 
discrimination power of the model over the follow-up 
time and is calculated from a weighted average of time-
dependant AUCs which is comparable to the well-known 
c-index. Like the c-index it does not take into account 
censoring [13, 14]. The parameter estimates and standard 
errors from the model were also compared. One hundred 
bootstrap samples were used to internally validate the 
comparison of the discrimination index.

For descriptive purposes, categorical variables are rep-
resented as percentages, continuous variables are repre-
sented as median (IQR). JM association parameters are 
represented as hazard ratios (HRs) and 95% confidence 
intervals (CI). A time dependent association parameter is 
the hazard of all-cause mortality per one unit increase of 
sqrt SDC at any time point. A time dependent slope asso-
ciation parameter is the hazard of all-cause mortality per 
one standard deviation increase in the slope of sqrt SDC 
at a time point (known as the instantaneous or current 
slope). A p-value of less than 0.05 is considered statisti-
cally significant.

All statistical analysis was conducted using R Version 
4.0 [15] and JM package version 1.4–8 [12].

Ethical approval was not required for this systematic 
review and exemplar. All methods were carried out in 
accordance with relevant guidelines and regulations.

Results
Systematic review: use of joint modelling in heart failure
Figure 1 shows the PRISMA flow diagram, with 28 stud-
ies meeting the criteria for inclusion. Table S2, Additional 
file  1 outlines the data sources of the 28 studies which 
met the inclusion criteria, the earliest included study 
being published in 2014 and between 4–7 studies being 
published per year from 2017 to the last search  (10th 
December 2021).

From the included studies, 25 (89%) used data from 
cohort studies and the remaining 3 (11%) studies used 
data from clinical trials. It is worth noting that 10 (36%) 
of the cohort studies used data from the Bio SHiFT study 
[16], likely because of the study design with its focus on 
repeated measurements of biomarkers.

Table 1 Formulation of JMs Included in Exemplar

Legend: aAdjusted for Estimated Glomerular Filtration Rate (eGFR), patient 
reported self-adherence, hours since last dose of the study drug and dose
b Adjusted for age, sex, ejection fraction, New York Heart Association (NYHA) 
class, history of hypertension, ischemic etiology of heart failure and Body Mass 
Index (BMI)

JM LME Cox PH Time 
dependent 
parameter

Time dependent 
slope parameter

1 Unadjusted Unadjusted Y N

2 Adjusteda Adjustedb Y N

3 Adjusteda Adjustedb N Y

4 Adjusteda Adjustedb Y Y
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From the studies, 22 (78%) exclusively included 
patients with heart failure, 6 of which specified patients 
with heart failure with reduced ejection fraction (HFrEF). 
The remaining 6 (22%) studies exclusively included 
patients with acutely decompensated heart failure. There 
were also studies which further selected patients on spe-
cific characteristics such as patients implanted with car-
diac devices such as Cardioverter-Defibrillators (ICD) or 
Cardiac Resynchronization Therapy Devices (CRT-D), 
patients with advanced heart failure and patients who 
had undergone transcatheter mitral-valve repair.

Rationale
The most common rationale for using joint modelling 
was to assess the association of a biomarker with the haz-
ard of an event. Other rationale included: joint modelling 
as a sensitivity analysis, reduction of bias due to censor-
ing / mortality, comparison of prognostic models e.g., 
Weibull survival models and JMs, personalised prognos-
tication using JMs, accounting for measurement error, 
different follow-up times and efficiency through combin-
ing data (i.e., smaller standard errors [5, 17]).

Longitudinal data
Table  2 summarises the longitudinal data used in the 
included studies; 21 (75%) studies used biomarkers with 
the most common biomarker being N-Terminal Pro-
Brain Natriuretic Peptide (NT-proBNP). Some studies 

included multiple biomarkers in longitudinal sub-mod-
els, and some used multiple JMs of different biomarkers. 
The remaining studies used imaging parameters such as 
Left Ventricular Ejection Fraction (LVEF) and functional 
parameters such as health status, physical activity and 
depression for their longitudinal data. All but two studies 
specified their longitudinal sub-models as a linear mixed 
effects model.

Time‑to‑Event (Survival data)
Many studies included multiple events for their survival 
data through use of a composite outcome or multiple 
JMs. Table  3 shows that composite outcomes were the 
most common, but the events of composite outcomes 
varied by patient population as shown in Table S3, Addi-
tional file  1. The second most common event was all-
cause mortality. Most models utilised Cox PH models for 
their survival sub-models with only two studies specify-
ing a parametric Weibull model.

Missing data
Common joint modelling packages such as JM and 
JMBayes allow for both uneven spacing and missing lon-
gitudinal measurements. Both these packages require all 
covariates from both longitudinal and survival sub-mod-
els to be complete. This common limitation resulted in 13 
(46%) of the included studies using imputation methods 
to complete missing data.

