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Abstract 

 

In the metamodeling based Monte Carlo simulation (MCS) framework for reliability analysis of 

structures, the training samples to construct response surface should be as close to the failure 

plane as possible to ensure sufficient accuracy in reliability estimate. For this, an algorithm 

based on maximin distance criterion combined with a leave-one-out cross-validation based error 

norm is proposed to construct a moving least squares based response surface for improved 

reliability estimate. The algorithm hinges on the fact that the MCS points whose predicted 

responses are less than the maximum absolute error obtained by the leave-one-out cross-

validation approach are likely to have the maximum effect on the accuracy of the reliability 

estimate. Relying on this, two points are added at each iteration by ensuring that the new data 

points are sufficiently close to the actual limit state as well as adequately away from the existing 

data points. The improved reliability estimation capability of the proposed algorithm considering 

the direct MCS based results as the benchmark is elucidated numerically by considering two 

example problems. 
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List of notations  

( )ŷ X  is the approximated response  

X  is the input vector 

n  is the number of input variables 

ix  is the i -th variable 

i ii,     are the unknown polynomial coefficients 

( )f X  is the vector of basis functions 

β  is the vector of unknown coefficients  

S  is the matrix of training samples 

y  is the output vector for actual responses 

ly  is the actual response at l -th training point 

l
S  is the input vector of  l -th training point 

F  is the design matrix 

p  is the number of training points 

β̂  is the estimate for coefficients vector 

SSE  is the weighted sum squared errors 
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l
w  is the weight function corresponds to l th training point 

W  is the diagonal matrix of the weight function 

d   is the Euclidean distance between the points 

R  is the radius of the hypersphere of influence 

c  is a free parameter for the weight function  

k   is another free parameter for the weight function 

ˆ l

CVy  is the response at l th point approximated by the training set of a cross-validation approach 

l

CVe  is the cross-validation error magnitude at l th point 

CVe  is the vector of cross-validation error magnitudes 

max

CVe  is the maximum value of elements of vector,
CVe  

  is the set of candidate points for adaptive sampling 

N  is the number of candidate points in the set,   

ijd  is the Euclidean distance between i-th candidate point,
 

i
X and j-th data point,

j
S . 

D  is the N p  matrix of Euclidean distances 

( )min

i
d  is the minimum value of the i-th row of the matrix D  

f ,iP  is the probability of failure estimated at i th iteration 

eq   is the equivalent Von-Misses stress 

p0 is the internal pressure 

r0 , r1     are the internal and external radius 

fy  is the yield stress 

g   is the limit state function 

E is the Young’s modulus of the material of the space-dome truss  

A1  is the section area of the top radial bars of the space-dome truss 

A2 is the section area of the peripheral bars of the space-dome truss 

A3 is the section area of the bottom inclined bars of the space-dome truss 

P1 is the load at the centre node of the space-dome truss 

P2 is the load at each of the six nodes of the middle hexagon of the space-dome truss 

1

z

P  is the maximum vertical displacement of the node under load P1 

allow  is the allowable maximum displacement of the top node of the space-dome truss 

 

 



 
 

1. Introduction 1 

The uncertainty is introduced in a structure due to uncertainty in the parameters required to 2 

characterize the structure e.g. geometry, material properties, boundary conditions, etc., and 3 

loads acting on it. Structural reliability analysis (SRA) is a theoretical framework that accounts 4 

for the effect of such parameter uncertainties. The primary task of SRA is to estimate the 5 

probability of failure which requires the computation of a multidimensional integral over the 6 

unsafe domain involving the joint probability distribution function (PDF) of the related random 7 

input variables. The joint PDF of the input variables is rarely available. Moreover, the exact 8 

computation of such integral is often computationally demanding.  Several methods have been 9 

developed to estimate the probability of failure which can be classified into two groups: 10 

approximate analytical techniques and statistical simulation-based methods (Ditlevsen and 11 

Madsen, 1996; Haldar and Mahadevan, 2000; Kwon and Elnashai, 2006; Faravelli, 1989). 12 

