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Abstract—5G spectral efficiency requirements foresee net-
work densification as a potential solution to improve capac-
ity and throughput to target next-generation wireless net-
works (NGWNs). This is achieved by shrinking the footprint of
base stations (BSs), effective frequency reuse, and dynamic use
of shared resources between users. However, such a deployment
results in unnecessary handovers (HOs) due to the cell size
decrements, and limited sojourn time on a high train mobility.
In particular, when a train speedily passes through the BS radio
coverage footprints, frequent HO rate may result in serious
communication interruption impacting quality of service (QoS).
This paper proposes a novel context-aware HO skipping that
relies on passenger mobility, trains trajectory, travelling time
and frequency, network load and signal to interference and noise
ratio (SINR) data. We have modelled passenger traffic flows in
cardinal directions i.e, north, east, west, and south (NEWS),
in a novel framework that employs realistic Poisson point
process (PPP) for real-time mobility patterns to support mo-
bile networks. Spatio-temporal simulations leveraging NEWS
mobility prediction model with machine learning (ML) where
support vector machine (SVM) shows an accuracy of 94.51%.
ML-driven mobility prediction results integrate into our proposed
scheme that shows comparable coverage probability, and average
throughput to the no skipping case, while significantly reducing
HO costs.

Index Terms—6G, artificial intelligence, context-aware, HO
skipping, machine learning, mobility prediction, optimization,
smart city planning.

I. INTRODUCTION

WORLDWIDE increasing traffic demand entails the
continuous use of electronic gadgets such as tablets,

mobile phones, and other handheld devices. Such proliferation
plays an active role in driving the evolution of small BSs,
such as micro, pico, and femto, to traditional macro BSs in
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order to address the capacity crunch needs. For instance, the
fifth-generation (5G) evolution for cellular networks brings
mobile devices and cellular subscriptions more prevalent with
increasing data traffic demand and subsequently straining out
the available resources [1]. Due to the increasing traffic in
high mobility trains, a major consideration of cellular services
need to be looked for all passengers at all times. The need
to access mobile networks while travelling have been con-
siderably expanded with the limitations from legacy wireless
technologies, challenge high train mobility passengers without
conforming their needs of modern day travel. Due to the rapid
mobility of the high-speed trains, data transmission suffers
from high HO rates, which has been a long-standing chal-
lenge for high-speed mobility passengers in cellular networks.
Unnecessary frequent HOs incur a lot of communication and
computational overheads and thus, affecting the overall quality
of service (QoS) [2], [3]. Increasing traffic demands can be
addressed by deploying more BSs under 5G wireless commu-
nications and beyond, as there is an expectation to serve more
passengers providing tremendous data rates with resilience
and support high-mobility passengers with low end-to-end
latency. Densifying the BSs within the same geographical
region shrinks the footprint of each BS, which results in the
expansion of capacity with the increase in spatial-spectral
efficiency and QoS. However, the increasing inclination of
capacity gains is at the expense of a proportionally increased
HO rates [1], [2].

Ultra-dense networks (UDNs) require more HO manage-
ment due to their composition based on dense deployment
nature of small cells (SC) [4]. HO executions occur more
frequently along the passengers trajectory where users move
inside each SC for a limited time at an expense of significant
HO cost and resources and overall mobile users’ performance
(i.e., throughput). Such important negatives where the impact
of BS densification (i.e., HO rate) and management of QoS
to underline the overall benefits to stationary and mobile
passengers are usually overlooked [5]. The cell dwell time
for different shaped cells is characterized in [6]. Mobility
prediction based HO management optimizatio is proposed
in [7]–[9] to understand mobile traffic patterns, predicting
human mobility, and travellers profiling. Self-organizing net-
works (SONs) driven HO management is proposed in [5],
[10]–[12] to trim the needs of unnecessary HOs in multi-
tier networks and fulfil passenger demands by running various
distributed learning algorithms at the edge of the network.

Artificial intelligence (AI) based mobility prediction and
encryption leveraging historical passengers data recorded via
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RFID sensors was discussed in [13]. By using machine learn-
ing (ML) classification, authors analysed London underground
and overground (LUO) network user mobility to support and
improve the railway operational performance which includes,
QoS maintenance, HO optimization, effective resource man-
agement, etc. Bus passenger ridership mobility using multi-
tier heterogeneous network (HetNet) is discussed in [14] with
the main focus being adherent in the anticipation of the
passengers mobility behavior crossing HetNet architecture.
ML-based algorithms use geographic BS locations, user cell
association, and number of passengers in peak and off-peak
times have been modelled by using six ML algorithms. Several
studies [15]–[23] use ML classifiers to present their model that
discussed 5G limitations, opportunities, and directions. ML
algorithms such as logistic regression (LR), support vector ma-
chine (SVM), and multilayer perceptron (MLP) are compared
to predict passenger daily traffic. Some other algorithms such
as reinforcement learning (RL), k-nearest neighbour (KNN),
artificial neural networks (ANN), deep neural network (DNN),
decision tree (DT), naive bayes (NB) and discriminant anal-
ysis (DA), are trained to classify inputs to obtain predicted
intelligent outputs. However, none of the aforementioned
works shed light on ML-driven HO skipping techniques in
the context of load-awareness. Also, ther works are rare to use
train data as inputs into ML model for data training. Therefore,
a ML-driven context-aware HO management is required to
intelligently drive the HO process in cellular networks.

For instance, efficient models to improve the HO perfor-
mance along with the QoS have been extensively addressed in
the mobility context of cellular network literature. In [3], data
transmission suffers from severe penetration loss in high speed
railways and when the train moves from one BS to another,
there are huge amount of HO occurs. Using of mobile relay
node (MRN) can improve the HO overheads in fixed-trajectory
group pre-handover authentication mode with better security
properties. A mobility model called self-similar least-action
walk (SLAW) [24] is able to produce synthetic mobility traces
containing statistical features such as, heavy-tail flight and
pause-time distributions; heterogeneously bounded mobility
areas; truncated power-law intercontact times; destinations of
people in a self-similar manner; and users current waypoints
where they are more likely to choose a destination. Due to the
shrinking of the BSs led by network densification, the number
of HOs increases. Therefore, a cooperative HO management
scheme devising HO effect mitigation via cellular network
densification is discussed in [25]. Several other techniques
that discuss mobility predictions based HO management are
studied in [26]–[31] for multi-tier downlink cellular networks.