Fig. 1 Prisma 2020 flow chart
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Table 2 Summary of Longitudinal Data of Included Studies

Legend: AP-N aminopeptidase-N, CASP3 caspase-3, CSTB cystatin-B, CTSD cathepsin D, CTSZ cathepsin Z, eGFR estimated glomerular filtration rate, Gal-3 galectin-3, 
Gal-4 galectin-4, GDF-15 growth differentiation factor 15, HsTnT highly sensitive cardia45c troponin T, MMP-2, 3, and 9 matrix metalloproteinase 2, 3, and 9, NT-proBNP 
N-terminal pro–B-type natriuretic peptide, PLC perlecan, ST2 suppression of tumorigenicity-2, TIMP-4 tissue inhibitor metalloproteinase 4, C1qR Complement component 
C1q receptor, CDH5 Cadherin 5, CHI3L1 Chitinase-3-like protein 1, CNTN1 Contactin-1, Ep-CAM Epithelial cell adhesion molecule, EPHB4 Ephrin type-B receptor 4, ICAM-2 
Intercellular adhesion molecule-2, ITGB2 Integrin beta-2, JAM-A Junctional adhesion molecule A, PECAM-1 Platelet endothelial cell adhesion molecule 1, SELE E-selectin, 
SELP P-selectin, CCL15 C–C motif chemokine 15, CCL16 C–C motif chemokine 16, CCL24 C–C motif chemokine 24, CXCL16 C-X-C motif chemokine 16, FAS tumour 
necrosis factor receptor superfamily member 6, IL-18BP interleukin-18-binding protein, IL-17RA interleukin-17 receptor A, IL2-RA interleukin-2 receptor subunit alpha, 
IL-6RA interleukin-6 receptor subunit alpha, IL-1RT1 interleukin-1 receptor type 1, IL-1RT2 interleukin-1 receptor type 2, LTBR lymphotoxin b receptor, TNF-R1 tumour 
necrosis factor receptor 1, TNF-R2 tumour necrosis factor receptor 2, TNFRSF14 tumour necrosis factor receptor superfamily member 14, TNFRSF10C tumour necrosis 
factor receptor superfamily member 10C, TNFSF13B tumour necrosis factor ligand superfamily member 13B, CysC cystatin C, eGFR estimated glomerular filtration rate, 
NAG N-acetyl-beta-D-glucosaminidase, KIM-1 kidney injury molecule, NGAL plasma and urinary neutrophil gelatinase-associated lipocalin, SBP Systolic Blood Pressure, 
NT-ProBNP N-terminal pro-B-type natriuretic peptide, PHQ-9 Patient Health Questionnaire-9, CD163 (M130) scavenger receptor cysteine-rich type 1 protein M130, TRAP 
tartrate-resistant acid phosphatase type 5, GRN granulins, SPON1 spondin-1, PGLYRP1 peptidoglycan recognition protein 1, TFPI tissue factor pathway inhibitor, GDF-15 
Growth-differentiation factor-15, RDW Red Blood Cell Distribution Width, CA125 Carbohydrate Antigen 125, miRs microRNAs, CRP C-reactive protein, PAI-1 plasminogen 
activator inhibitor 1, tPA tissue-type plasminogen activator, uPA urokinase-type plasminogen activator, suPAR soluble urokinase plasminogen activator surface receptor, 
LVEF Left ventricular ejection fraction, LVED left ventricular end-diastolic diameter, LVES left ventricular end-systolic diameter

Paper Primary Longitudinal Data Type Longitudinal Data List of Biomarkers

Abebaw et al., 2021 [18] Biomarker Pulse Rate Pulse Rate

Alvarez-Alvarez et al., 2021 [19] Imaging Parameters Left Ventricular Ejection Fraction

Arnold et al., 2019 [20] Functional Parameters Health Status: KCCQ-OS

Belay et al., 2021 [21] Biomarker Pulse Rate Pulse Rate

Biegus et al., 2019 [22] Biomarker Meld-XI Creatinine, Bilirubin

Bouwens et al., 2019 [23] Biomarker Cardiac Remodelling Biomarkers ST2, Gal-3, Gal-4, GDF-15, MMP-2, MMP-3, 
MMP-9, TIMP-4, PLC, AP-N, CASP3, CTSD, 
CTSZ, CSTB, NT-ProBNP

Bouwens et al., 2020 [24] Biomarker Cell Adhesion Circulation Biomarkers SELP, SELE, CDH5, ICAM-2, PECAM-1, C1qR, 
CHI3L1, CNTN1, EPHB4, Ep-CAM, ITGB2, 
JAM-A