Analytical approximate techniques are based on the second moment method which suffers 13 

criticism with regard to the accuracy of the estimated reliability index. Moreover, such 14 

approaches require evaluating not only the limit state function (LSF) but also its gradients during 15 

iterations which are computationally challenging in the case of implicit LSF of a large complex 16 

structure. The most accurate and conceptually straightforward means of SRA is based on the 17 

Monte Carlo simulation (MCS) technique (Shinozuka, 1983; Melchers, 1999; Dymiotis et al., 18 

1999; Au and Beck, 2001). The approach is preferred as it does not require an assumption 19 

about the shape of the failure surface. However, such a full simulation approach requires a large 20 

number of repetitive evaluations of LSF for an acceptable confidence in the reliability estimates. 21 

If the performance function is explicitly available in closed-form, the numbers of performance 22 

function calls do not play an important role. However, the performance behaviour of real large 23 

complex structures is usually defined by LSF in implicit form as an explicit form of LSF is often 24 

unavailable. Although reliability analysis of structures involving implicit LSF can be performed by 25 

direct MCS technique, each performance function evaluation typically requires analysis of a 26 

finite element model involving high computational cost, especially for large complex structures 27 

(Ditlevsen and Madsen, 1996; Haldar and Mahadevan, 2000). The computational involvement 28 

for the analysis of structures to extract necessary responses for statistical analysis is studied by 29 

Kwon and Elnashai (2006). The number of simulations required may be in the order of several 30 
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thousand for an acceptable estimate of reliability, depending on the function being evaluated 31 

and the magnitude of the probability of failure (Faravelli, 1989). As an effective solution to such 32 

problems, the polynomial response surface method (RSM) based metamodeling approach is 33 

widely used to overcome the computational challenges of MCS based reliability analysis of large 34 

complex structures involving implicit LSF (Faravelli,1989; Bucher and Bourgund, 1990; Liu and 35 

Moses, 1994; Rajashekhar and Ellingwood, 1993). The RSM simplifies the simulation process 36 

by fitting a response surface model to approximately replace the implicit LSF. The response 37 

surface is an approximated polynomial function of random variables. The coefficients of each 38 

term in the polynomial could be obtained by the least squares method (LSM) using the actual 39 

structural responses at a lesser but sufficient number of times. Thereby, the computational 40 

involvement of analysis can be reduced drastically. The applications of such LSM based RSM in 41 

reliability analysis of structures are based on global approximation of scatter position data. 42 

However, the LSM is one of the major sources of error in prediction by the RSM and needs a 43 

considerable number of training points to ensure necessary accuracy. Thus, it becomes 44 

computationally intensive for practical engineering problems involving too many variables. 45 

 46 

To improve the efficiency and accuracy of RSM, the application of various adaptive 47 

metamodeling approaches e.g. polynomial based moving least square method (MLSM) (Kim et 48 

al., 2005; Kang et al., 2010), artificial neural network (ANN) (Elhewy et al., 2006; Lagaros et al., 49 

2009), Kriging (Kaymaz, 2005), polynomial chaos expansion (Blatman and Sudret, 2011), 50 

support vector machines (SVM) (Li et al., 2006; Ghosh et al., 2018; Roy et al., 2019), etc. are 51 

notable. The MLSM based RSM is noted to be the simplest amongst these. In this regard, it is 52 

important to note that for accurate estimation of reliability, the DOE points should be as close to 53 

the LSF as possible. Based on this fact, Bucher and Bourgound (1990) proposed a sampling 54 

method to construct an improved LSM based response surface for SRA. The approach is further 55 

modified by Rajashekhar and Ellingwood (1993) for the iterative improvement of RSM. Such 56 

iterative improvements are not only limited to LSM based RSM (Farag and Haldar, 2016; 57 

Gaxiola-Camacho et al., 2017) but also studied in the framework of adaptive metamodeling 58 

approaches e.g. by MLSM (Goswami et al., 2016) and SVM (Richard et al., 2012) based 59 

metamodels. However, these approaches require the complete replacement of DOE sets after 60 
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each iteration step. The number of iterations required may be large in many cases and the 61 

replacement of DOE sets may demand much computational time especially when the LSF is 62 

implicit and highly non-linear. Thereby, such approaches reduce the efficiency of the RSM 63 

significantly. The iterative improvement by adding a new data point to the existing training 64 

dataset after each iteration step to improve reliability estimate is appealing in this regard 65 