Implementation of seamless HO between first tier (macro-
cell layer) and second tier (small cells) is one of the key
challenges to fulfill the QoS requirements. In [32], authors
discussed HO procedure details for information gathering,
decision strategies and the BS exchange process. In [33],
authors presented a model of HO cost reduction is one of
the important targets in LTE-Advanced SON based on a HO
optimization algorithm on users mobility state. A comparison
between HO reduction method and the traditional HO control
algorithms was made. In [34] co-channel interference and HO

management especially for cell edge users were discussed with
the examination of HO management problems and coopera-
tive interference mitigation in an HetNet small cell network.
In [35], a relation between the desired link distance and the
nearest interference sources has been discussed in the research
that shows performance bounds for multi-tier and cognitive
cellular wireless networks using stochastic geometry. User-
centric BS cooperation and its complex HO patterns which
are the contributors of user performance degrade are discussed
in [36] with an aim to to quantify the number of HO in user-
centric cooperative wireless networks. A systematic review
of mobility communications high-speed railway systems has
been discussed in [37], where key challenges and opportunities
are summarized. Their survey includes, communication opera-
tions, high mobility channels, and signal processing techniques
such as Doppler diversity along with the mitigation techniques
high mobility systems. A cross-tier HO analysis between a
macro cell (MC) and a SC in HetNet architecture, that can
provide sojourn time expressions inside a SC by using tools
from stochastic geometry has been proposed in [38]. For
velocity estimation, the user’s trajectory path is exploited by
spatial randomness in [1], [2], [39]. HO skipping scheme
and its alternatives have been introduced in [1], [2], [40] to
reduce the HO rate which also proposed an alternative HO
execution along the user’s trajectory while associated with
either its closest or second closest BS. This work is extended
in [40] with the topology-based handover skipping concept on
a user’s distance from the target BS and the size of the cell.
However, none of the aforementioned studies undertake the
interaction between user throughput, multi-decision HO proto-
col as a function of the BS density. Nor the consideration was
given to the train environment (underground and overground)
where users move along a predefined trajectory. In addition,
our NEWS framework examine multiple users simultaneously
which fall short in the existing works such as [1], [2] where
only a single user was considered.

The main source of inspiration behind this work is the
interplay of HO rate associated with the mobility of passengers
within the metropolitan city of London where locations of
BS deployment are known. Furthermore, rigorous analytical
studies based on stochastic geometry [38], [40] exploit HO
rates dependant on the cardinal passenger traffic flows in the
LUO train network 1. To achieve estimated results of coverage
probability, the PPP is best [1], [2] in its ergodicity rate
quantification for realistic BS deployment in the LUO train
network. The coverage probability associated with passenger
traffic flows and ergodic rate in multi-tier cellular network
has been used by Poisson cluster process (PCP) where cell
clustering captures and integrates the deployment of several
SCs in congested regions [41]. The single and multi-tier
scenarios were assumed to produce HO rates of user’s mobility
in PPP cellular networks in [38], [40], [42]. Some studies on
HO rate analysis are conducted in [43]–[45]. However, none
of the aforementioned studies investigates the combined effect

1LUO is the London Underground and Overground network with 270
stations and 11 train lines stretching deep into the Capital’s suburbs, and
beyond. For more details visit, https://tfl.gov.uk/corporate/about-tfl/culture-
and-heritage/londons-transport-a-history/london-underground.
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Fig. 1. NEWS Framework with LUO train map and assumed number of BSs plotted onto the image for indicative purposes. Multiple colours are representative
of different train lines operate within LUO train network.

of network densification along with cardinal passenger traffic
flows that exploit both the HO overhead and the throughput
gains in the LUO train network.

In this direction of research, we study and model passen-
ger traffic flows based on novel cardinal directions NEWS
framework employing realistic PPP that can produce real-
time mobility predictions to support LUO train infrastructure
from overloading and congestion. For this, an intelligent HO
skipping technique called context-aware HO skipping is pro-
posed to efficiently manage HO rate associated with cardinal
passenger traffic flows. Our paper contributions are as follows:

• Real dataset: To examine a real scenario, we utilised
the dataset from Transport for London (TfL) in order to
predict the passenger movements (number of passengers)
at each train station. Multiple colours are representative
of different train lines that operate within LUO train
network as shown in Fig. 1. Dataset is comprised of 39
train lines that are operating in London region, out of
which there are 13 London tube lines cardinally covering
272 stations in the extended London areas. Cardinal
directions, such as northbound, southbound, eastbound,
and estbound (NEWS) data was collected to form one
big dataset which is detailed in Section IV-A.

• Mobility tracking and future location estimation: We
propose mobility prediction classification by using ML
algorithms for passenger traffic flows in cardinal direc-
tions. Realisation of passenger’s mobility and trajectory
in the LUO network that comprises of several train lines
integrates with the HO skipping techniques.

• Context-aware HO skipping: Based on ML results ob-
tained via classification and cell topologies (current cell
and the cells which are going to be visited next), we
analyse and present the passenger association with its
closest BS while on the move. To address passenger’s
mobility, a context-aware HO management is required
to intelligently drive the HO process in cellular net-
works. Therefore, we propose an intelligent HO skipping
technique that exploits multi-decision protocol for taking
automated decisions to carry out a necessary HO. In
contrast to the proposed techniques in [1], [2], we not
only manage to reduce the randomness of the passenger’s
association with the BSs but we also enhanced the overall
performance of the HO skipping phase with improved
SINR, and average throughput. A HO is skipped when
BSs intelligently report their traffic states by issuing
collective neighbouring reports. Context-aware technique
takes multiple parameters into account such as passengers
trajectories, velocities, path, travel direction, and cell load
for a HO to be skipped, thus improving the overall
performance of our NEWS framework.

The remainder of the paper is organised as follows. Sec-
tion II provides the background of the undertaken research.
Section III presents the system model with the overview of HO
procedure and multiple HO skipping techniques evaluation.
Section IV presents the proposed method. Section V provides
the analysis of our simulation results. Finally, Section VI
concludes the paper.
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II. BACKGROUND

A. HO Fundamentals

The arbitrary user association with the serving BS deter-
mines the need for HO when in motion. The criteria is for
a user equipment (UE) to be associated with the serving BS
based on the best serving participant which has high average
received signal strength (RSS) level. A higher RSS level BS
continues to serve a UE within its boundaries until the UE
decides to change its association while moving from one BS to
another domain. Traditionally, this method of user association
was effective until the heterogeneity within cellular networks
was introduced. Nowadays with increasing traffic demands,
HetNets play a vital role in densifying cellular networks
further to enhance the capacity. Increased demand for HetNets
also brought developments in determining the best serving BS,
cell load balancing, throughput maximizing, delay tolerance,
and resilience recorded in the call detail records (CDRs) [1],
[2], [9], [14], [15], [24], [46]. Despite of the selection rule, UE
mobility requires an advanced level of intelligence to exploit
the best HO rates with the densification of BSs. Hence, a trade-
off is needed to utilise HO cost in line with the BS density.

