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9026 Győr, Hungary

2 Higher Institute of Regional Planning, Damascus University, Damascus P.O. Box 30621, Syria
3 James Watt School of Engineering, University Glasgow, Glasgow G12 8QQ, UK
4 The National Water and Energy Center, United Arab Emirates University,

Al Ain P.O. Box 15551, United Arab Emirates
5 School of Interdisciplinary Studies, University of Glasgow, Dumfries DG1 4ZL, UK
* Correspondence: firas.alsilibe@hallgato.sze.hu

Abstract: The lack of sufficient precipitation data has been a common problem for water resource
planning in many arid and semi-arid regions with sparse and limited weather monitoring networks.
Satellite-based precipitation products are often used in these regions to improve data availability. This
research presents the first validation study in Syria for Climate Hazards Group InfraRed Precipitation
with Stations (CHIRPS) estimates using in-situ precipitation data. The validation was performed
using accuracy and categorical statistics in the semi-arid Barada Basin, Syria, between 2000 and 2020.
Multiple temporal scales (daily, pentad, monthly, seasonally, and annual) were utilized to investigate
the accuracy of CHIRPS estimates. The CHIRPS results indicated advantages and disadvantages. The
main promising result was achieved at the seasonal scale. Implementing CHIRPS for seasonal drought
was proven to be suitable for the Barada Basin. Low bias (PBwinter = 2.1%, PBwet season = 12.7%), high
correlation (rwet season = 0.79), and small error (ME = 4.25 mm/winter) support the implementation of
CHIRPS in winter and wet seasons for seasonal drought monitoring. However, it was observed that
CHIRPS exhibited poor performance (inland pentads) in reproducing precipitation amounts at finer
temporal scales (pentad and daily). Underestimation of precipitation event amounts was evident
in all accuracy statistics results, and the magnitude of error was higher with more intense events.
CHIRPS results better corresponded in wet months than dry months. Additionally, the results showed
that CHIRPS had poor detection skill in drylands; on average, only 20% of all in-situ precipitation
events were correctly detected by CHIRPS with no effect of topography found on detection skill
performance. This research could be valuable for decision-makers in dryland regions (as well as the
Barada Basin) for water resource planning and drought early warning systems using CHIRPS.
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1. Introduction

Precipitation plays an essential role in the hydrological cycle [1]. Improving precipita-
tion measurement methods is crucial in a wide range of climatology-dependent studies,
such as drought monitoring, flood forecasting, and water resource management [2–5].
Precipitation data are typically obtained from in-situ gauges, earth observations, and the
output of atmospheric model simulations. Among them, in-situ measurements are the most
reliable source of precipitation data; however, obtaining a consistent set of measurements
from in-situ data is challenging, especially in developing countries [6]. In-situ gauges that
collect precipitation data in developing countries are often limited. They lack spatial cov-
erage and may comprise a heterogeneous mix of technologies, precision, and operational
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expertise, resulting in a high percentage of missing or inaccurate data. Gauges may have
been recently installed, yielding a limited recorded history that would be unsuitable for
reliable climate analysis.

In Syria, located in the eastern part of the Mediterranean Sea Basin, climate change is
more intense, similar to other countries in the Mediterranean region [7]. Changes in climate
characteristics have affected precipitation patterns by increasing variability over the last
decades [8], causing the region to become more vulnerable to drought events. In addition,
the threat of drought is expected to rise dramatically over the next two decades [9]. The
Barada Basin, located in the southwestern part of Syria, has two climate zones: a hot semi-
arid climate with an average annual precipitation of less than 250 mm and a cold semi-arid
climate with an average annual rainfall amount of 450 to 800 mm [10,11]. Precipitation is
the primary source of recharge of the groundwater aquifers that are the main water supply
for all life activities in the basin [12]. Therefore, reliable and consistent precipitation mea-
surements are critical for drought management and water resource planning in the basin.
Collecting precipitation measurements in the basin is limited, and the number of active
gauges has considerably declined as a result of the Syrian war [13]. Therefore, satellite-
based estimates may provide a reliable alternative with a variety of temporal resolutions
and global coverage in regions where rainfall information is scarce and inadequate [2,14,15].
However, these indirect estimates have several limitations, e.g., uncertainties in the rela-
tionship between the physical variables measured by the satellite (e.g., cold cloud duration
and potential amount of rainfall) and precipitation estimates [16,17].

The algorithms used to generate estimates are divided into two categories: (1) utilizing
thermal infrared bands (TIR) based on cloud-top temperature, and (2) utilizing passive
microwave (PM)-based sensors [18]. In the TIR algorithm, the cold cloud duration (CCD)
parameter is used to predict rainfall by assuming a linear correlation between CCD duration
and rainfall potential [19,20]. The PM technique uses sensors to detect radiation from cloud
cover and provide information on the cloud’s internal properties [21]. Both methods have
advantages and disadvantages in estimating rainfall. For example, the PM technique is
better in estimating short term rainfall over a specific location compared to TIR, while TIR
outperforms PM in estimating rainfall over longer periods of time [22]. To overcome these
limitations, both techniques have been combined with other sources [23], such as ground
stations and/or numerical simulations that improve the accuracy of the estimations [24–26].
Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) is a multi-source
precipitation product [26,27]. It provides high spatial resolution and multiple temporal
scales. Validation of the accuracy of CHIRPS estimates is a key step to supporting its
widespread use in different applications, e.g., drought monitoring [28,29]. Numerous
studies have been conducted to investigate the performance of CHIRPS. In an arid climate
region in Iran, it was found that CHIRPS performed better in areas with predominantly
convective rainfall (wet conditions) [30]. The results also revealed that high elevations
produced better estimates than lower elevations in southern and northern low coastlands.
Another study in an arid climate confirmed the successful performance of CHIRPS over a
monthly time scale compared to daily or yearly scales [31]. In this study, CHIRPS again
performed better under wet conditions. However, studies in humid climates have revealed
different results; for example, Alejo et al. [32] found that CHIRPS performed poorly during
the wet season in the Philippines, compared to the dry season where CHIRPS performed
better in terms of rainfall detection.