Bouwens et al., 2020 [25] Biomarker Multiple Biomarkers CCL15, CC16, CCL24, CXCL16, FAS, IL-1RT1, 
IL-1RT2, IL-17RA, IL-18BP, IL2-RA, IL-6RA, LTBR, 
TNF-R1, TNF-R2, TNFRSF10C, TNFRSF14, 
TNFSF13B

Brankovic et al., 2017 [26] Biomarker Renal Markers Creatinine, eGFR, CysC, KIM-1, NAG, NAGL

Canepa et al., 2020 [27] Biomarker Multiple Biomarkers SBP, Heart Rate, Haemoglobin, Creatinine, 
Uric Acid

Castelvecchio et al., 2018 [28] Biomarker Natriuretic Peptides NT-ProBNP

Freedland et al., 2021 [29] Functional Parameters Depression: PHQ-9

Hurst et al., 2019 [30] Biomarker Serum Lactate Dehydrogenase LDH

Kelly et al., 2020 [31] Functional Parameters Physical Activity reported by ICD or 
CRT-D (Accelerometer Measurement 
of > 25 mg)

Klimczak-Tomaniak et al., 2020 [32] Biomarker Macrophage and Neutrophil Related 
Biomarkers

M130(CD163), TRAP, GRN, SPON1, PGLYRP1, 
TFPI

Liu et al., 2018 [33] Biomarker Growth-Differentiation Factor GDF-15

Nunez et al., 2014 [17] Biomarker Red Blood Cell Distribution Width RDW

Nunez et al., 2017 [34] Biomarker Carbohydrate Antigen, Natriuretic 
Peptide

NT-ProBNP, CA125

Schreuder et al., 2021 [35] Biomarker Multiple Biomarkers NT-ProBNP, HsTNT, CRP, Creatinine, eGFR, 
CysC, NAG, KIM-1

van Boven et al., 2017 [36] Biomarker MicroRNAs miR-1254, miR-22-3p, miR-423-5p, miR-
486-5p, miR-320a, miR-345-5p, miR-378a-3p

van Boven et al., 2018 [37] Biomarker Multiple Biomarkers NT-ProBNP, HsTNT, CRP

van den Berg et al., 2019 [38] Biomarker Fibrinolysis Factors PAI-1, tPA, uPA, suPAR

van den Berg et al., 2019 [39] Imaging Parameters Echocardiographic Parameters

van den Berge et al., 2021 [40] Imaging Parameters Remodelling Parameters: LVEF, LVED, 
LVES

van Vark et al., 2017 [41] Biomarker Galectin-3 Gal-3

van Vark et al., 2017 [42] Biomarker ST2 ST2

Veen et al., 2021  [43] Imaging Parameters Tricuspid regurgitation

Zhang et al., 2018 [44] Biomarker Natriuretic Peptides NT-ProBNP
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JM
All included studies modelled their JMs with R. The two 
most common packages being JM and JMBayes, with 7 
(25%) studies using the JM package and 10 (36%) using 
JMBayes and another 3 (10%) studies specified both 
packages. Three studies used custom code, one study 
used the joineRML package and the remaining 3 (10%) 
did not specify the package used.

The R Packages used show both use of frequentist and 
Bayesian analysis. While the frequentist method use 
the maximum likelihood approach and is more compa-
rable to more traditional models the Bayesian approach 
typically relies on Markov chain Monte Carlo (MCMC) 
sampling algorithms and may improve analysis by using 
related historical information and allowing for more flex-
ible estimation [45].

Presentation of results
Generally, the results from the JMs included the hazard 
ratio of the associated longitudinal outcome of interest 

on the time-to-event outcome; this was typically either 
the association of the value of the longitudinal outcome 
or the slope of the outcome on the time-to-event model.

The longitudinal sub-model is often presented as a 
coefficient or a graph of the average change in the lon-
gitudinal outcome of interest over time, these graphs are 
commonly split into groups of subjects e.g., those who 
did or did not experience the time-to-event outcome of 
interest. An example of this is illustrated in Fig.  2 from 
the Vark et al. study [42].

Commonly used packages in R provide capability to 
visually represent a trajectory of the longitudinal meas-
ure and the resulting changes in survival probability 
as shown in Fig.  3 taken from Zhang et  al. where the 
trajectory of the longitudinal measures (NT-proBNP) 
is plotted on the left and the survival probability with 
95% confidence intervals are plotted on the right. This 
is useful when looking at individual patient trajectories, 
in their example Zhang et al. show how the probability 
of survival changes in response to changes of the trajec-
tory of NT-proBNP and a narrowing of the confidence 
intervals can be observed with the increase of measure-
ments of NT-proBNP [44]. These such plots while use-
ful were not common amongst the included studies.