There are three main phases of HO: Initiation, preparation,
and execution. Initiation phase determines user reports that
contain reference signals measured from serving BS neigh-
bours. In the 4th generation (4G) long term evolution (LTE),
but not limited to, the key point indicators (KPIs) consists
of reference signal received power (RSRP) and reference
signal received quality (RSRQ) [10], [40]. Downlink and/or
uplink signal measurement reports also contribute to the HO
initiation process. The preparation phase allows signalling to
be exchanged between serving and targeted BSs along with
the admission controller. The key player to decide whether
HO is necessary is the admission controller which initiates
the HO process based on a set of protocols defined in the
HO criteria. Once the defined HO criteria is met, with the
use of random access channel (RACH), the user discharges its
association from the serving BS and attempts to synchronise
and access the target BS. The UE then notifies the execution
of HO, which is completed to the network by sending a con-
firmation message upon synchronisation. The HO procedure
is performed but at the cost of some overheads which degrade
the overall performance of the network. This involves the
interruption of smooth data flow between UE and serving
BS due to signalling. The occurrence of such interruptions
depends on BS intensity and user velocity where the duration
of each interruption is an important measure denoted as end-
to-end HO jitter [47]. The aim is to decrease the frequency
of such HO delays in user’s mobility at both slow and
high velocities. Usually, the slow user’s movement doesn’t
trigger the HO due to the sufficient sojourn time. However,
high mobility is incumbent upon setting up certain measures
in order to avoid unnecessary HOs. UE speed has a great
influence on HO rate and is an important aspect of the overall
performance. Frequent cells and several BSs shift take place
when a passenger moves in high mobility train leading to HOs,
thus increasing call drop ratio and failure rate alongside [46].
Therefore, optimization of hysteresis and time to trigger (TTT)

should be carefully monitored to satisfy passengers wireless
communication requirement in high-speed train mobility. In
our case, the LUO train network has high mobility trains that
run on different speeds to cover distances. For instance, the
average speed on the London underground (LU) is 20.5 mph
(33.0 km/h) whereas, London overground (LO) trains tend to
travel at over 40 mph (64 km/h) and can reach speeds of 62
mph (100 km/h) in the suburban and countryside areas [48].
For the multiple speeds and different time thresholds, we
have made some empirical experiments and have chosen their
values based on the best trade-off in terms of HO cost and
user throughput.

B. State-of-Art in HO Skipping

The movement of the trains in cardinal directions require
a strategy when they pass through SCs connected to macro
base station (MBS) through backhaul as shown in Fig. 1. The
main goal of the PPP mobility prediction model is to ensure
that our novel NEWS framework defined context-aware HO
skipping would produce best connected results when compared
to other HO skipping techniques in LUO train environment.
This means, to remain under mobile coverage footprint, when
trains move from one BS to another, they receive coverage
requests from several BSs located within the proximity of
its movement. In our research we have discussed multiple
HO skipping techniques such as, alternate HO, location-aware
HO, size-aware HO [2], and context-aware HO. Preferring one
SC to another requires a strategy to overcome unnecessary
overheads, waste of resources and HO costs. PPP mobility
prediction model driven HO skipping technique can maximize
the throughput with the best SINR and reduced HO costs. The
no skipping is shown in Fig. 2 (scheme a), where a black line
indicates the train line, white circles indicate the train stations
over the train line. BSs are represented by blue dots, with
their coverage areas defined by the blue borders. In case a
BS has its area painted in green, it means that the users have
connected to that BS, whereas if it is in yellow, it means that
the BS has been skipped.

1) Alternate cell switching based HO skipping: The alter-
nate HO skipping scheme accounts for the alternate automated
procedure for cell selection and HO skipping when a pas-
senger is on the move in certain direction of travel [2]. The
passenger’s trajectory decides which BSs to latch and skip on
alternating basis regardless of cell location, size, and load. The
alternate HO skipping is illustrated in Fig. 2 (scheme b).

2) Location-aware HO skipping: The HO skipping tech-
nique based on location triggers skipping when shortest pos-
sible distance between the user trajectory and the target BS
is accounted [2]. The users exceed the predefined threshold L
when covering minimum distance along the trajectory to target
a BS. In our work, threshold L can be designed in such a way
that passengers skip the BSs along their cardinal directions
through the cell edge only. HO skipping based on location
scheme is illustrated in Fig. 2 (scheme c).

3) Size-aware HO skipping: When BSs’ footprints are less
than the predefined thresholds, s service areas, the passengers
tend to skip the HOs based on BS cell sizes [2]. This HO
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Fig. 2. Representation of PPP based single tier cellular network where green
and yellow cells are indicative of connected and skipped cells. HO skipping
schemes (a to f) represent no skipping, alternate, location-aware, size-aware,
hybrid, and context-aware HO skipping schemes, respectively. Black line
represents a specific train line moving east to west.

setting reduces the service area of the BS that leads moving
passengers to skip the cell and form a connectivity to other
cell. In this concept, cell dwell time is dependant on the
BS footprint size that aims to avoid time duration for far-
reaching blackouts. In this contingency, SCs are skipped by
the passengers where large footprint-based cells serve the
requirement and allocate resources. HO skipping based on
cell sizes scheme is illustrated in Fig. 2 (scheme d). Service
areas are assumed to be correct and known by the mobile
network operators (MNOs) that deliver services around LUO
train network.

4) Hybrid HO skipping: Alternate, location and size aware
HO skipping techniques fall short to accurately observe the
true cell dwell time. Therefore, on combining all techniques,
more precision and enhanced inference about the cell dwell
time can be achieved which is shown in Fig. 2 (scheme e) [2].
This way, the factor of improvement in the HO skipping
decisions and performances can be handled more accurately
and precisely. Consequently, the combination of all techniques
set out the accountability of user location and cell areas while
making the HO decision. One of the most important aspect
is to estimate user’s trajectory where we have used known
trajectories associated with daily passengers on the LUO train
network. This makes our HO skipping strategical which can
be triggered on known passenger’s location and cell size
thresholds.

