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Abstract 9 

A three-stage adaptive support vector regression (SVR) based metamodel by sequential sampling of 10 

training data close to the limit state function (LSF) is proposed that alleviates the difficulty of scarcity 11 

of samples in the reduced space for reliability evaluation of structures involving implicit LSF. 12 

Specifically, an importance sampling technique-based algorithm is proposed to ensure sufficient 13 

number of simulation points near the approximated failure plane. An initial design of experiments is 14 

first constructed by space-filling design over the entire domain. The optimum choices of the hyper-15 

parameters of SVR model are determined by minimizing generalized root mean square error 16 

(GRMSE) and the corresponding minimum GRMSE is noted.  A subset of Monte Carlo simulation 17 

samples having the magnitude of approximated LSF less than the noted GRMSE values are selected 18 

next. Subsequently, the data points are added sequentially from the subset based on maximin criterion. 19 

Finally, the SVR model is iteratively updated to improve reliability estimation by adding more data 20 

from the apparent safe and unsafe updated domain until convergence by an improved convergence 21 

criterion to avoid false convergence. The effectiveness of the proposed approach including estimating 22 

very small probability of failure is elucidated through three numerical examples.    23 

Keywords: Support vector regression; three-stage sequential sampling; Monte Carlo simulation, 24 

reliability analysis, small probability; importance sampling.  25 

1. Introduction 26 

The reliability analysis of structure involves evaluation of a multiple integral which is a daunting task 27 

and various analytical i.e., the first order reliability method (FORM), the second order reliability 28 

method [1–3] and the simulation-based approximations are made to estimate probability of failure, 29 

fP . The most accurate and conceptually straightforward Monte Carlo simulation (MCS) technique is 30 

preferred choice in this regard. However, the brute-force MCS technique requires a large number of 31 
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MCS samples for estimating small failure probability. Hence, various advanced MCS techniques 32 

requiring fewer samples e.g., importance sampling [4–7], directional sampling [8,9], subset simulation 33 

[10,11], line sampling [12,13] and local domain MCS [14] have been attempted. The number of 34 

simulation necessary in such approach is definitely less than that required by the brute-force MCS. 35 

But, still it remains an important issue [15] as structural reliability analysis (SRA) involving implicit 36 

LSF needs to be evaluated by computationally expensive finite element (FE) method [16]. Various 37 

metamodeling techniques have emerged as a viable alternative in this regard. The polynomial 38 

response surface method (PRSM) introduced by Faravelli [17] is widely used as a metamodeling 39 

technique due to its simplicity and computational efficiency [18–20]. The PRSM adopted in most of 40 

the studies relies on the least squares method based global approximation of scatter position data [21] 41 

and may not be enough accurate in a local domain.  The efficiency of local approximation largely 42 

depends on the selection of basis functions which should closely represent the actual variation of the 43 

response within a local domain. The basis functions are typically fixed second order polynomials. But 44 

such a selection is not obvious as the response is implicit in nature [22]. Therefore various advanced 45 

metamodeling techniques such as moving least square method based PRSM [21,23], Kriging [24], 46 

artificial neural network [25,26], radial basis function [27,28], polynomial chaos expansion [29] etc. 47 

are gaining momentum due to their adaptive nature of approximation. But, such empirical risk 48 

minimization principle-based techniques usually suffer from overfitting and curse of dimensionality. 49 

On the other hand, the support vector machine (SVM) based on structural risk minimization principle 50 

and small sample learning that could estimate implicit function with better accuracy and 51 

generalization capability is worth noting [30,31]. The SVM based classification approach has been 52 

successfully applied for SRA problems involving implicit LSF [15,32,33]. Besides classification, 53 

SVM can also be utilized for regression which is referred as support vector regression (SVR). The 54 

application of SVR based metamodeling in SRA is quite notable [34–41]. In this regard, the advances 55 

in suppressing the curse of dimensionality with other metamodeling techniques e.g. sliced inverse 56 

regression-based sparse polynomial chaos expansions [42], surrogate modelling immersed probability 57 

density evolution method for reliability analysis in high dimensions are notable [43]. 58 
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In this regard, it is important to note that the accuracy of reliability analysis predominantly 59 

depends on the accuracy of prediction of sign of LSF at the MCS sample points. To this end, 60 

including more data points near the limit state to construct design of experiments (DOE) for 61 

metamodel training is very important. A metamodel can be updated by reconstructing its DOE by 62 

shifting the centre and spread of the same based on the information of failure plane gathered from the 63 

previous metamodel [18–20,44,45]. The concept is also applied for SVR based SRA [37]. Instead of 64 

one-shot DOE, adaptive DOE by enriching an initial DOE with additional samples sequentially for 65 

metamodel training is an effective means to address this issue. It seems to be more effective than the 66 

former approach with regard to number of actual response evaluations. Liu et al. [46] presented a 67 

detailed survey on sequential sampling based adaptive DOE for global metamodeling. Echard et al. 68 