(Echard et al., 2011). The approach selects the adaptive sampling points based on the 66 

uncertainty in the prediction and the magnitude of predicted LSF by the Kriging method. But, 67 

such an adaptive sampling procedure can be employed in metamodeling only when the 68 

prediction variance is available. However, most of the metamodels not being Gaussian process 69 

based regression are unable to provide the prediction variance. Sequential adaptive sampling 70 

for such metamodels to improve MCS based SRA seems to be attractive in this regard. 71 

Roussouly et al. (2013) attempted a sequential adaptive sampling for polynomial RSM by 72 

searching a hypercube with the most probable failure point as its centre and the hypercube is 73 

considered as reduced space. A similar sequential adaptive sampling is proposed by 74 

Guimarães et al. (2018) with little modifications. However, reduced space with a regular 75 

hypercube shape includes a huge amount of unimportant regions. Xiao et al. (2018a) developed 76 

three learning functions for selecting the most suitable sample point at each step of iteration for 77 

all types of metamodels. However, the relative weights for these learning functions are heuristic 78 

and need experiences. Xiao et al. (2018b) proposed another learning function to select 79 

sequential training samples combining the cross-validation method, weighted Euclidean-80 

distance, and the weights of sample qualities in the input parameter space. The cross-validation 81 

method is employed to estimate the average probabilistic classification error function on the 82 

candidate sample point. But, the probabilistic classification function requires both the prediction 83 

and its variance at the candidate sample point. Thus, the application of this learning technique is 84 

also limited to Kriging or other Gaussian process based regression methods. Recently, Roy and 85 

Chakraborty (2020) developed a sequential sampling for SVR based on the maximin distance 86 

criterion. 87 

 88 

In the present study, an algorithm based on maximin distance criterion combined with a leave-89 

one-out cross-validation based error norm is proposed to construct a moving least squares 90 
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based response surface for improved estimate of reliability. Specifically, the proposed algorithm 91 

attempts to select training samples to construct a response surface as close to the failure plane 92 

as possible to ensure sufficient accuracy in the reliability estimate. It hinges on the fact that the 93 

MCS points whose predicted responses are less than the maximum absolute error obtained by 94 

the leave-one-out cross-validation approach are likely to have the maximum effect on the 95 

accuracy of the reliability estimate. In this regard, it can be realized that the misclassification of 96 

a point can only occur if the error in approximating an LSF at any sample point is more than the 97 

magnitude (irrespective of the sign) of the approximated LSF. Hence, it can be intuitively 98 

anticipated that the points corresponding to a magnitude of approximated LSF less than the 99 

value of the noted absolute error obtained by the leave-one-out cross-validation approach are 100 

most likely to get misclassified. Hence, the accuracies of MLSM based metamodel in 101 

approximating the LSF at these points are of paramount interest for an improved estimate of the 102 

probability of failure. Thus, a specific error norm based on the leave-one-out cross-validation is 103 

utilized to decide a reduced input space that is concise and contains only the important regions. 104 

Relying on this, two points are added at each iteration from the reduced space by ensuring that 105 

the new data points are sufficiently close to the actual limit state as well as adequately away 106 

from the existing data points to avoid clustering effect. The improved reliability estimation 107 

capability of the proposed algorithm considering the direct MCS based results as the benchmark 108 

is elucidated numerically by considering two example problems. 109 

 110 

2. Response surface methods 111 

The present study deals with the sequential updating of MLSM based RSM for improved 112 

estimates of the reliability of structures. Thus, to explain the proposed algorithm, the 113 

fundamentals of the usual LSM and MLSM based response surfaces are first discussed in this 114 

section for an effective presentation of the proposed algorithm in the subsequent section.   115 