In the Mediterranean region, previous studies agreed on the ability of CHIRPS to
reproduce winter estimations with a low bias percentage [33,34]. Other studies have
compared the performance of CHIRPS with additional products. In Mozambique, CHIRPS
was investigated with other precipitation products (TAMSAT African Rainfall Climatology
and Time-series (TARCAT) v2.0 and Famine Early Warning System NETwork (FEWS
NET) Rainfall Estimate) [17]. CHIRPS estimates did better in the wet season, with an
overestimation of the rainfall event frequency. In Southern China (humid climate), a study
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concluded that monthly CHIRPS estimations were best especially in representing the spatial
distribution of rainfall variations [35].

In Egypt, four precipitation products were compared on a daily scale [36], and CHIRPS
proved to be best in detecting light rainfall events (<1 mm/day), even though in general,
all products had poor performance. The purpose of this research was to assess the accu-
racy of the CHIRPS product in estimating and detecting precipitation events. The main
research questions are: (1) evaluating the accuracy of the CHIRPS product in detecting and
estimating precipitation events (pentad scale), (2) evaluating the performance of CHIRPS
within the hydrological year (monthly and seasonally), (3) investigating the suitability of
the CHIRPS product for water resource planning (annual scale). Previously, satellite-based
precipitation products have not yet been tested at the basin level over Syria; therefore, this
study would be the very first. To answer the research questions, two groups of statistics
were used with different scales (daily, pentad, monthly, seasonally, and annual) within two
distinctive regions (inland and highland basin parts).

2. Study Area and Datasets
2.1. Study Area

The Barada Basin (Figure 1) is located in the southwestern part of Syria, where the
capital city of Damascus is located, occupying the northwestern part of the Barada and
Awaj Basin and covering an area of 1063 km2, with the landscape divided into two main
parts. The Anti-Lebanon Mountains occupy the northwestern part of the basin with the
highest elevation of 2814 m (Mount Hermon) [37], and the Damascus plain includes the
city of Damascus and its suburbs. The elevation varies from 710 m at the foot of Qasioun
Mountain to 559 m at Ateibeh Lake [38].
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Figure 1. Location of the Barada Basin, Syria, and spatial distribution of rain gauges over the basin.

This specific landscape affects the precipitation behavior over the basin. Based on the
Köppen-Geiger climate classification [11], the mountainous (highland) part exhibits a cold
semi-arid climate. Summer is hot but cooler than summers in hot semi-arid areas, whereas
winter tends to be cold to freezing with occasional snowfall. The mean annual precipitation
ranges from 505 (Bloudan gauge, 1550 m) to 1500 mm and 1800 mm at the highest mountain
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peaks higher than 2000 m (Hermon and Sheer Mountains) [37]. A hot semi-arid climate
dominates the plain area (inland part). Winter is warm to cool, and summer tends to be
hot or extremely hot. Precipitation is low compared with a cold semi-arid (the highland
part) climate. The main cause of this precipitation variation between the highland and
inland areas is the prevailing rain shadow phenomena. Rain shadow in the basin reduces
the rainfall amounts in the inland part beyond the Anti-Lebanon Mountains. The main
drivers of the precipitation system are controlled by the subtropical cyclones coming from
west from the Mediterranean Sea via westerlies wind movement [39,40]. Two periods can
be distinguished in the hydrological year: the wet period between October and March, and
the hot dry period from April to September.

2.2. Datasets
2.2.1. In-Situ Precipitation Data

In Syria, multiple government agencies are responsible for collecting rainfall measure-
ments. In the Barada Basin, three resources were utilized to collect the rainfall measure-
ments from 12 rain gauges (Table 1). Precipitation measurements were obtained from five
rain gauges at the upstream highland part of the basin from the directory of Ain AL-Fijah
(or Al-Fijah springe). The measurements extended from 2000 to 2019 with a daily accumu-
lation of precipitation. The other seven rain gauges were located in the downstream inland
part. Their measurements were collected from two sources, the ministry of water resources
(daily accumulation of precipitation from 2010 to 2020) and the Harvesting project of the
ministry of agriculture (monthly accumulation of precipitation from 2000 to 2010). The two
resources were used to build a consistent and relatively long-term dataset from 2000 to 2019.
It should be noted that daily measurements were available from the inland rain gauges
only from 2010 to 2020, therefore any next analysis of daily rainfall would be within this
period (2010–2020). All rain gauges had missing values, but in general, the missing ratio
did not exceed 20%. In every dataset, the missing data were excluded from the analysis.
Referring to Figure 1, the distribution of the rain gauges over the basin lacks adequate
spatial coverage, since the gauges are concentrated between the highland and inland parts.