Given this is a relatively new approach to analysing lon-
gitudinal data simultaneously with survival data studies 
often compare results from JMs against more traditional 
models such as a Cox PH model with only a singular 
measurement of the variable of interest.

Joint modelling outcomes
Generally, the JMs of the included studies performed 
favourably in terms of improving prognostication and 
identifying associations with adverse events. The Bio-
SHiFT study being the most common data source 

Table 3 Survival End Points of Included Studies

Legend: Some studies included multiple JMs with different end points, so the 
total number of endpoints (41) is more than the number of included studies (27)

Endpoint Overall
(N = 41)

Endpoint

 All-Cause Mortality 12 (29.3%)

 Cardiovascular Mortality 4 (9.8%)

 Components of composite endpoint 2 (4.9%)

 Components of the composite endpoint, MI, PCI, CABG, 
CVA and all-cause mortality

2 (4.9%)

 Composite 17 (41.5%)

 Default from Treatment 1 (2.4%)

 Development of Anaemia 1 (2.4%)

Fig. 2 Average Estimated Biomarker Pattern, Combined with Individual Biomarker Measurements. During Follow-up in Patients with and without 
the Primary Endpoint from the van Vark et al. Study. Legend: Reprinted with permission from van Vark et al. © 2017 The American College of 
Cardiology Foundation [42]
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explored a variety of biomarkers and imaging parameters 
including cell adhesion circulating biomarkers, fibrinoly-
sis factors, renal markers, echocardiographic parameters, 
Micro Ribonucleic Acid (MiRNA’s), cardiac remodelling 
biomarkers and macrophage and neutrophil related bio-
markers highlighting a variety of biomarkers and imaging 
parameters that were associated with the adverse events 
[23–26, 32, 35–39]. Whilst many of the tested biomark-
ers and parameters produced positive results, Van den 
berg et  al. suggested that repeated measures of imag-
ing parameters such as LVEF do not add any more value 
than single parameters due to the lack of change in those 
parameters over the observation period [39]. While this 
suggestion may be true for the population of the Bio-
SHiFT study, both Alvarez-Alvarez et  al. and Van den 
Berge suggested that for other heart failure populations 
repeated measurements of echocardiographic param-
eters such as LVEF can be useful, with Alvarez-Alvarez 
et  al. investigating these parameters in a chronic heart 
failure population after CRT and Van den Berge explor-
ing these parameters in an acute heart failure population 
[19, 40].

One of the key biomarkers which was explored in many 
studies was NT-ProBNP with Zhang et al., Castelvecchio 
et al. and Van Boven exploring its association with adverse 
events in a chronic heart failure population [28, 36, 44]. 
While these studies demonstrated the association between 
NT-ProBNP and adverse events, the Zhang et  al. study 
suggested that the most recent value of NT-ProBNP had 
a similar predictive value as the serial measurements, but 
similar to the Van den Berg et al. study this may simply be 
due to the lack of change in values of NT-ProBNP within 
the study population and may not be generalisable [44].

Other key biomarkers which appeared in multiple studies 
were High sensitivity Troponin T (HsTnT), C-Reactive Pro-
tein (CRP), Cancer Antigen 125 (CA125), creatinine, Sup-
pression of Tumorigenicity 2 (ST2), Galectin-3 (GAL-3) and 
Growth Differentiation Factor 15 (GDF-15) [22, 27, 33–35, 
37, 41, 42], indicating that repeat measures of these markers 
are of interest within heart failure populations. Additionally, 
other less frequent markers included lactase dehydroge-
nase trends (LDH) [30], Red blood cell Distribution Width 
(RDW) [17] and ambulatory markers such as Systolic Blood 
Pressure (SBP), heart rate and haemoglobin [18, 21, 27].

Fig. 3 Dynamic survival probabilities with 95% CI based on various measurements of NT- ProBNP for a patient whose values fell. Legend: Reprinted 
with permission from Zhang et al. © 2018 Elsevier B.V. All rights reserved [44]
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Along with biomarkers, functional parameters were also 
of interest, with Kelly et al. taking a novel approach inves-
tigating the association of physical activity as reported by 
implanted devices i.e., by ICD or CRT-D [31] and Arnold 
et al. using the joint modelling of health status in the form 
of Kansas City Cardiomyopathy Questionnaire Overall 
Summary Score (KCCQ-OS) score and all-cause mortality 
as a sensitivity analysis to illustrate how censoring attenu-
ated health status with respect to treatment effect [20].

Along with the echocardiographic parameters men-
tioned above imaging parameters were used in a total 
of four studies, using many of the parameters obtained 
from imaging such as LVEF, left ventricular end-diastolic 
diameter (LVED), left ventricular end-systolic diameter 
(LVES) and Tricuspid Regurgitation [40, 43].