 116 

2.1 Least Squares Method Based RSM 117 

The RSM is used to uncover an unknown analytical relationship (an empirical model) between 118 

several inputs and outputs. The reduced quadratic polynomial model (without cross-terms) is 119 

mostly employed to replace the unknown LSF for reliability analysis due to its trade-off between 120 
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simplicity and accuracy (Wong et al., 2005). The reduced quadratic polynomial RSM can be 121 

expressed as, 122 

 123 

( ) ( )
T2

0

1 1

n n

i i ii i

i i=

ŷ x x  
=

= + + = X f X β   124 

1. 125 

 126 

Where, ( )ŷ X is the approximated response for input vector X consisting of n  number of 127 

variables; ix denotes the i th variable; 0 ,
i and ii  are unknown polynomial coefficients; 128 

( )  
T

21 i i, ,x , ,x ,=f X is the vector of basis functions; and 129 

 
T

0 i ii, , , , ,  β = is the vector of 2 1n+  number of unknown coefficients. The 130 

unknown coefficients are obtained by the usual LSM. The training data is obtained by 131 

constructing a DOE and evaluating corresponding actual responses of structure. The LSM 132 

minimizes the sum squared error (SSE) at all the sample data points considered for training to 133 

estimate the polynomial coefficients.  The error norm, SSE can be expressed as,  134 

 135 

( ) ( ) ( )
2

2p n n
Tl l l

0 i i ii ii

l=1 i=1 i=1

SSE y x x  
 

= − − − = − − 
 

   y Fβ y Fβ   136 

2. 137 

 138 

Where,  1
T

l py y y=y is the output vector of actual responses at p  number of training 139 

data points,  1 l p=S S S S ; F is the design matrix composed of p  number of rows 140 

containing ( )
T

f X for each training points. The LSM based estimate of coefficients vector, β̂
 
is 141 

obtained as follows, 142 

 143 

( )
1

T Tˆ −

=β F F F   144 
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3. 145 

 146 

Once the vector β  is obtained, the LSF at any point from the input space can be approximated 147 

by Equation 1.  148 

 149 

2.2 Moving Least Squares Method Based RSM 150 

The MLSM based RSM is a weighted LSM having various weights with respect to the position of 151 

approximation. Thus, the coefficients of response surface function change with the change of 152 

approximation point of interest. This procedure is interpreted as a local approximation. To fit the 153 

polynomial function to scattered data, the LSM evaluates the unknown coefficients of the 154 

function by minimizing the SSE. However, in the MLSM approach, the SSE is defined as the 155 

sum of the weighted errors as following, 156 

 157 

( ) ( ) ( )( )
2

2

0

=1 1 1

( )    -   
l

p n n
Tl l l

i i ii ii

l i i

SSE w y x x  
= =

 
= − − − = 

 
  X y Fβ W X y -Fβ   158 

4. 159 

 160 

Where, ( )SSE X is the weighted sum square errors at training points which depend on the 161 

location of the point of interest, X ;
l

w  is the weight corresponds to l -th training point; ( )W X is 162 

the diagonal matrix of the weight function for point of interest X . The weight matrix ( )W X is 163 

constructed by using the weighting function in the diagonal terms. It may be obtained by utilizing 164 

weight functions such as constant, linear, quadratic, higher-order polynomials, exponential 165 

functions, etc. (Kim et al., 2005; Kang et al., 2010). In the present study, the weight matrix, 166 

( )  W X is obtained by utilizing a Gaussian weighting function of the following form, 167 

 168 

( )

2 2

2

1

1

1

k k

k

d

cR c

c

e e
w d

e

   
− −   
   

 
− 
 

−
=

−       

 169 
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5. 170 

 171 

Where, 
ld = −X S  is the Euclidean distance between the point of interest, X and l -th 172 

training point 
l

S ; R is the approximate radius of  hypersphere of influence for X . In Equation 173 

5, the parameter, k  is taken as unity to ensure the Gaussian nature of the weighting function. 174 