Table 1. The geographical and climatological characteristics of the rain gauges used in the
Barada Basin.

Rain Gauge Latitude Longitude Elevations M.A.P * Missing ES ** Climate Location

DA *** 33◦24” 36◦30” 616 160 17% 3409 Hot steppe Inland
Douma 33◦24” 36◦24” 655 167 18% 3377 Hot steppe Inland
Barzh 33◦33” 36◦18” 842 170 17% 3429 Hot steppe Inland

Qasioun 33◦32” 36◦17” 1050 277 17% 3430 Hot steppe Inland
Aqraba 33◦26” 36◦22” 659 143 17% 3417 Hot steppe Inland
Al Hijaz 33◦30” 36◦17” 700 156 17% 3409 Hot steppe Inland

Al Mazzeh 33◦30” 36◦14” 745 200 18% 3367 Hot steppe Inland
Al Zabadani 33◦41” 36◦06” 1150 540 7% 6529 Cold steppe Highland

Bloudan 33◦44” 36◦08” 1550 205 7% 6541 Cold steppe Highland
Serghaya 33◦48” 36◦09” 1450 586 2% 6835 Cold steppe Highland
Huraira 33◦36” 36◦11” 1600 490 6% 6498 Cold steppe Highland
Madaya 33◦41” 36◦08” 1300 510 8% 6467 Cold steppe Highland

* M.A.P = Mean Annual Precipitation (mm/year), ** ES = Effective sample (the original sample minus the missing
measurements).*** DA = Damascus Airport gauge.

2.2.2. CHIRPS Precipitation Data

Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) is a quasi-
global precipitation dataset with 40+ years of data from 1981 until the present. The CHIRPS
dataset was created by the US Geological Survey and the Santa Barbara Climate Hazards
Group at the University of California [27]. CHIRPS is a multi-source product consisting
of satellite and rain gauge data. The spatial coverage extends from 50◦S to 50◦N and
180◦E to 180◦W, with a high spatial resolution (0.05◦) (about 5.3 × 5.3 km2). Based on
this resolution, multiple temporal series are available at each pixel, which include daily,
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pentad (accumulation of 5 days), dekadal (accumulation of 10 days), and monthly. CHIRPS
is produced in several stages, starting with satellite thermal infrared (TIR) images and
applying subsequent adjustments, as described in ref. [27] and summarized below. First,
the cold cloud duration (CCD) technique is applied to TIR images globally with a threshold
of 235 K to identify areas with a likelihood of being rainy areas, using the Cold Cloud
Persistence (CCP) parameter. Next, a linear regression best-fit analysis is conducted for the
CCD values, using the 0.25◦ Tropical Rain Measurement Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA) 3B42 pentad precipitation archive from 2000 to 2013 to
predict the coefficients of the regression model. To calculate the CHIRPS results, the values
from the regression model are divided by the average precipitation estimates from 1981
to 2013 and multiplied by the same grid value as the CHPclim values [41]. The CHPclim
value is a historical mean precipitation from five sources at every grid cell. CHPclim is
defined as a modeling approach that combines satellite data and gridded physiographic
indicators with in-situ climate normals [26], using moving window regressions and inverse
distance-weighting interpolation. Following that, the observations are blended with the
in-situ stations [17,41]. The blending procedure is a modified inverse distance-weighting
algorithm with several unique characteristics. Data from the in-situ stations are weighted
according to their performance, with national stations typically receiving higher weights
than automated stations. The five stations closest to each pixel are chosen for blend-
ing [27]. The CHIRPS dataset from 2000 to 2020 was acquired from the following website
(https://www.chc.ucsb.edu/data/chirps (accessed on 17 December 2022). We used the
latest version of CHIRPS (CHIRPS v.2).

3. Methods
3.1. Point-to-Pixel Method

As part of the assessment, the CHIRPS precipitation estimates were compared to
the measurements obtained from the 12 in-situ rain gauges by applying accuracy and
categorical statistics. The point-to-pixel method was chosen to compare the time series
of CHIRPS to the in-situ precipitation measurements [14,16,42]. The application of this
method eliminated the uncertainty inherent in the pixel-to-pixel analysis [43], where the
interpolation procedure may introduce considerable uncertainty. This was especially true
since only a small number of in-situ gauges are available for the Barada Basin [44]. At
each gauge location, the precipitation time series from 2000 to 2021 was extracted from the
corresponding CHIRPS pixels and compared to the in-situ gauges.

3.2. Accuracy Statistics

Evaluation of CHIRPS’s accuracy was performed using a pairwise comparison of the
CHIRPS and in-situ precipitation time series [16]. In this study, five accuracy statistics
(Table 2) were considered in the pairwise comparison: Pearson correlation coefficient
(r), Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and Percent Bias (PB), with their respective equations described in Table 2. The Pearson
correlation coefficient, which ranges from −1 to 1 with a perfect score of 1, reflects the
strength of the linear correlation between the estimates and measurements. ME and MAE
quantify the error direction and average magnitude of that error, respectively. ME can
take any negative or positive value, whereas MAE can take only positive values. The
perfect score for both is 0. RMSE measures the average difference between the CHIRPS
estimates and the in-situ measurements. It provides information on the accuracy of the
CHIRPS estimates. It is an estimation of how well CHIRPS performed in estimating the
real measurements. RMSE’s perfect value is zero and it produces only non-negative values.
PB shows the average tendency of the estimated values, which can be smaller or larger
than their observed values, with an ideal value of 0. Correlations are nondimensional,
while PB has percentage units. ME, MAE, and RMSE values need to be close to 0 with high
values of r for drought monitoring and water management planning and to minimize the
overestimation and underestimation of rainfall amounts [17].

https://www.chc.ucsb.edu/data/chirps


Remote Sens. 2023, 15, 1778 6 of 19

Table 2. Accuracy statistics equations used in the pairwise comparisons between CHIRPS and
in-situ data.