Association between serum digoxin concentration 
and mortality
Baseline characteristics
Table  4 shows the baseline characteristics of included 
patients (n = 2012), with a median age of 64 years, 22% of 
patients being women, median ejection fraction was 29% 
and 35% of patients died.

JM – longitudinal data sqrt SDC over time
The coefficients from the longitudinal sub-model 
of JM 2 (Table  S4, Additional file  1) for time -0.004 

(-0.005—-0.002) suggests that the sqrt root SDC 
decreases by 0.004 per month after adjusting for covari-
ates. Figure  4 shows a representation of the predicted, 
and therefore adjusted, average trajectories of SDC over 
time from JM 2, divided into patients who died during 
follow-up and those who did not, it suggests that patients 
who died had on average higher levels of SDC.

JM – hazard ratios
Table 5 illustrates the results from the survival sub-mod-
els of the JMs in terms of a HR (95% CI) and p-value. All 
the JMs are time dependent relative risk models with a 
baseline risk function and as such the HRs can be inter-
preted similar to HRs from a proportional hazards model 
such as a Cox PH model. Focusing on the time dependant 
association parameter, the unadjusted model (JM 1) with 
a HR of 5.32 (3.07 – 9.22) suggesting a fivefold increase in 
the hazard of all-cause mortality per unit increase of sqrt 
SDC. This association is attenuated when adjusted for 
clinical covariates in JM 2 with a HR of 1.77 (1.34—2.33). 
The time dependent slope parameter of JM 3 is above the 
significance threshold (p-value 0.092) indicating insuf-
ficient evidence to establish an association between the 
slope of sqrt SDC and all-cause mortality. Neither the 
HR for the time dependant parameter or the HR for the 
time dependant slope parameter of JM are above the sig-
nificance threshold (p-values of 0.427 and 0.13, respec-
tively) suggesting insufficient evidence to establish an 
association with either value or slope when the model is 
adjusted for both. The interpretation of the time depend-
ant parameter of this model would be the hazard of all-
cause mortality per unit increase of SDC for patients 
having the same slope. The interpretation of the time 
dependant slope parameter of this model would be the 
hazard of all-cause mortality per one SD increase in slope 
for patients having the same level of sqrt SDC.

JM – individual patient trajectories
Figure  5 shows the individual patient trajectories of a 
patient randomly selected (from patients with at least 
four measurements of sqrt SDC) at four different time 
points. These plots contain the longitudinal measure-
ments of sqrt SDC as fitted by the JM on the left and 
the survival probability on the right, the dashed line 
indicating the last point the patient was known to 
be alive and the start of the survival curve, this point 
changes with each added measurement and as a result 
the survival curves are not directly comparable. How-
ever, these plots demonstrate how the measurements 
of sqrt SDC effects the survival probability and how 
the confidence intervals change over time with more 
measurements.

Table 4 Baseline Characteristics According to Patient Status 
(Dead / Censored) and Overall Sample (n = 2012)

Dead
(n = 713)

Alive/ Censored
(n = 1299)

Overall
(n = 2012)

Age
 Median (IQR) 66.0 (13.0) 63.0 (13.0) 64.0 (13.0)

Sex
 Female 151 (21.2%) 300 (23.1%) 451 (22.4%)

 Male 562 (78.8%) 999 (76.9%) 1561 (77.6%)

Ejection Fraction
 Median (IQR) 25.0 (13.0) 30.0 (13.0) 29.0 (13.0)

NYHA Class
 Class I 75 (10.5%) 215 (16.6%) 290 (14.4%)

 Class II 345 (48.4%) 741 (57.0%) 1086 (54.0%)

 Class III 265 (37.2%) 325 (25.0%) 590 (29.3%)

 Class IV 28 (3.9%) 18 (1.4%) 46 (2.3%)

History of Hypertension
 False 376 (52.7%) 727 (56.0%) 1103 (54.8%)

 True 337 (47.3%) 572 (44.0%) 909 (45.2%)

Ischemic HF
 Ischemic 505 (70.8%) 939 (72.3%) 1444 (71.8%)

 Non-ischemic 208 (29.2%) 360 (27.7%) 568 (28.2%)

BMI
 Median (IQR) 25.9 (5.91) 26.6 (5.97) 26.4 (5.76)
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Additional (Comparative) analysis
Results from the comparative analysis suggest that JM 
2 had the overall best performance of the JMs with the 
lowest AIC, highest log likelihood and joint highest dis-
crimination index of all models. The lower HR from the 
extended Cox PH model suggests that it underestimated 
the HR of the sqrt SDC parameter likely due to the nature 
of SDC as a time varying covariate; SDC being an endog-
enous biological covariate subject to measurement error, 
biological variances, being able to change between meas-
urements and finally requiring the subject to be alive 
at measurement. Underestimation of the association 

parameter has been previously demonstrated in simula-
tion studies [46].