The value of the parameter, c is taken as 0.4 (Taflanidis and Cheung, 2012). It can be noted 175 

from Equation 5 that the weight associated with a particular sampling point 
l

S decays as the 176 

point X moves away from 
l

S . The weighting function has its maximum value of 1.0 at a 177 

normalized distance, /d R = 0, and a minimum value of 0.0 outside the influence hypersphere, 178 

i.e. ( )/ 1   0.0w d R  = . The function value decreases smoothly from 1.0 to 0.0. The value of 179 

R  is so chosen in order to secure a sufficient number of neighbouring experimental points to 180 

avoid singularity. To calculate the weights using Equation 5, the radius of hypersphere of 181 

influence, R is taken as the distance between X and the farthest training point from it. Now, the 182 

coefficient vector ( )β X can be obtained as below, 183 

 184 

( ) ( )( ) ( )
1

   T Tˆ X F W X F W Xβ F y
−

=  185 

6. 186 

 187 

It can be noted from the above equation that the coefficient ( )β X is a function of the location or 188 

position of X . Thus, the procedure to calculate ( )β X being a local approximation and moving 189 

processes performs a global approximation over the entire design domain.  190 

 191 

3. The proposed adaptive MSLM algorithm for SRA 192 

The present study is intended to explore an algorithm based on maximin distance criterion 193 

combined with a leave-one-out cross-validation based error norm to construct a MLSM based 194 
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response surface model for improved reliability estimate. The related formulation is presented in 195 

this section.  196 

 197 

The algorithm starts with an initial DOE. As the failure plane is not known a priori, training 198 

samples for the initial DOE should be uniformly selected from the entire input space. Thus, a 199 

single-shot DOE is obtained by Latin hypercube sampling (LHS) considering the upper and 200 

lower boundaries of all the related random variables. The algorithm is hinged on the fact that the 201 

training points close to the failure plane should be added to the DOE for the improved accuracy 202 

of approximation of the LSF close to the failure region. This, in turn, is expected to improve the 203 

accuracy of estimated reliability by the RSM based MCS approach. Once, an approximate LSF 204 

is constructed by the MLSM based on the initial DOE, a reduced domain containing candidates 205 

for adaptive samples can be identified. To provide a measure of fit of a model to a data set, the 206 

cross-validation approach used in regression analysis is frequently applied (Kohavi, 1995; Xiao 207 

et al., 2018b; Roy et al., 2019; Roy and Chakraborty, 2020). A fitted model having been 208 

constructed, each data, in turn, is held out and the model is reconstructed using the remaining 209 

data. The process of evaluating error at each training point by excluding that point from the 210 

entire training data set to build a model based on the remaining data is referred to as the leave-211 

one-out cross-validation approach. Let, the entire training data set is represented by  ,S y with 212 

p  number of training points,  1 l p=S S S S and corresponding actual 213 

responses,  1
T

l py y y=y . In the leave-one-out cross-validation approach, l -th data pair 214 

is held out  ,l lyS  from the training data set  ,S y  and a metamodel is constructed with 215 

remaining data to predict the response at 
l

S  (say, ˆ l

CVy is the approximated response). The 216 

cross-validation error magnitude (i.e., absolute value), 
l

CVe  at 
l

S  can be expressed as, 217 

ˆ
l l l

CV CVe y y= − . Thus, a vector of cross-validation error magnitudes, 218 

 1 l T
p

CV CV CV CVe e e=e  at all training points is obtained. The maximum absolute error at 219 

data points obtained by the leave-one-out cross-validation approach is the maximum value of 220 
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elements of vector,
CVe  and can be expressed as,  max maxCV CVe = e . In this regard, it is noted 221 

that the cross-validation error magnitude is usually higher than the magnitude of actual error in 222 

prediction by the metamodel. Intuitively, it is unlikely that the actual prediction error magnitude 223 

at any MCS point will be greater than
max

CVe . Thereby, the sign of LSF can only be misrecognized 224 

if the error magnitude is higher than the magnitude of approximated LSF. Hence, it can be 225 

assumed that the MCS points for which the predicted absolute values of the approximated LSF 226 

are less than 
max

CVe are the most probable to be on the other side of the actual limit state as 227 

compared to that predicted by the metamodel. Such points are expected to have the maximum 228 