Statistical Metric Equation Optimal Value

Pearson correlation coefficient r =
∑
(

G−G
)(

C−C
)

√
(G−G)

2
√
(C−C)

2
1

Mean Error ME = 1
N ∑ (C− G) 0

Mean Absolute Error MAE = 1
N ∑ (|C− G|) 0

Root-Mean-Square Error RMSE =
√

1
N ∑(C− G)2 0

Percent Bias PB = 100 ∑ (C−G)
∑ G

0

G: gauge precipitation measurement, G: average in-situ precipitation measurement, C: CHIRPS-based precipitation
estimates, C: average CHIRPS-based precipitation estimates, and N: number of data pairs.

3.3. Categorical Statstics

Detecting precipitation events via satellite requires a robust method to quantify the
quality of the results. The estimations must be reliable to have confidence in applying
those results to water resource planning and drought/flood monitoring [17]. Therefore, the
second part of the analysis was to examine the CHIRPS product’s reliability in detecting
precipitation events by employing categorical statistics. A precipitation event was defined
as the accumulation of daily precipitation assumed to be equal to rainfall storms that
occurred during that day. Storms in semi-arid regions tend to occur briefly, are intense,
and most importantly, they occur once daily; therefore, it is rare to observe multiple storms
in one day. Next, the precipitation event threshold was defined to discriminate between
precipitation events and non-precipitation events. Since the Barada Basin has a semi-arid
climate and complex topography, the threshold was set to 0.5 mm/day. According to other
researchers, thresholds were based on their specific case study climate condition, such as
in ref. [30] where the 0.1 mm/month threshold was selected for semi-arid conditions in
Iran. However, in this study, the climate is hot/cold semi-arid, so 0.5 mm/day was more
suitable based on ref. [45]. Five categorical statistics (Table 3) were used to assess CHIRPS
performance in detecting precipitation events. Calculating these statistics was based on
a contingency table (see ref. [46] for more details), showing the number of estimated and
measured (by both CHIRPS and in-situ gauge), not estimated but measured (detected by
in-situ gauge but not CHIRPS), and estimated but not measured (detected by CHIRPS
but not in-situ gauge). To evaluate the overall detection skill, Percent Correct (PC) was
used. PC provides an overall view of the detection skill as it involves all the measurements
during the hydrological year. The discrimination performance of the CHIRPS product was
investigated by Probability Of Detection (POD). POD indicates the percentage of in-situ
events that were detected correctly by CHIRPS divided by total actual in-situ events. POD
can vary between 0 and 1, with 1 being the optimal value. False alarm ratio (FAR) represents
the number of CHIRPS estimates that did not occur divided by the total number of CHIRPS
estimates (both correct and false). The ratio can range from 0 to 1, with an optimal value of 0.
The Threat Score (TS) compares correct CHIRPS estimates to total outcomes (estimated–
measured, estimated–not measured, not estimated–measured). The best possible value
of TS is 1.0. Since TS includes three possible outcomes, it will diverge more rapidly with
the number of incorrect (estimated–not measured, not estimated–measured) outcomes.
Additional categorical metrics involve a large population of estimated–measured pairs
and often include the fourth outcome, where CHIRPS estimates no event and gauges
measure no event [46]. The climate of the Barada Basin means the frequency of rainy days
is limited during the hydrological year. Therefore, using the TS statistic was more useful
than the modified version, the equitable threat score (ETS), which is more suitable for wet
climates [46]. The Frequency Bias (FB) reflects the systematic differences in the precipitation
events between in-situ measurements and CHIRPS estimates. Unbiased CHIRPS estimates
take the value of 1.
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Table 3. The formulas of categorical statistics used in analyzing the detection skill of CHIRPS
estimates (based on ref. [46]).

Skill Categoric Statistic Formula

Overall Accuracy Percent Correct (PC) PC = A + C
Total

Discrimination Probability of Detection
(POD) POD = A

A + C

Reliability False Alarm Ratio (FAR) FAR = B
A + B

Accuracy Threat score (TS) TS = A
A + B + C

Bias Frequency Bias (FB) FB = A + B
A + C

A = the number of hits (precipitation events detected by both CHIRPS and in-situ gauges). B = false alarms
(precipitation events detected by CHIRPS but not by in-situ gauges). C = the number misses (precipitation events
detected by in-situ gauges but not by CHIRPS).