Fig. 2 also shows our proposed context-aware HO skipping
(scheme f) which is presented in Section IV of this paper.

III. SYSTEM MODEL

A. NEWS Framework

The proposed NEWS framework considers the downlink
stream with number of BSs spread over an area based on
the city of London. The area consists of a rectangle of sides
L1 and L2 that covers one of the train lines for simplicity.
In this area, a certain number of BSs are evenly deployed
according to a PPP, with rate λ across several train lines
as shown in Fig. 1. Moreover, we also assume that the
city of London is covered by No distinct MNOs and that
each operator is considered to have the same total available
bandwidth W . Each BS is equipped with multiple directional
antennas with constant gains and Tx powers, each BS has Ns

sectors, with each sector supporting a fixed number of resource
blocks (RBs), NRB . In addition, a frequency reuse factor
of 1 with constant bit-rate service is assumed. For context-
aware HO skipping establishment, consideration has been
given to a single-tier network model consisting of assumed
BSs spread around multiple train lines in cardinal directions
with their traffic information in separated control and data
architecture (CDSA) [49]. In CDSA, macro cell (MC) controls
the signalling with low data rate activities whereas data based
stations (DBS) or simply small cells (SCs) offer high capacity
services. In our NEWS framework, train lines move in specific
direction using a specific path defined by the TfL as shown in
Fig. 1 whereas, there are number of movements to define the
trajectories of passengers such as boarders, alighters, station
entry and exit passengers, link and passengers frequency, etc.
For the movement of trains, each colour in Fig. 1 represents a
train line. For instance, Piccadilly line which is represented by
a blue colour in the figure moves in east-west (and vice-versa)
direction. Northern line in black colour travels from North to
South and vice-versa.

B. BSs Positioning Using PPP

Experiments yielding numerical values of random vari-
able x, the number of outcomes occurring in a specific
region in a given interval of time are referred as Poisson
experiments. With the use of Poisson experiments, a number
of observations can be generated for a random variable to
formulate set of given values in a process called Poisson
point process (PPP) [50]. NEWS framework employs PPP
to model HO rate during passenger traffic flows in cardinal
directions via topology-aware HO skipping techniques. The
presented equation is to define how observations are calculated
to perform Poisson experiments,

P (r;λt) =
r∑

x=0
p(x;λt) =

e−λt (λt)x

x!
. (1)

The mean number of outcomes are computed from µ = λt,
where t denotes the specific time of HO occurrence and λ
is the rate of arrival that can be represented by a symbol
P (x;λt). λ is the average number of outcomes per unit time
and region, x = 0, 1, 2, · · ·, and e = 2.718. According to
this model, in the proposed framework BSs are then evenly
deployed in the rectangular area following a PPP.
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C. User Parameters

To perform user association, our framework models pas-
sengers to associate with the BSs based on their distances
with the set of all passengers U = 1, 2, · · ·, u and all BSs
B = 1, 2, · · ·, bk. Once the distance is known, RSRP mea-
surements are calculated by locating the passenger within a
train, its association to the closest BS while on the move per
each evolved node-B (eNB), and signal availability at a each
location. Therefore from [2] we can calculate the RSRP of
each user as,

RSRPu,bk = Tx · h · d−α
u,bk

, (2)

where, Tx is the eNB transmit power, h is the channel power
gain, which follows a Rayleigh distribution with unit variance,
du,bk is the distance between user u and BS bk, and α is
the path loss exponent. The average sum of the RSRP signal
received from passengers (wanted reference signal) to the
average sum of interference and noise N (unwanted signal)
is measured by signal to interference and noise ratio (SINR),
which is given as,

SINRu,bk =
RSRPu,bk

N +
bk∑

i=1,i̸=bk

Ii

, (3)

where, N corresponds to the additive white Gaussian
noise (AWGN) and

∑bk
i=1,i̸=bk

Ii is the interference from all
other BSs, except the one that the user is trying to connect to.

In addition to SINR, the coverage probability is also de-
termined. In general, coverage probability is dependant on
the SINR where a UE exceeds a certain defined threshold.
NEWS framework exploits coverage probability affected by
SINR when the mobility of passengers outstrips by predefined
threshold parameters. Therefore, the coverage probability can
be calculated as [2],

Cu,bk = P
[

SINRu,bk > T

]
, (4)

where T is a predefined threshold.
Users are then allocated to specific BSs according to not

only SINR, but also the available resource blocks (RBs) at
each BS. Without loss of generality, it is assumed that each
user consumes 1 RB when connecting to a BS and that for a
user to associate to a BS, the following criteria must be met:

Ψu,bk =

{
1, if SINRu,bk ≥ SINRmin & RBrem ≥ 0,

0, otherwise.
(5)

where, Ψu,bk is an association vector between UE and
BS (b,k). If the user has a SINR above a minimum requirement
SINRmin and there are enough RBs available at the target BS,
the user is associated with its preferred BS. Otherwise, if none
of these conditions are met, the user then looks for the next
best BS available. If none of these conditions are met, the user
is then assumed to be out of service, until a new BS can be
found that meets these criteria.

D. User Mobility

Since in this work it is considered that users are on-board
trains, it is assumed that a train moves with a constant speed
of v and that users inside the train are positioned in the
center of mass of the train plus an additional random offset,
defined by coordinates (xc, yc)± (xo, yo) m. In addition, it is
considered that the train travels in between a certain number of
stations, and that whenever the train passes through a station
certain passengers board, while others leave the train. It is also
assumed that only a percentage of passengers, Nactive, require
connection while being on a train.

As the train moves through the considered area, it traverses
the coverage zones of BSs. In case no BSs are skipped,
passengers always associate to the best available BS, according
to (5). When skipping is performed, whenever passengers skip
a certain BS, they maintain their association with the previous
serving BS and avoid looking out for nearest BSs regardless
of their proximity. Alternatively, they tend to HO to the next
target BS based on the relative distance. To simultaneously
serve moving passengers by both serving and the next target
BSs, mutually load dependant intelligent transmission is re-
quired, being the main focus of our NEWS framework, relies
on full or partial coverage availability in the LUO network.