effect on the accuracy of reliability estimates by a metamodel. Thus, the accuracy of the 229 

predictions at these MCS points should be improved. Therefore, these MCS points are 230 

considered as candidates for adaptive sampling in the proposed algorithm. It is desirable to 231 

include a minimum number of adaptive training points into the DOE for efficiency of the 232 

metamodeling approach. To effectively fill the sub-domain with adaptive samples avoiding 233 

clustering, the minimum inter-distance of the training samples can be maximized similar to the 234 

widely used maximin distance criterion (Johnson et al., 1990). If p number of data points are 235 

already in the DOE, then to add (p+1)-th data point, first a set of candidate points,   is 236 

selected. A N p  matrix can be obtained as, 237 

 238 

11 1

1

,

p

i j

ij

N Np

d d

D d

d d

 
 

= = − 
 
 

X S   239 

7. 240 

 241 

Where, N is the number of candidate points in the set,   and 
ijd  is the Euclidean distance 242 

between the i-th candidate point,
i

X and the j-th data point,
j

S . The minimum value of the i-th 243 

row of the matrix D  i.e. ( )  min

1min i ipi
d d d=  is the Euclidean distance between i-th 244 

candidate point and the nearest data point. The candidate point having the maximum 
mind value 245 
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is the next best choice for the new data point and it is included in the DOE. At each iteration 246 

step, two new data points are added. The MCS points which are situated in the approximated 247 

unsafe domain having the magnitude of the approximated LSF less than the value of
max

CVe  are 248 

considered as the candidate sample to add as the first point. Based on the mentioned maximin 249 

distance criterion, one point is added from this domain to the existing DOE. To add the next 250 

point, the MCS points having the magnitude of the approximated LSF less than the value of 251 

max

CVe are selected from the approximated safe domain as the candidate sample. Thus, the latest 252 

two adaptive samples (one having the predicted LSF greater than zero and another one less 253 

than zero) are included in the DOE. The actual responses corresponding to the two new points 254 

are evaluated to update the training dataset. Subsequently, the approximation of LSF by the 255 

MLSM is updated with the current MLSM based response surface.  Now, a new reduced domain 256 

of candidate samples is obtained based on the current approximation of LSF and modified error 257 

norm obtained by leave-one-out cross-validation approach. Subsequently, two new points can 258 

be included in the DOE. This enrichment of DOE is continued until a suitable stopping criterion 259 

is satisfied. In the present study, the stopping criterion is decided based on the convergence in 260 

the estimated probability of failure as follows, 261 

 262 

1 0 05f ,i f ,i f ,iP P P .− −   263 

8. 264 

 265 

Where, 
1f ,iP −
and 

f ,iP  are the probability of failure estimated at 1i −  and i -th iteration, 266 

respectively. 267 

 268 

The algorithm is summarized as below:  269 

Step1: An initial single-shot DOE is constructed by LHS over the entire physical domain of the 270 

input variables.  271 

Step2: The metamodel is trained by all the data points of the DOE.  272 
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Step3: Using the leave-one-out cross-validation approach, note the absolute maximum 273 

error,
max

CVe . 274 

Step4: The LSF at all the MCS points are predicted by the metamodel to estimate the 275 

probability of failure. 276 

Step5: The reduced space is built by the MCS points having the absolute value of the predicted 277 

response less than 
max

CVe .  278 

Step6: Two points from the reduced space are selected based on the maximin distance 279 

criterion, each one on either side of the approximate limit state.   280 

Step7: The actual responses corresponding to the new points are evaluated and these two data 281 

points are added to update the DOE set.  282 

Step8: Go to the Step2 till convergence of probability of failure is observed. 283 

Step9: The final reliability index is calculated corresponding to the converged probability of 284 

failure.  285 

A flow chart explaining the implementation of the proposed algorithm is described in Figure 1. 286 

 287 

4. Numerical Study 288 

The effectiveness of the proposed adaptive MLSM approach based on sequential updating of 289 

the training data set is elucidated numerically by considering two examples which are presented 290 

in this section.   291 

 292 

4.1 Example 1: Sphere subjected to internal pressure 293 

This first example is to approximate the Von-Mises stress of a hollow sphere under internal 294 

pressure as shown in Figure 2. The material is homogenous without spatial variety. The LSF is 295 

defined based on the equivalent Von-Misses stress (
eq ) and can be described as, 296 