Internal validation of the discrimination index using 
100 bootstrap samples showed that JM2 with and mean 
discrimination index of 0.66 (range 0.6—0.72) outper-
formed the extended Cox PH model with a mean dis-
crimination index of 0.65 (range 0.62 – 0.67) 71% of the 
time with respect to the discrimination index and 66% of 
the time when compared to Cox PH last measurement 
model with a mean discrimination index of 0.65 (range 
0.62—0.68). The full additional analysis is available in 
Additional file 1.

Fig. 4 Average Trajectories of SDC by Patient Status as Predicted by JM 2 with Observed Values and Trajectories of SDC. Legend: a Average 
Trajectories of SDC by Patient Status as Predicted by JM 2 with Observed Values and Trajectories of SDC on original axis scale, b Average Trajectories 
of SDC by Patient Status as Predicted by JM 2 with Observed Values and Trajectories of SDC on scaled axis scaled for readability. Average Trajectories 
were predicted using JM2 for patients whose status were either alive or dead based on mean and mode characteristics (covariates) of each stratum 
of patients (Alive or Dead)

Table 5 Event Summary of JMs Represented Hazard Ratios

HR of all parameters except Association Slope reported as hazard of all-cause mortality per one unit increase at any point in time
a HR of Association Slope reported as hazard of all-cause mortality per one standard deviation increase in the slope of sqrt

JM 1 (Unadjusted) JM 2 (Adjusted) JM 3
(Adjusted Time Dependant 
Slopes)

JM 4
(Time Dependant and 
Time Dependant slopes)

Variable HR P value HR P value HR P value

Age 1.02 (1.01–1.03)  < 0.001 1.02 (1.01–1.03)  < 0.001 1.02 (1.01–1.03)  < 0.001

Male 1.19 (0.99–1.43) 0.062 1.2 (0.99–1.45) 0.064 1.22 (1.01–1.47) 0.042

Ejection Fraction % 0.97 (0.96–0.98)  < 0.001 0.97 (0.96–0.98)  < 0.001 0.97 (0.96–0.98)  < 0.001

NYHA Class II 1.22 (0.95–1.57) 0.115 1.2 (0.93–1.55) 0.171 1.22 (0.94–1.57) 0.131

NYHA Class III 1.66 (1.28–2.16)  < 0.001 1.63 (1.25–2.14)  < 0.001 1.66 (1.27–2.17)  < 0.001

NYHA Class IV 2.26 (1.45–3.53)  < 0.001 2.3 (1.43–3.72) 0.001 2.36 (1.48–3.76)  < 0.001

History of Hypotension 1.15 (0.99–1.34) 0.07 1.16 (0.99–1.36) 0.06 1.16 (0.99–1.35) 0.063

Non-Ischemic HF 1.07 (0.91–1.26) 0.428 1.07 (0.9–1.27) 0.455 1.08 (0.91–1.28) 0.386

BMI 0.98 (0.97–1) 0.036 0.98 (0.97–1) 0.061 0.99 (0.97–1) 0.113

Association (sqrt SDC) 5.32 (3.07–9.22)  < 0.001 1.77 (1.34–2.33)  < 0.001 1.33 (0.66–2.65) 0.427

Association  Slopea 1.24 (0.97–1.59) 0.092 1.17 (0.96–1.42) 0.13
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Discussion
In 2016, a systematic review by Sudell et  al. showed an 
increase in use of JMs of longitudinal and time-to-event 
data over time. However, only 3 identified studies used 
‘heart related’ data; the most common applications were 
to cancer and HIV/AIDS studies [47]. Developing on 
their search strategy.

We identified 28 studies by systematic review apply-
ing joint modelling within an adult heart failure popula-
tion, and with use of an illustrative example have shown 
how to fit and interpret a JM. We have also shown how 
a JM approach can be used to examine the association 
between a biochemical test and outcomes in patients 
with heart failure.

Open-source software packages available in R such as 
JM and JMBayes make joint modelling more accessible 
reflected by the 20 (71%) studies using these packages. 
While these packages limit the JMs by way of underlying 
methodology [12, 48], if this methodology is not suitable 
custom code may be written as illustrated by the Hurst 
et al. study [30]. Both the JM and JMBayes packages also 

contain limitations around missing data in covariates, 
while the packages allow for missing longitudinal data, 
they do not allow for missing covariates in the sub models 
used to build the JMs, this results in the need to either use 
a complete case with regards to the covariates as shown in 
our exemplar or use imputation techniques such as multi-
ple imputation as highlighted in the included studies.