E. HO Cost

For HO skipping, we define HO cost associated with the
coverage probability and SINR derivatives in light of multiple
HO skipping techniques as [2],

−−→
HOc = min(ℏt · τ, 1), (6)

where, ℏt is the rate of HO per unit time and τ denotes the
delay tolerant of each HO in seconds. Therefore, the

−−→
HOc,

being unit-less, is used to observe the costs associated with
the HO techniques to quantify the fraction of time along the
passenger’s trajectory. The time taken by a UE switching from
serving BS to the targeted one due to HO signalling. Note that,
if ℏt · τ ≥ 1, this means that the HO delay is greater than the
cell dwell time. Therefore, the entire time is wasted where−−→
HOc is set to one. Now, PPP based HO rate for passenger’s
trajectory [42] is defined as,

ℏt =
4v

π

√
λ, (7)

where, v is the speed of the train, and λ is the PPP rate. The
number of HOs per unit length have been calculated for HO
rates followed by the velocity v multiplication. The number
of HOs per unit length ℏl is obtained from the the trajectory
length. Thus,

−−→
HOc can be defined as,

−−→
HOc = ℏl · v · τ. (8)

F. User Throughput

The main performance metric of our NEWS framework
is the average throughput of a passenger that exploits pro-
posed HO techniques. Average throughput demonstrates the
reciprocity between HO cost and capacity gain imposed
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by network densification. The average passenger through-
put (bits/s (bps)) affected by HO rate and the impact of HO
skipping techniques have been discussed in the following
equation [2],

TPu,bk = W ·Ru,bk(1−
−−→
HOc), (9)

where, W denotes the overall bandwidth and Ru,bk is the
ergodic spectral efficiency which can be defined by Shannon
formula for capacity by using (3) as,

Ru,bk = E(ln(1 + SINR)). (10)

G. Context-Aware HO Skipping

In regards to the traditional HO skipping techniques shown
in Fig. 2 (schemes a to d), neither the alternate, nor the
location or size-aware HO skipping alone accurately reflects
the true cell dwell time obtained from passengers location,
travel direction, most chosen path, train load and speed etc.
In addition, hybrid HO skipping shown in Fig. 2 (scheme
e), which is the combination of location and size-aware
techniques is unable to address true challenges of HO skipping
associated with mobility of passengers in the LUO network.
Challenging and complex LUO train network dynamics over-
burden traditional HO schemes to drive smooth and seamless
HOs. Situation gets more complex when passengers location,
travel direction, most chosen path, train load, and train speed
are added as the key parameters to warrant real-time LUO
train environment. This is where, context-aware methodology
comes into play which has the ability to harvest LUO train
network information about its environment at any given time
and adapt behaviors accordingly. This intelligently acquires the
best methodology according to the changing scenario with the
accountability of real-time environment and radio parameters
to develop the responses with best possible strategy. Context-
aware methodology relies on complex LUO train network to
automatically build load-aware dataset based on passengers
location, their travel direction, most chosen path, train load,
and train speed. In other words, context-aware cultivates its
response by intelligently adapting to the transitional environ-
ment. Such a load-aware technique that intelligently addresses
HO skipping in complex LUO train network is called context-
aware HO skipping which is illustrated in Fig. 2 (scheme f).

IV. PROPOSED METHOD

We present an analytical model development of NEWS
framework to optimise the passenger traffic flows in LUO train
network. Following are the proposed elements;

• ML driven mobility predictions for future location esti-
mation and planning.

• PPP mobility prediction.
• HO skipping.
Our proposed NEWS framework is based on the integration

of ML [16]–[23], [51], [52] into PPP [50] mobility prediction
model. Where, ML is first trained to classify north, east, west,
and south directions along with LUO train lines from our

dataset. The output of ML is then fed into the PPP simula-
tion model for HO skipping examination using passenger’s
trajectory, velocity, path, load, train lines, train directions,
travelling time, etc. Both ML classification and PPP simulation
are presented in the following subsections.

A. Dataset

To examine a real scenario, we utilised the dataset from TfL
to predict the number of passengers at each train station by
classifying them into “high” or “low” passengers at a given
the time of day. Multiple colours are representative of different
train lines that operate within LUO train network as shown in
Fig. 1. The dataset is comprised of:

• 39 train lines that are operating in London region, out of
which there are 13 London tubes lines.

• 272 stations in the extended London areas in cardinal
directions.

• Cardinal directions, such as northbound, southbound,
eastbound, and westbound (NEWS) data was collected,
merged, and classified into “high” or “low” passengers,
i.e., Number of passengers are divided into two categories
with labels “high” or “low”.

• “High” passengers as being in the top 25% of all pas-
senger values in our data set and “low” passengers as the
bottom 25%. We have used these definitions to assign the
labels “1” and “0” to the data points in our model.

• For instance, Label “1” has been assigned to instances
of high passengers and the label “0” to instances of low
passengers.

• Each train direction user numbers were collected in the
15-minute time intervals.

The availability of the data was dependant on each train line
movement in cardinal directions in 15-minute time intervals.
Hence, 15 minutes per hour per 21 hours: (60/15)× 21 = 84
data points per day for one train line. This is, 84×7 = 588 data
points (i.e., 1 week = 21 hours per day and for 1 train line).
Therefore, multiplying data points with train lines and number
of stations, i.e., 588 × 13 × 272 = 2, 079, 168 data points
(overall) of all stations in the LUO network. Now, number of
passengers travelling in 1 week are, 469, 680 covering all train
lines. Hence, w have, 469, 680+2, 079, 168 = 2, 548, 848 are
overall data points in the training model.

As part of the pre-processing stage, we merged cardinal
directions of the trains and passenger movements (number of
passengers) into one big dataset followed by its conversion
into csv file format to predict “high” and “low” passengers
against 15-minute time intervals, being a binary classification.
The “Nan” values are resolved by using simple function called
imputer, an estimator used to fill the missing values in datasets.

For our dataset, we used several parameters comprising of
(i) passenger movements, (ii) number of stations, (iii) train
lines, (iv) train codes, (v) station names and codes, (vi) train
direction, (vii) direction codes, (viii) train lines order numbers,
(ix) link code, (x) time of passengers travelling such as:
entry/exits, early, AM peak, midday, PM Peak, evening, and
late, etc. Also, the number of passengers boarding onto train
carriages called boarders and, passengers who alight on the
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stations called alighters are also considered. For binary clas-
sification predictions, we merged and classified multiple data
streams mentioned above, into one large dimension dataset to
train the ML model. Then the formulated dataset was plotted
against 15-minute time intervals of each passenger movement
in each train within LUO train network.