 297 

3

0 1

3 3

1 0

3
;

2
y eq eq

p r
g f

r r
 = − = 

−
  298 

9. 299 

 300 
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In the above equation,
 yf is the yield stress of the material of the hollow sphere; p0  is the 301 

internal pressure, r0 and r1 are the internal and external radii, respectively. p0 , r0  and r1 are 302 

assumed to follow lognormal distribution having the mean values of 1200 MPa, 50mm, 100 mm, 303 

respectively. The coefficients of variations (COV) of all the random parameters are assumed to 304 

be 7.5%. The physical limits of the random variables are taken as mean ± 3×standard deviation 305 

(SD). 306 

 307 

To study the effectiveness of the proposed adaptive MLSM scheme, the response of the sphere 308 

under the internal pressure is approximated by the proposed MLSM based response surface. 309 

To perform the MCS study, 105 numbers of random samples are generated according to the 310 

assumed PDF for each variable. The reliability results are obtained for varying 
yf . To study the 311 

effect of size of initial DOE, the reliability results are obtained by the proposed MLSM based 312 

response surface starting with three different sizes of initial DOE composed of 11, 14, and 17 313 

samples and results are shown in Figures 3, 4, and 5, respectively. The results obtained by the 314 

MLSM based metamodel using the initial DOE and those obtained from the proposed MLSM 315 

based metamodel with converged DOE after necessary iterations are denoted as MLSM-316 

adaptive_initial and MLSM-adaptive_final, respectively. For a meaningful comparison, the 317 

reliability results are also obtained by the MLSM trained by an equivalent single-shot DOE which 318 

is composed of the same number of training points as has been used to obtain the final 319 

converged results by the proposed adaptive MLSM (denoted as MLSM-Equivalent-DOE).  The 320 

results of the most accurate direct MCS (denoted as DMCS) are considered as the benchmark. 321 

It can be readily noted that the reliability results obtained by the proposed approach are much 322 

better than those obtained by the equivalent single-shot DOE with the same numbers of training 323 

points as required by the proposed approach.  It is important to note that the improved 324 

performance of the proposed MLSM based approach is observed for all the DOE configurations 325 

which show the robustness of the proposed algorithm. In Figure 6, the absolute percentage 326 

errors in estimating reliability indices are shown for each step of the proposed MLSM approach 327 

(denoted as MLSM-adaptive_i for i-th step) starting with 11 initial training samples and the 328 

corresponding MLSM-Equivalent-DOE. It is observed that the errors reduce drastically after the 329 
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first iteration by the proposed MLSM based metamodeling approach. The improved capability of 330 

reliability estimate by the proposed approach with only 4 iterations can be readily noted from the 331 

plot. The final estimate of reliability by the proposed approach is very close to that obtained by 332 

the direct MCS technique with a deviation of around 1%-2%. Though the comparisons of the 333 

absolute percentage of errors for the other two initial DOE are not shown for brevity, the 334 

observations are found to be similar. 335 

 336 

4.2 Example 2: A space dome truss 337 

A space dome truss problem is taken as the second example involving implicit LSF (Keshtegar, 338 

2017). The Young’s modulus (E) of the material of all the bars, the section area of the top radial 339 

bar numbers 1-6 (A1), the peripheral bar numbers 7-12 (A2), the bottom inclined bar numbers 340 

13-24 (A3), the point load P1 at the centre node and the point load P2 at each of the six nodes of 341 

the middle hexagon (as shown in Figure 6) are considered as the six independent random 342 

variables and statistical properties of those are furnished in Table 1. The implicit LSF is defined 343 

as, 344 

 345 

z

allow P1g = Δ −   346 

10. 347 

 348 

where, 
1

z

P  is the maximum vertical displacement of the node under load P1 and allow  is the 349 

allowable maximum displacement. ANSYS mechanical APDL module is employed to obtain the 350 

maximum displacement 
1

z

P which is necessary for evaluating the LSF. 351 

 352 

Like the previous example, three initial DOE consists of 20, 25, and 30 training data points are 353 

constructed within the physical domain (mean ± 0.3×mean) of the random variables. For MCS, 354 