4. Results and Discussion
4.1. Daily Scale Assessment
4.1.1. Daily Comparison

Daily accumulations were aggregated to 5 days of total precipitation accumulation
(pentads) in both basin parts (inland and highland) to evaluate CHIRPS performance at
a daily scale. This aggregation was essential to eliminate the latency issue associated
with observation sampling times and the CHIRPS estimates. In addition, the pentad scale
is the primary scale that the CHIRPS product uses to produce the estimates and daily
estimates are only a disaggregation of the pentad’s estimates [27]. Figure 2 shows a time
series comparison at the pentad scale from 2010 to 2019; given the small comparison
window (9 years, 660 sample size), no clear trend was observed. For instance, inland in-situ
pentads (Figure 2A) exhibited more pronounced wetter years after 2017; between 2010
and 2017, drier and wetter conditions were observed with an exceptional peak in 2011.
Highland in-situ pentads (Figure 2B) were less variable; 2011 and 2015 were the wettest
years. CHIRPS performed better in the highland part with higher correlation (r = 0.47)
and less bias (PB = −3.2%); however, its performance was poor in the inland part with
significant bias (PB = 55.10%). At the pentad scale, the CHIRPS product in the hot semi-arid
region (inland) seemed unsuitable for precipitation-based studies since the high bias would
produce misleading results; in the cold semi-arid region (highland), little bias was observed,
which would benefit precipitation-based studies.
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4.1.2. Daily Detection Skill

Detection skill was evaluated for each gauge using the daily accumulation from all
rain gauges. Table 4 shows the categorical statistics results for all gauges. PC values
represent the overall detection skill within the whole hydrological year, including the
rainy (October to March) and dry (April-September) seasons due to the inclusion of the
correct detection of zero days. As the region is located in a semi-arid (steppe) climate,
most of the year is rainless, and a large percentage of zero precipitation could be expected.
Accordingly, better values could be expected with this statistic compared to the other
categorical statistics. Based on the PC values in Table 4, the overall detection skill of
CHIRPS was high. On average, 80% of all CHIRPS estimates were correct. No effect of
topography was observed; all gauges in the highlands and inland exhibited close results.
Based on the BIAS (FB) results, CHIRPS tended to underestimate rain events (the frequency
of rain events) more in the highland part than inland. In the inland part, there was a slight
tendency to overestimate/underestimate, where this tendency (under-forecasting) was
more pronounced in the highland (0.58 on average for the gauges in the highland part).
Removing the correct detection of zero days is important, and the TS and POD statistics
evaluated the detection accuracy of CHIRPS estimates/observed events counted. TS could
be seen as a measure related to the rainy season, where rainfall events were mostly observed
with corresponding estimates. TS values were poor for all gauges (on average, 13% of
all observed/estimated rain events were correct), and POD values confirmed this poor
performance. In the highland part, POD was 0.16 on average, which means only 16% of the
observed rain events were correctly estimated. In the inland part, POD was slightly better
(0.24 on average, 24% of all observed rain events were correctly estimated) but still poor in
general (perfect value of POD is 1). POD represents the accuracy of detection in the winter
or coldest months due to the exclusion of false alarms. False alarms were more dominant
in transition months such as October and April. In spring, increasing temperature could be
misleading by inferring the clouds as rainy. This period of the hydrological year (transition
months) exhibited more stochastic cells of convective clouds (dominant especially in the
subtropics) that, in most cases, were not raining. Spring in steppe climates features warmer
temperatures than fall; therefore, more false alarms could be expected. The false alarm ratio
(FAR) followed the same pattern as other statistics. The result was close, and no distinction
could be observed between the two parts of the basin (the cold steppe highland and the
hot steppe inland). FAR values were more related to the CHIRPS product estimates; in all
gauges, more than 70% of all estimates did not occur. Investigating the CHIRPS product’s
detection skill on a daily scale revealed poor performance in general. Detecting storms is a
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crucial skill for a good precipitation product to be used in water resource and climate-based
studies such as flood forecasting.

Table 4. The results of categorical statistics for all gauges in the Barada Basin.

Rain Gauge POD FAR BIAS TS PC Sample
Count Climate Location

DA * 0.25 0.72 0.9 0.15 0.86 3409 Hot steppe Inland
Douma 0.27 0.75 1.12 0.15 0.87 3377 Hot steppe Inland
Barzh 0.24 0.73 0.93 0.14 0.86 3429 Hot steppe Inland

Qasioun 0.24 0.7 0.83 0.15 0.86 3430 Hot steppe Inland
Aqraba 0.24 0.76 1.03 0.13 0.87 3417 Hot steppe Inland
Al Hijaz 0.25 0.72 0.9 0.15 0.86 3409 Hot steppe Inland

Al Mazzeh 0.24 0.73 0.92 0.14 0.87 3367 Hot steppe Inland
Al Zabadani 0.16 0.71 0.59 0.11 0.8 6529 Cold steppe Highland

Bloudan 0.17 0.72 0.6 0.11 0.81 6541 Cold steppe Highland
Serghaya 0.16 0.7 0.55 0.11 0.85 6835 Cold steppe Highland
Huraira 0.16 0.72 0.6 0.11 0.81 6498 Cold steppe Highland
Madaya 0.16 0.72 0.59 0.11 0.81 6467 Cold steppe Highland

* DA = Damascus Airport gauge.