B. ML-Driven Mobility Training and Prediction

The proposed NEWS framework adopts supervised learn-
ing (SL) as a ML tool to predict the mobility prediction-
based cardinal passenger traffic flows with the support of
algorithms such as logistic regression (LR), support vec-
tor machine (SVM), and multilayer perceptron (MLP). For
training ML algorithms, we divided our dataset into train,
test and validation with 70% of data used for training the
model, 20% for testing, and 10% for validation. Historical
traces of passengers mobility which include direction, path,
load, time of travelling, associated cell IDs, and reference
signals received power (RSRP) are assumed to be available for
training the framework. It is worth mentioning that all LUO
train lines in cardinal directions with a huge dataset have been
analysed and normalized prior to ML model fitting as shown
in Fig. 1.

This normalization is done by using six features used for
training the model based in order to obtain optimal results.
These features are skew, percentile, square root (SR), standard
deviation (SD), mean and kurtosis. The value for each feature
is calculated individually for each window size. For example,
the window size of 15 seconds (based on 15-minute time
intervals) is selected, and the aforementioned features are
calculated accordingly. Normalizing and using various features
help to optimise the performance of the model fitting and
learning. Below are the ML algorithms used to predict the
mobility prediction-based cardinal passenger traffic flows;

• SVM is binary/multi-class classification algorithm with a
polynomial kernel. However we used binary labelling for
our dataset model training.

• A MLP is binary/multi-class classification algorithm
which is a feed forward neutral network consisting of
input, hidden and output layers. The classifier is trained
for 100 epochs using back propagation and an Adam
optimiser with a learning rate of 0.0003 which consists
of one input layer and three hidden layers per feature,
and an output neuron per positive class consisting of
2 nodes representing binary classification as “high” and
“low” number of passengers in cardinal directions.

• LR is type of machine learning algorithms which is used
for binary classification. The LR is used to find the
best fitting model to describe the relationship between
characteristic of interest and set of independent features.

The training of SVM and MLP are done by using Scikit
Learn Python package based on binary classification predicting
“high” and “low” passengers. The SVM algorithm works
by constructing hyper planes and uses these hyper planes
to separate the input data into different categories. Using
mentioned features, data is used to train the hyper plane. The
kernel for SVM is rbf whereas MLP is a feed forward neural

network. It consists of three types of layers the input layer,
output layer and hidden layer. The relu activation function
and Adam optimizer were used.

We intended to evaluate the best possible outputs for the
framework. The number of tests were conducted to achieve the
suitable output from ML classifier for the input into context
aware HO skipping. As NN are the functional unit of deep
learning and are robust to mimic the behaviour of the real
scenarios in order to solve complex data-driven problems.
Similarly, we used NN architecture based on its capability to
distinguish “high” and “low” number of passengers moving
in cardinal directions out of a complex dataset. This is where
our input data is processed through different layers of artifi-
cial neurons stacked together to produce the desired output
mimicking real scenario of the LUO environment. Then we
identified the best architecture by comparing different layers
and we found the best optimal layers.

The number of neurons in the input layer equals the number
of input variables in the data being processed where an
input vector needs one input neuron per feature. Therefore,
we have six neurons per six features to train our dataset.
This has been carefully chosen as they contained identifying
patterns of passengers to avoid overfitting. For a less complex
dataset, fewer hidden layers are sufficient to produce desired
results. However, in our case, complex dataset was ratio-
nalised and formulated from several data points as mentioned
Section IV-A.Considering above complexities, we categorised
complete dataset into two a binary form highlighting “high”
and “low” passengers’ categories in 15-minute time intervals
in order to obtain an optimum solution. Normally, 1 or 2
hidden layers are used if data is less complex, however, due
to our large-dimensioned dataset, 3 to 5 hidden layers were
tested and carefully set to 3 which gave us best comparable
result.

Similar size of hidden layers was not providing optimum
results while tuning using our dataset and therefore overfitting.
Hence, we chose to set hidden layers to 3 with unequal
neurons. For number of neurons, we started training with
1–100 neurons initially followed by gradually increasing the
numbers until we found overfitting. Hence, setting unequal
neurons, i.e., 1500, 512, and 1500 provided optimal results
with 3 hidden layers. This is due to the complex data set
we rationalised and formulated considering large number of
parameters.

ML-driven results are exploited to model PPP for HO
skipping evaluation. To generate comparative analysis in terms
of coverage probability (number of users covered vs SINR),
average throughput, and HO costs, multiple HO techniques
are simulated. Passengers trajectory, velocity, path, train load,
directions & lines, travelling time, etc., are used as the key
parameters for HO skipping techniques model simulation.

C. Context-Aware HO Skipping

Considering that the speed and trajectory of the trains are
known beforehand, the proposed algorithm is able to calculate
the time that the users spend in each cell traversed in the users’
path. As such, given the time in each cell as tbk , and a given
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time-based threshold, defined as tthresh, for a user to skip a
cell according to the context-aware approach, the following
conditions must be met,

Ω1 =

{
1, if ti ≤ tthresh,

0, otherwise,
(11)

where, tthresh is half the average time in cell spent through
the trains entire journey. Since the train follows a specific path
with a predefined maximum speed, it is natural to know the
average time spent in cells throughout the entire route.

Condition 1 (Ω1) states that if the time spent inside a cell
is lower than a threshold, users opt to skip the cell. However,
in the context-aware approach, the load and the quality of the
signal (in terms of SINR) are also considered. Thus, another
condition needs to be checked in order to decide who is going
to skip the cell. Given S = {s1,bk , s2,bk , · · ·, su,bk} as the set
of measured SINRs of all passengers U = 1, 2, · · ·, u at base-
station bk, SS as the sorted set of measured SINRs, SS =
{ssj , ssj+1, · · ·, ss|j|} | ssj < ssj+1, where |j| = |u| and
RBrem,bk as the available resource blocks at base-station i,
condition 2 can be expressed as follows:

Ω2 =

{
1, if Ω1 = 1 & j > RBrem,bk ,

0, otherwise.
(12)

Condition 2 states that a user skips a base-station if condition 1
(Ω1) is satisfied and if the index occupied by the user’s sorted
SINR is larger than the number of RBs available at the target
BS. In other words, if the user has a good enough SINR when
compared to other users and the number of RBs available at
the target base-station can support at most j − 1 users, user
j should skip the target base-station. Alternatively, it can be
said that not all the users skip at one time. Depends on the
channel quality. some skip some do not. If the UE has a good
channel, is not advantageous for him to skip. However, in bad
channel quality, skipping makes no difference due to minimal
impact on throughput and cost. Followed by condition 1,
condition 2 checks the SINR and load for all UEs to have
enough RBs to skip/no skip. During the phase of conditions 1
& 2 are in execution, UEs do not need to know the RBs
availability. BS will schedule the cells with best SINRs against
the ones with low SINRs, which don’t need to be scheduled in
conventional network system. Algorithm 1 shows an algorithm
of the proposed context-aware skipping scheme.