Due the clinical nature of the included studies we 
found that studies often lacked details on the formula-
tion of the JMs, e.g., the baseline risk function. Whilst 
this information could usually be derived by consider-
ing the packages used to fit the JMs, this information 
may be useful for reproducibility. We also identified that 
there was a lot of ambiguity around the origin of figures; 
whether or not they came from JMs or the individual 
components of the JMs e.g., a linear mixed effects model, 
modelled independently of the JM. We therefore suggest 
the need for clarity and transparency of the presentation 
of results from JMs.

It is also important that the results are easily under-
standable to a general audience. For example, the HR of a 

Fig. 5 Individual Patient Trajectory of sqrt SDC and Survival Probability from Randomly Sampled Patient as Predicted by JM 2



Page 11 of 14Field et al. BMC Medical Research Methodology           (2023) 23:94  

time dependent association parameter is intuitive but the 
HR of a time dependant slope parameter less so. Clini-
cians will often consider trends of biomarkers in day-to-
day decision making so understanding these association 
parameters are key to relating them to clinical practice.

One driving motivation of the use of JMs was utilisa-
tion of repeated measures to inform prognosis and the 
comparison against a single measure. Most studies inves-
tigated biomarkers such as NT-ProBNP, CA125 and renal 
markers. However, JMs were not only limited to bio-
markers; with such studies as van den Berg et al. inves-
tigating echocardiographic parameters [39], Arnold et al. 
focusing on health status [20] and Kelly et  al. exploring 
physical activity as reported by an implanted device [31]. 
The use of these data illustrates the robustness of joint 
modelling. Another key rationale was the use of joint 
modelling to reduce bias due to censoring and mortality. 
Bias of this nature often occurs because subjects who are 
sicker are more likely to experience the event of interest 
or withdraw from the study earlier than those who are 
healthier leading to fewer longitudinal measurements [2]. 
To overcome this joint modelling provides a framework 
that acknowledges the underlying relationship between 
the longitudinal and event process through the use of a 
joint distribution [5]. The Arnold et  al. study illustrates 
this bias visually highlighting how censoring likely atten-
uated heath status with respect to treatment effect [20]. 
Further, we have highlighted the use of joint models to 
handle missing not at random data through use of a joint 
distribution [5].

Only three studies used data from RCTs [20, 22, 27], 
as previously mentioned joint modelling can be used 
to reduce bias with respect to treatment effect. Whilst 
this highlights a potential gap in the literature it should 
be noted that during screening, we identified numerous 
studies using joint modelling as a sensitivity analysis with 
results consistent to those from separate longitudinal and 
survival models but were excluded from review as not 
enough details about the models were included for full 
appraisal.

Compared to cancer studies, there was a lack of focus 
on quality-of-life data with only one study including 
quality of life in the form of a Kansas City Cardiomyopa-
thy Questionnaire and SF-36 scores [20], and one which 
included depression by means of patient health question-
naire 9 scores [29]. Whereas joint modelling with quality 
of life is much more prevalent in cancer studies [3, 20]. 
This highlights another area which may be of interest to 
future studies using joint modelling in heart failure.

The Bio-SHiFT Cohort made up 36% of studies pri-
mary data, illustrating how a study can be developed 
to fully use the capabilities of joint modelling; with fre-
quent blood sampling and measurements of endpoints 

the study leads the way for further larger studies of this 
nature [16].

From the studies using data from the Bio-SHiFT 
Cohort we identified 3 studies which only selected 
baseline and the last two measurements closest to the 
endpoint [23, 38, 49]. While justified to investigate the 
trajectories before and after an event it should be noted 
that this kind of analysis could lead to bias and should 
only be conducted with proper justification.

Many of the included studies demonstrated how 
repeated measures added value with respect to both 
prognostication and model fit. The outcomes of the JMs 
illustrate how joint modelling can improve on traditional 
models and highlights the use of joint modelling to assess 
associations of various biomarkers, imaging param-
eters and functional parameters, and adverse outcomes 
as well as provide dynamic predictions. However, there 
were studies which stated repeat measurements did not 
add prognostic value or improve model fit. For exam-
ple, Van den Berg et  al. stated that repeated measure-
ments of echocardiographic parameters were associated 
with adverse events but did not add prognostic value due 
to the lack of change in measurements over time [39]. 
Whist this may be true for the Bio-SHiFT cohort, both 
van den Berge et al. and Alvarez-Alvarez et al. illustrated 
that given the right context these repeat measurements 
can still add value [19, 40]. This highlights an important 
caveat regarding JMs, in that the cost may not outweigh 
the benefit of the JMs; whilst biomarkers are routinely 
collected at little added cost other parameters may be 
costly to collect and an understanding of the temporal 
patterns of these parameters prior to joint modelling is 
advisable.