4.1.3. Daily Accuracy Skill

Precipitation events (daily accumulations) were extracted from all daily rain gauge
datasets, and as a result, 2174 events occurred in the hot inland part and 4891 events
occurred in the cold highland. Table 5 shows the distribution of these events based on event
classification. More than 90% of the events in the inland part were less than 15 mm/day,
whereas 80% of the highland events fell in the same classification (less than 15 mm/day).
This situation (light storms) is typical in semi-arid climates. Most rain events are con-
vective, and convective storms tend to be intense and brief but, in most cases, localized.
CHIRPS exhibited relatively good accuracy in estimating light and small rainstorms in
both parts (Figure 3A). The best accuracy was achieved with small storms (0.5–5 mm),
where ME values were −0.31 and −0.28 mm for the highland and inland parts, respectively.
Underestimation was the dominant characteristic of CHIRPS performance in rain event
estimation, and the magnitude of this underestimation increased with higher intensity
storms (Figure 3B). For instance, CHIRPS estimations of heavy storms (>70 mm) had a
higher average error margin in the highland part (MAE = 126.28), while in the inland part,
the average error magnitude or margin was lower (MAE = 66) but still significant. The
CHIRPS product clearly had a deficit in estimating rare events that produce heavy floods.
These were referred to as rare events (heavy storms, >70 mm) since they accounted for a
small percentage of all events in the basin. For example, the highland part had only 9 heavy
events out of 4891 rain events in the last 20 years, which accounts for only 0.1%(Table 5).
The RMSE statistic (Figure 3C) results confirmed the increased estimation error with higher
intensity events. Error propagation in rain event estimation could be explained by the
deficit in the model used in CHIRPS to produce the moisture content in the clouds, and
the model could not be tested well over steppe climates. In addition, calibrating the model
with the TRMM product could produce more biased results, as the TRMM product tends
to perform poorly in a semiarid climate [47,48].

Table 5. Classification of precipitation events from all stations (12 stations) in the Barada Basin
between 2010 and 2020.

Event Category Classification Inland% Inland Sample Highland% Highland Sample

<5 mm Small 67% 1458 51.5% 2530
5–15 Light 24% 516 30% 1425
15–30 Medium 6% 137 13% 635
30–50 Medium strong 2.5% 53 5% 266
50–70 Strong 0.3% 7 0.4% 50

>70 mm Heavy 0.2% 3 0.1% 9
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4.2. Monthly Scale Assessment
4.2.1. Monthly Comparison

The monthly average comparison between CHIRPS estimates and in-situ precipitation
is shown in Figure 4. It could easily be observed that the highland exhibited wetter
conditions than inland. The hydrological year in both parts (inland and highland) followed
the same pattern: June to September was a rainless period, whereas the rainy season
extended from October to April. For 20 months of records, the CHIRPS median precipitation
values were higher than the measured values. The variation of the in-situ data was greater
than that of the CHIRPS data. December precipitation measurements resulted in the
highest variation of in-situ measured data in both basin parts. The rain shadow seemed
to significantly affect the moisture input over the region. For instance, the highland had
a monthly average of 115 mm/month in January, which was three times higher than the
January monthly average in the inland part (39.52 mm/month). The same trend was
found in other winter months, including December and February. In transition months, the
moisture gap was lower. For example, the November and October monthly averages in
the highland were approximately double the monthly averages inland. This information
provides insight into the cloud mechanism over the basin. Based on Figure 4B, CHIRPS
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seemed more reliable in the highland part. Close agreement was observed in almost all
months. In the inland part (Figure 4A), CHIRPS failed to produce the in-situ precipitation
amounts, as significant over/underestimation was observed.
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A monthly time series comparison is shown in Figure 5. A longer time series was
available at a monthly scale. Although the time series is considered relatively short to infer
a generalization on the climate trend over the basin, it provides good information on the
precipitation behavior in the first two decades of the current millennium. Precipitation
seemed to be more intense in the first decade, as 2004 was the wettest year over the
basin. Roughly, a cycle of wet/dry years seemed to repeat every 4–5 years in the highland
(Figure 5B). For instance, 2004–2009–2013–2017 had the highest peaks. The historical
drought in 2007–2008 was shown clearly [49]. Interestingly, another similar drier condition
could be observed in 2018, aligning with numerous studies indicating extreme drought in
this year [50].
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4.2.2. Monthly Accuracy Skill

At the monthly scale, the accuracy test results in Figure 6 revealed under/overestima-
tion of the in-situ precipitation measurements. In wet months (October to April), the
average error was more pronounced with higher correlation (mean r = 0.72) and less
bias, whereas dry months exhibited lower average error but higher bias and less cor-
relation (mean r = 0.24). Figure 6A shows the ME variations across the hydrological
year in months; the lowest values were in dry months (June has the lowest average
error, ME = 0.19 mm/month). The highest average errors were observed in March
(ME = 11.36 mm/month) and November (ME = 11.84 mm/month). The CHIRPS product
tended to perform poorly in transition months. Transition months feature unstable weather
conditions, such as increasing/decreasing temperatures. The MAE results (Figure 6B)
provide information on the CHIRPS product’s magnitude of error. The results showed an
increase in the error magnitude in wet months, whereas in dry months, the error margin
was less, which is typical in semi-arid regions where dry months are almost rainless. June
exhibited the highest bias (Figure 6D). June’s high PB resulted from short and intense
showers that happen randomly in this month, which produced a tendency to overestimate
the observation with a higher PB.
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Figure 6. Shows results of the accuracy statistics (A) ME, (B) MAE, (C) RMSE, (D) PB%, and (E) r.
The comparison is between CHIRPS estimates to the in-situ dataset for each month in the Barada
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calculate the monthly accuracy statistics.