V. HO SKIPPING SIMULATION AND RESULTS

A. Simulation Scenario

In order to validate the proposed scheme, a simulation
scenario is performed in MATLAB. Several BSs are positioned
according to a random PPP in a rectangular area. It is also
assumed that coverage is provided by 4 different operators,
each having 20 bands of 10 MHz, each BS has 3 sectors and
each sector has 50 resource blocks, resulting in a total of 150
resource blocks per base station. In this area, a total of 10
train stations, according to the underground map of London

Algorithm 1: Context aware HO skipping algorithm

1 Initialize area sizes L1 and L2;
2 Initialize train path, size, speed, initial position and

stations’ positions;
3 Initialize network parameters W,No, Ns, Nactive,RB;
4 Initialize all thresholds;
5 for counter = 1:Nruns do
6 Generate user positions inside train;
7 Generate BS positions according to PPP and λ;
8 while Train is not in final station do
9 if Train is in station then

10 SVM model predicts total number of users;
11 Update number of users and positions;
12 else
13 Keep same number of users and positions;
14 end
15 Calculate RSRP via (2);
16 Calculate SINR via (3);
17 Determine user’s cell association via (5);
18 if HO occurs then
19 Evaluate conditions Ω1 and Ω2;
20 Update HO cost via (8);
21 end
22 Measure user throughput with (9);
23 Update train and user positions;
24 end
25 end
26 Calculate average coverage probability via (4);
27 Calculate average throughput;
28 Calculate average HO cost;

are positioned2. In addition, it is assumed that the train is
moving west-bound with a fixed speed of 64 km/h and that at
each station a certain number of users leave/board the trains.
All simulation parameters are listed in Table I.

B. Metrics

In this scenario the different HO skipping techniques are
compared, mainly: No skipping (best connected), alternate
skipping, location-aware, size-aware, hybrid, and the proposed
context-aware approach. Depending on the technique adopted,
different types of HO skipping are performed. For instance,
the no kipping approach never skips any BSs, whereas the
alternate skipping skips every other BS. The location-aware
skipping [2] skips BSs if at the time the train enters the cell,
the distance between the BS and the train is larger than a
threshold.

Ωbk =

{
1, if L > dtrain,bk ,

0, otherwise,
(13)

where, Ωbk indicates if BS bk will be skipped or not. In the
case of the size-aware skipping [2], a BS is skipped whenever

2In this work a 1:10 scale is adopted, meaning that the distance between
train stations are scaled to a tenth of the actual distance.
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TABLE I
SIMULATION PARAMETERS.

Parameter Value
PPP rate (λ) 0.0001

Side of simulated area (L1) 2, 000 m
Height of simulated area (L2) 1, 000 m
Number of operators (No) 4

Bandwidth (W ) 10 MHz
Noise spectral density (N0) −204 dBW
Active users (Nactive) 90%
Path loss exponent (α) 4 [2]
BS transmit power (Tx) 0 dBW [2]
Train speed (v) 64 km/h
RB per BS (RB) 150

Coverage probability threshold (T ) [−15, · · ·, 15] dB [2]
Minimum SINR (SINRmin) 0 dB
User offset X position (xo) ±5 m
User offset Y position (yo) ±2 m
HO delay (d) 1 s [2]
Size threshold (s) 9km2

Location threshold (L) 85 m
Hybrid thresholds (s, L) 9km2, 100 m

the size of a cell area is smaller than a threshold,

Ωbk =

{
1, if sbk < s,

0, otherwise.
(14)

Lastly, in the case of hybrid-skipping [2], the two metrics are
combined, meaning that a BS is skipped if either the distance
between the BS and the train is larger than a threshold or if
the cell area is smaller than a threshold. In other words,

Ωbk =

{
1, if sbk < s ∨ L > dtrain,bk ,

0, otherwise.
(15)

A total of 100 runs of each technique are performed in order
to average out the results. The 6 techniques are compared in
terms of:

• Coverage probability: The probability that the average
SINR of the users are above a certain threshold;

• Handover cost: The total average cost to handover users
to all BSs from the starting train station to the last one;

• Throughput: The total average throughput of users
weighted by the HO cost;

• SINR CDF: The cumulative density function of the aver-
age SINR of all users, which represents the percentage of
users that have an average SINR above a certain value.

C. Results Discussion

1) Machine Learning Classifiers: The experimental results
in the Tables II and III are based on all ML train with/without
features in Scikit Python package showing link load of one
train line flowing in only one direction, i.e., east to west. In
addition Table IV shows results from 10-fold cross-validation
as a resampling procedure to estimate the skill of ML mod-
elling. Since the SVM classifier presents the best performance
among all other classifiers, the remainder of the simulations
and evaluations are completed with the SVM model only.

TABLE II
MOBILITY PREDICTION CLASSIFICATION WITH FEATURES.

Classifier Accuracy Precision Recall F-Score
LR 91.76 0.91 0.90 0.91

MLP 92.57 0.92 0.91 0.92
SVM 94.51 0.94 0.93 0.94

TABLE III
MOBILITY PREDICTION CLASSIFICATION WITHOUT FEATURES.

Classifier Accuracy Precision Recall F-Score
LR 78.63 0.78 0.77 0.78

MLP 80.80 0.80 0.79 0.80
SVM 83.56 0.83 0.82 0.83

TABLE IV
10 FOLD CROSS-VALIDATION.

Classifier Accuracy Precision Recall F-Score
LR 92.74 0.92 0.91 0.92

MLP 93.60 0.93 0.92 0.93
SVM 94.77 0.94 0.93 0.94

Fig. 3. Coverage probability comparison of different HO skipping techniques
vs SINR threshold.

According to our empirical testing, it can be seen that the
SVM achieved better results due its effectiveness on high
dimensional spaces. In addition, SVM can performs better
where the number of dimensions are greater than the number
of samples. Also, SVM performs well when there is a clear
margin to separate between data inputs according to their
different attributes. Likewise, in our framework, the number of
classes which supported SVM were; link direction, train tra-
jectory, passengers movement, travelling time and frequency,
carriage load, network load, etc.