105 numbers of random simulation samples are generated. The reliability results for different 355 

Δallow values estimated by the proposed MLSM based metamodels starting with 20, 25, and 30 356 

initial samples are compared in Figures 8, 9, and 10, respectively. The absolute percentage 357 

error in obtaining the reliability results for varying Δallow when compared with the direct MCS by 358 
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using the proposed adaptive approach with 30 initial data after each iteration and the 359 

corresponding equivalent single-shot MLSM based reliability results are shown in Figure 11. 360 

Similar observations are noted for this example also. It is observed that the errors are drastically 361 

reduced by the proposed MLSM approach even after the first enrichment of the DOE for this 362 

example also.  363 

 364 

5. Summary and conclusions 365 

A new adaptive MLSM based response surface methodology based on maximin space-filling 366 

design criterion combined with a leave-one-out cross-validation based error norm is proposed 367 

for improved reliability estimate of structure. The algorithm relies on two points being added 368 

after each iteration. The maximin distance criterion combined with a cross-validation based 369 

specific error norm ensures that the new data points added sequentially are sufficiently close to 370 

the actual limit state and at the same time sufficiently away from the existing data points. The 371 

algorithm proposes to add one new data from the safe and another from the unsafe domain to 372 

reduce the bias in response approximation near the limit state. The results of the numerical 373 

study of both examples reveal improved reliability estimation capability of the proposed 374 

algorithm with regard to the conventional approach considering the direct MCS based results as 375 

the benchmark solution. The improved capability of estimating reliability by the algorithm with 376 

different sets of training data clearly reveals the robustness of the proposed approach. It is 377 

worth mentioning here that for satisfying both the criteria, the algorithm does not use any 378 

heuristic weighting scheme rather uses a step-by-step approach. Thus, the algorithm can be 379 

applied generically to any reliability analysis problem. Though the present algorithm is tested for 380 

MLSM based adaptive metamodel, it can be readily applied for other adaptive metamodeling 381 

approaches e.g. Kriging, ANN, SVM, etc. However, this needs further study. 382 

 383 
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Table 1: Details of the random variables of the space dome truss 465 

Random Variables 
Probability distribution 

Type Mean COV 

A1 Normal 0.013 m2 0.1 

A2 Normal 0.01 m2 0.1 

A3 Normal 0.016 m2 0.1 

E Normal 205 GPa 0.05 

P1 Gumbel Max. 20 kN 0.15 

P2 Gumbel Max. 10 kN 0.12 

 466 

Figure captions  467 
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 468 

Figure 1. A flow chart of the proposed algorithm 469 

 470 

Figure 2. Schematic diagram of the hollow sphere under internal pressure 471 
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 472 

Figure 3. The comparison of estimated reliability indices for varying fy considering 11 initial 473 

training data. 474 

 475 

Figure 4. The comparison of estimated reliability indices for varying fy considering 14 initial 476 

training data. 477 

 478 

Figure 5. The comparison of estimated reliability indices for varying fy considering 17 initial 479 

training data. 480 
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 481 

Figure 6. The comparison of absolute percentage error in estimating reliability indices for each 482 

iteration step of the proposed MLSM approach considering11 initial training data for varying fy  483 

 484 

Figure 7. Schematic diagram of the space dome truss (Redrawn from Keshtegar, 2017) 485 
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 486 

Figure 8. The comparison of reliability indices for different Δallow considering 20 initial training 487 

data. 488 

 489 

Figure 9. The comparison of reliability indices for different Δallow considering 25 initial training 490 

data. 491 

 492 

Figure 10. The comparison of reliability indices for different Δallow considering 30 initial training 493 

data. 494 
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 495 

Figure 11. The comparison of absolute percentage error in obtaining reliability indices for 496 

different Δallow considering 30 initial training data. 497 
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