4.3. Seasonal Scale Assessment

The main application of CHIRPS is seasonal drought studies [26], hence seasonal
analysis benefits the assessment of CHIRPS performance for seasonal drought. For all the
gauges over the basin, the in-situ measurements were clustered based on the seasons of the
hydrological year. Four seasons were defined: autumn (September–October–November),
winter (December–January–February), spring (March–April–May), and summer (June–July–
August). Two additional periods were added to the analysis, the wet season extending
from the beginning of October to the end of March and the dry season representing the rest
of the months. Figure 7 shows the statistical visualization of the seasons’ characteristics.
Winter accounted for the majority of the precipitation amounts with a mean precipitation
of 211.5 mm/winter, whereas the autumn and spring seasons had significantly lower
precipitation. The summer season was rainless. CHIRPS performed well in producing the
skewed distribution in all seasons. The median values of all CHIRPS seasonal precipitations
were close to the minimum values, indicating good representation of the right-skewed
distribution. The data spread was wider in in-situ seasonal precipitation than in CHIRPS.

Seasonal accuracy assessment (Figure 8) of the CHIRPS product in the Barada Basin
showed promising results. For instance, CHIRPS overestimated the winter season by
only 2.10%, with a small mean error of 4.25 mm/winter and an error magnitude of 72.28,
accounting for only 45% of one standard deviation (STDwinter = 157.2). For seasonal
drought, numerous approaches use standard deviation as drought magnitude classification
in their methodologies [51]. Using CHIRPS for winter drought analysis in the Barada Basin
would guarantee the non-masking of drought conditions. Another important season is
the wet season. Low bias (12.7%) and mean error (MEwet = 35.8 mm/wet season) revealed
the CHIRPS product’s accuracy in reproducing wet season precipitation amounts. The
wet/rainy season is the primary source of moisture into the basin, which is considered
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closed, with no external water resources available. The wet season could be an early
warning alarm for water storage drought in the basin.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 
Figure 7. Seasonal boxplot comparison between in-situ and CHIRPS precipitation in the Barada Ba-
sin. Wet is the accumulation of rainy months from October to the end of March. Dry is the accumu-
lation of dry months from April to the end of September. 

Seasonal accuracy assessment (Figure 8) of the CHIRPS product in the Barada Basin 
showed promising results. For instance, CHIRPS overestimated the winter season by only 
2.10%, with a small mean error of 4.25 mm/winter and an error magnitude of 72.28, ac-
counting for only 45% of one standard deviation (STDwinter = 157.2). For seasonal drought, 
numerous approaches use standard deviation as drought magnitude classification in their 
methodologies [51]. Using CHIRPS for winter drought analysis in the Barada Basin would 
guarantee the non-masking of drought conditions. Another important season is the wet 
season. Low bias (12.7%) and mean error (MEwet = 35.8 mm/wet season) revealed the 
CHIRPS product’s accuracy in reproducing wet season precipitation amounts. The 
wet/rainy season is the primary source of moisture into the basin, which is considered 
closed, with no external water resources available. The wet season could be an early warn-
ing alarm for water storage drought in the basin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Seasonal boxplot comparison between in-situ and CHIRPS precipitation in the Barada Basin.
Wet is the accumulation of rainy months from October to the end of March. Dry is the accumulation
of dry months from April to the end of September.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 8. Accuracy statistics results at the seasonal scale in the Barada Basin between 2000 and 2020. 
Red lines indicate ideal values. Wet season is the accumulation of rainy months from October to end 
of March. Dry season is the accumulation of dry months from April to the end of September. 

4.4. Annual Scale Assessment 
Figure 9 shows the annual time series comparison between CHIRPS and in-situ with 

all accuracy statistics. The inland annual precipitation (Figure 9A) was higher in recent 
years (2020) compared to the drying trend since 2004. The mean inland annual precipita-
tion was 157 mm/year (based on our sample in this study, 20 years), which was lower than 
the CHIRPS annual mean (255.3) by 40%. ME and PB confirmed this overestimation, re-
spectively (MEinland = 101.5 mm/year, PBinland = 63.3%). The error margin was significant, 
with an average error magnitude of 107.01, which was considered to be approximately 
60% of the annual mean. 

Annual precipitation in the highland (Figure 9B) exhibited more correlation with 
CHIRPS (r = 0.51) than that in the inland part (r = 0.44). CHIRPS annual estimates success-
fully produced the majority of the in-situ annual amounts. CHIRPS mean annual precipi-
tation in the highland (448 mm/year) was close to the in-situ annual precipitation in the 
highland (472 mm/year), with only a 5% lower value. The average error magnitude was 
117.6, accounting for only 25% of the annual mean. Underestimation was the dominant 
characteristic, which confirmed in the lower ME = −17.98 and small PB (−3.8%). The good 

Figure 8. Accuracy statistics results at the seasonal scale in the Barada Basin between 2000 and 2020.
Red lines indicate ideal values. Wet season is the accumulation of rainy months from October to end
of March. Dry season is the accumulation of dry months from April to the end of September.
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4.4. Annual Scale Assessment

Figure 9 shows the annual time series comparison between CHIRPS and in-situ with
all accuracy statistics. The inland annual precipitation (Figure 9A) was higher in recent
years (2020) compared to the drying trend since 2004. The mean inland annual precipitation
was 157 mm/year (based on our sample in this study, 20 years), which was lower than
the CHIRPS annual mean (255.3) by 40%. ME and PB confirmed this overestimation,
respectively (MEinland = 101.5 mm/year, PBinland = 63.3%). The error margin was significant,
with an average error magnitude of 107.01, which was considered to be approximately 60%
of the annual mean.