2) Network Analysis: From Fig. 3, it can be seen that the
best connected case offers the highest coverage probability,
as expected, followed closely by the proposed context-aware
scheme. This shows the robustness of the proposed scheme, as
even by skipping certain cells, the context-aware approach is
able to achieve a very similar performance in terms of cover-
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Fig. 4. Average throughput comparison of different HO skipping techniques.

age probability. These 2 solutions are followed by the location-
aware, size-aware and hybrid, which all have a very similar
performance, and lastly the one with the worst performance
is the alternate skipping method that skips every other cell. In
addition we can also see that the gap between the no skipping,
the proposed context-aware and the other solutions is larger
when the SINR threshold is lower. This result suggests that
both no skipping and context-aware approaches are able to
find good enough BSs for the users to connect to, whereas
the other approaches cannot. This happens since the location-
aware, size-aware, hybrid and alternate schemes have a hard
threshold in terms of skipping BSs, in which if that condition
is met the target base station is skipped. This results in BSs
that could potentially be the first or second best BS for users
to connect to being skipped, resulting in a very poor SINR. In
case of the context-aware approach, since both load and SINR
information of the users are taken into account, this effect is
mitigated, as users that have very poor SINR are forced to
connect to these BSs, whereas users that have a good enough
SINR can skip it. Lastly, the no skipping case is expected to
be the best, as users always connect to the best available BS.

The average throughput results using (9) are extrapolated by
SINR dependant spectral efficiencies as shown in Fig. 4. The
HO cost impact on average throughput is directly proportional
i.e., when velocity increases, due to the frequent HOs, cost
increases as well. From Fig. 4, it can be seen that NEWS
framework employed context-aware HO skipping outperforms
with the minimum difference benchmarked against the no
skipping case. Our proposed scheme has the best average
throughput compared to other PPP HO skipping techniques.

In terms of HO cost and average throughput, it can be
seen from Figs. 4 and 5 that the no skipping approach has
the highest cost among all schemes and the best average
throughput. This occurs as expected, since users do not skip
any BSs in this scheme, thus users are always connected to
the best BSs available. However, despite producing the highest
throughput of all schemes, this also result in the highest cost.
When comparing the alternate skipping approach, we can also

Fig. 5. Average HO cost comparison of different HO skipping techniques.

Fig. 6. CDF of SINR for different HO skipping techniques.

see that its performance work as expected, as in this scheme
every other BS is skipped, resulting in a percentage difference
of around 50% when compared to the no skipping case. How-
ever, despite reducing the cost by almost 50%, the difference
in terms of throughput is not as big, resulting in a loss of
around 34% when compared to the no skipping case. Next, the
location-aware approach is the one that performs best in terms
of throughput when compared to other conventional skipping
schemes, with a throughput degradation of only around 9%
when compared to the no skipping case. However, this comes
at a price, as the location-aware needs to connect to more cells,
thus reducing the HO costs by only around 28%. The other
approaches, such as size-aware and hybrid have very similar
performance, in which they are able to significantly reduce the
HO cost by around 44% and 47%, respectively, achieving a
cost reduction similar to the one seen in the alternate scheme.
However, their performance in terms of throughput is not as
bad as the alternate, having a throughput degradation of around
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16% and 15% for the size-aware and hybrid approaches,
respectively. Lastly, the context-aware approach is the one that
achieves the best average throughput among all other skipping
techniques, being worse only than the no skipping base by
only around 0.4% and with a HO cost similar to the one of
the location-aware approach. These results really demonstrate
the benefits of skipping techniques, as all of them are able
to significantly reduce HO costs (by more than 1/4) with
different levels of throughput reduction. In addition, when load
and SINR information from users are taken into account, the
benefits are even greater, as it can be seen from the proposed
context-aware approach, which is able to reduce HO costs by
around 27% with a minimal throughput reduction.

Lastly, Fig. 6 shows results in terms of the CDF of the
average SINR of the users. This figure follows a similar pattern
to the one from coverage probability, with the no skipping ap-
proach yielding the best results, as expected, followed closely
by the proposed context-aware approach. In addition, when
observing these two curves we can clearly see two regions
where the SINR of users was concentrated: from −5 to −2 dB
and from around 0 to 7 dB. This can be explained as in the
proposed scenario, sometimes BSs would be overloaded, not
being able to accommodate all users. As such, these regions
show two groups of users, the ones that were able to connect
to the best available BS, and another group of users, which had
to connect to other BSs. Since in the context-aware approach
some users are able to connect to the best available BS while
others skip that BS, the SINR of the users are far greater
than the ones from the other skipping methods. As previously
explained, since the other methods have a hard threshold in
terms of skipping and do not consider the load or the SINR
information in their decision, all users are forced to skip their
preferred BSs at some point, thus drastically reducing the
users’ SINR. In terms of the other methods, we can see that the
performance of the location-aware is slightly better than the
other schemes and that the performance of both size-aware and
hybrid are very similar. Lastly, the alternate approach presents
the worst results in terms of SINR. It is important to note
that our framework has been assessed with multiple velocities
and different time thresholds and performed some empirical
experiments where we have chosen their values based on the
best trade-off in terms of HO cost and user throughput.

VI. CONCLUSION

This paper proposed a novel NEWS framework that ex-
ploits an intelligent HO skipping scheme, context-aware HO
skipping. The proposed technique allows train passengers
to dynamically skip HOs by considering challenging and
complex LUO train network dynamics over-burden traditional
HO schemes to drive smooth and seamless HOs. To this end,
NEWS framework first analyzes mobility prediction and future
passenger directions for maximizing futuristic optimization
by using ML. Secondly, through ML classification results,
PPP-based HO skipping model is trained and simulated.
The paper discussed topology-aware multiple HO skipping
schemes for effective HO management. HO schemes take
passenger location, cell-size, velocities, path, travel direction,

and cell-loads into account to make HO decisions, for the
avoidance of unnecessary HOs along the passengers trajectory.
Our novel scheme, context-aware HO skipping outperformed
among all traditionally equipped HO schemes in terms of
coverage probability, average throughput, and HO costs. For
future works, intelligent schemes can be modelled/designed
in such a way that they may consider passengers’ smarter HO
skipping in a multi-tier network for different train velocities.
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