Our exemplar shows how joint modelling can be 
applied to older studies in order to maximise information 
from data that was sometimes collected but unused in 
expensive clinical trials. We highlighted how they com-
pare to traditional models and how they can compete 
and improve on these models while also providing new 
clinical insight. The HR of the extended Cox PH model 
when compared to JM2 and the last measurement Cox 
PH Model suggests that it underestimated the association 
parameter, as previously stated likely due to the nature of 
SDC as a covariate. Whilst the extended Cox PH allows 
for repeated measures it does not account for measure-
ment error, biological variance or that SDC may vary 
between time points or after the last observed measure-
ment; this underestimation has previously been dem-
onstrated in in simulation studies [46]. Joint modelling 
while allowing for repeated measurements of SDC can 
handle the biological endogenous nature of SDC provid-
ing better inferences [5]. Our results suggest that higher 
values of SDC rather than the slope is associated with 
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higher mortality in patients with heart failure. Our work 
extends the findings of prior studies that have tried to 
examine this association with landmark methods which 
do not perform as well as shown by our exemplar analy-
sis. The implications of this finding are that for patients, 
their SDC level should be kept as low as possible while 
still maintaining adequate dosing and in patients with 
high SDC consideration may have to be given to reducing 
the dose. There is however an issue of reverse causality, 
sicker patients may be prescribed higher doses and con-
sequently have higher SDC. However, higher SDC could 
still act as an indicator of risk and should alert clinicians 
to reassess the patient and consider other therapies for 
their heart failure.

Our exemplar only included patients who had no 
missing covariate values. While this is satisfactory for 
an exemplar, it can lead to loss of information and pos-
sible bias in research studies and the best practice may 
be to use multiple imputation [50]. However, it should 
be noted that multiple imputation requires pooling for 
valid inference, which may cause issues with computa-
tional complexity and the need for pooling for dynamic 
predictions.

Our internal validation using 100 bootstrap sam-
ples showed JM2 outperformed the extended Cox PH 
and Cox PH last measurement models with respect to 
the discrimination index most of the time (71% and 
65% respectively) within the bootstrap samples pro-
viding validation to the prognostic performance of the 
JM. However, the range of the discrimination indices 
of JM2 is wider than both other models suggesting 
more variability of discrimination with the joint model 
within the bootstrap samples. While our exemplar used 
a dynamic discrimination index for prognostic com-
parison against traditional models, we found that there 
was little consistency in methods used to compare JMs 
against each other and traditional models, highlighting 
a need for consistency when evaluating JMs. We would 
suggest that any model specifications or parameters are 
clearly described to allow any comparisons to be made 
in future research.

JM 3 in our exemplar included a slope parameter cor-
responding to the rate of change in sqrt SDC at a time 
point, known as the instantaneous or current slope. 
As previously stated, this parameter can be difficult to 
interpret and as such the JMBayes2 package offers the 
use of other slope parameters such as delta change i.e., 
change in the last month / year prior to the time point. 
This parameter should be easier to interpret and is 
likely to be more prognostic than currently used slope 
parameters [51].

Both our review and exemplar highlight the various 
output and figures that can be produced from a JM and 

show how powerful joint modelling can be, with appli-
cations for prognostication, research of the association 
of repeat measurements of biomarkers and an end-
point, sensitivity analysis and more.

While joint modelling has a variety of uses, it may be 
most beneficial in the presence of informative censoring 
or dropout, when incorporating time varying exogenous 
covariates such as biomarkers into survival models, and 
for prognostic modelling where dynamic predictions 
are useful. However joint modelling can be computa-
tionally complex and take longer to fit than traditional 
models. It should also be noted that inferences may only 
be valid where the joint model has been correctly speci-
fied both with respect to the sub models and baseline 
hazard function. Joint models are also only valid when 
conducted on the same population, this is to say that 
both the longitudinal and time-to-event responses need 
to come from the same group of subjects. Joint mod-
els may not provide better prognostic inference where 
there is limited variability in the repeated measures 
such as shown by van den Berg et al. [39].

Our exemplar has some limitations such as the lim-
ited number of repeat measurements. This may have 
affected the power to estimate the slope association 
parameter and overall accuracy of the model.

Conclusions
In conclusion, this hybrid systematic review with exem-
plar highlights the rise in the use of JMs within heart 
failure, and our exemplar illustrates how JMs can be fit-
ted to existing datasets adding value by utilising infor-
mation from the repeated measures collected. This 
highlights why JMs are an increasingly popular alterna-
tive to traditional models such as Cox PH and Extended 
Cox PH.
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