Annual precipitation in the highland (Figure 9B) exhibited more correlation with
CHIRPS (r = 0.51) than that in the inland part (r = 0.44). CHIRPS annual estimates suc-
cessfully produced the majority of the in-situ annual amounts. CHIRPS mean annual
precipitation in the highland (448 mm/year) was close to the in-situ annual precipitation in
the highland (472 mm/year), with only a 5% lower value. The average error magnitude
was 117.6, accounting for only 25% of the annual mean. Underestimation was the dominant
characteristic, which confirmed in the lower ME = −17.98 and small PB (−3.8%). The good
performance of CHIRPS in the highland suggested its suitability for water resource related
studies, specifically in the planning phase.
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4.5. More Discussions

This research evaluated CHIRPS product suitability for water resource management in
the Barada Basin. The basin is located within the subtropics and has seasonal cycles modu-
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lated by Mediterranean convective systems that heavily affect the precipitation regime over
the basin. Precipitation in drylands exhibits high variability in time and space, which makes
the characterization of precipitation difficult [52]. In addition, precipitation information in
such regions is limited. This research intended to overcome this issue using the satellite-
based product CHIRPS [27]. The CHIRPS results indicated advantages and disadvantages.
The main promising result was achieved at the seasonal scale. Implementing CHIRPS for
seasonal drought monitoring was proven to be suitable in the Barada Basin. Low bias
(PBwinter = 2.1%, PBrainy season = 12.7%), high correlation (rwinter = 0.77 and rwet = 0.79), and
small error support the implementation of CHIRPS in winter and wet seasons for seasonal
drought monitoring.

This conclusion was consistent with previous studies that suggested the usefulness of
the CHIRPS product for seasonal drought in arid/semi-arid regions. In the Arabian arid
region, CHIRPS performed well at the seasonal scale [45]. The results of ref. [6] in Pakistan
agreed with our results, where the correlation at the seasonal scale was >0.7, which was
comparable to this study’s results (rwinter = 0.77 and rwet = 0.79). In addition, a wide range
of studies agreed on the superiority of CHIRPS at monthly and longer time scales, such
as those conducted in Turkey [33], China [51], Argentina [2], Ethiopia [53], Taiwan [54],
Kingdom of Saudi Arabia (KSA) [45], and Nepal [55]. However, it was observed that
CHIRPS exhibited poor performance (inland pentads) in reproducing precipitation amounts
at finer temporal scales (pentad and daily). Flash floods are common in drylands [56],
especially in bare hillslopes like the highland part of the Barada Basin. The results showed
that CHIRPS had poor detection skill in drylands, on average, as CHIRPS detected only
20% of in-situ precipitation events. The accuracy of reproducing flood events was also
poor since the results showed a significant error margin (Figure 3B,C) in estimating heavy
storms. It could be concluded that the CHIRPS product in this region is not recommended
for flood forecasting. Based on this research, implementing the CHIRPS product for water
resource management in the Barada Basin is beneficial; however, comprehensive care of
the scale used is critical (longer temporal scales were better). In addition, the highland part
could be a better candidate for implementing CHIRPS than the inland part of the basin.
CHIRPS estimates were also evaluated along orographic precipitation-based topography
by dividing the basin into highland and flatland. The variation in CHIRPS estimates
along the elevation grade was attributed mainly to the poor performance of satellite-based
precipitation products over orographic rainfall-based regions [57]. Several explanations of
this poor performance were reported in the literature, such as Nonuniform Beam Filling
(NUBF) artifacts attributed to the radar beam’s horizontal resolution and contamination of
the near-surface ground with ground clutter [57–62]. Poor performance led to significant
errors in detecting light and low-level orographic rainfall along the elevation grade [57].

5. Conclusions

This study tested and validated the CHIRPS satellite-based precipitation product
in the Barada Basin in southwestern Syria. To evaluate the estimation accuracy, various
accuracy statistics were used (ME, MAE, RMSE, PB, and r). The detection skill of the
CHIRPS product was investigated using categorical statistics (PC, POD, FAR, TS, and FB).
Based on the results at multiple scales, the conclusions are summarized as below:

• CHIRPS performance depends heavily on the temporal scale. Longer temporal scales
were the most accurate, while the daily scale was observed to be the worst.

• CHIRPS estimates well light events (<5 mm). In more intense events, CHIRPS esti-
mates have higher bias and error magnitude.

• During the hydrological year, CHIRPS estimation is better correlated in wet months
than dry months.

• Detection skill was generally poor, with an under-estimation trend in all gauge locations.

This study concluded that the CHIRPS product is recommended for water resource
planning and seasonal drought in the Barada Basin. However, CHIRPS exhibited poor
performance for other applications, such as flood forecasting. Decision-makers in the
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Barada Basin are encouraged to cooperate more (increase the number of anchor gauges
in the basin) with CHIRPS developers. The more in-situ data included in the CHIRPS
procedure, the more bias reduction can be improved.
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