[47] proposed adaptive Kriging combined with MCS (AK-MCS), basically an active learning based 69 

sequential sampling specially effective with Kriging metamodel for improved SRA. Echard et al. [48] 70 

further proposed an active learning based reliability analysis method for small probability estimation 71 

and termed as adaptive Kriging combining with importance sampling (AK-IS). These methods are 72 

getting wide attention [49,50]. But such approach is not applicable for metamodels which are unable 73 

to provide prediction variance. The learning function for sequential sampling was developed as well 74 

for such metamodels [51]. Other sequential sampling based adaptive DOE are also implemented 75 

successfully with several metamodeling techniques for solving SRA problems [52–54]. Successful 76 

application of sequential sampling is also noted to construct adaptive SVR model. For example, Dai et 77 

al. [36] employed polynomial kernel function which essentially invites the curse of dimensionality 78 

problem even by using SVR model. As a result, five hundred to thousand numbers of total training 79 

data are required. Bourinet  [39]  proposed a subset simulation based adaptive SVR procedure where 80 

the accuracy of SVR model prediction is important near the actual limit state and also in estimating 81 

probabilities of each subset. Consequently, the total number of training points becomes very high. It 82 

has been generally noted that the requirement of total training sample in such adaptive SVR model is 83 

still seems to be quite high [36]; particularly for successful estimation of small failure probability 84 

[39]. Recently, Roy and Chakraborty [55] proposed a two stage sequential updating approach of SVR 85 
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based metamodel for SRA with desired accuracy utilizing comparatively smaller number of samples. 86 

However, it is not so effective in estimating very small probability of failures.  87 

Keeping the above in view, a three-stage adaptive SVR model based on sequential sampling 88 

of training data is proposed in the present study for SRA with limited number of training samples. It 89 

basically improves the approach proposed by Roy and Chakraborty [55] by duly addressing the 90 

difficulty of estimating very low failure probability case. The approach of Roy and Chakraborty [55] 91 

suffers from scarcity of samples in the reduced space particularly for low probability of failures 92 

problems. This limitation is circumvented in the present study but retaining the advantages of the 93 

previous approach. For this, a modification to tackle scarcity of samples is proposed by relying on 94 

importance sampling technique. For importance sampling method, the most probable failure point 95 

(MPFP) is evaluated by the FORM algorithm and a joint normal distribution with the evaluated MPFP 96 

as the mean vector and the original standard deviation (SD) values of the random variables as the SD 97 

vector is considered to obtain the importance sampling density function. Furthermore, the stopping 98 

condition in the sequentially updating procedure is enhanced by introducing an improved convergence 99 

criterion to avoid false convergence. The effectiveness of the proposed approach including estimating 100 

very small probability of failure is elucidated through three numerical examples. 101 

2.  Support vector regression 102 

The present study hinges on SVR based metamodeling approach. The SVR is based on the principle 103 

of structural risk minimization of statistical learning theory [30,31]. The basic concept of SVR is 104 

briefly explained in this section and more details can be found elsewhere [56]. For a given set of 105 

training data, ( ) ( ) ( ) 1 1 2 2, , , , , ,p py y yx x x , 
nx R  and y  R (x is the input vector; y is the 106 

corresponding output; p is the number of data pairs; R represents the set of real numbers; n is the 107 

dimension of input vector), the problem of regression is to find the flattest function f that map a 108 

point in the space 
n

R  onto the space R  with the lowest expected risk. The SVR can be applied for 109 

both linear and nonlinear regressions. For, a linear mapping, the regression function is expressed as,  110 

 ( ) , , ,nf b b= +  x w x w R R  (1) 111 
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Where, ,w x  is the dot product of w and x ; w  and b  are the two parameters to define a canonical 112 

hyperplane representing weight vector and bias, respectively. Mathematically, flatness of ( )f x  can 113 

be ensured by minimizing the norm 
2

,=w w w and can be expressed as a convex optimization 114 

problem:  115 

 
2 ,1

min s.t.
2 ,

i i

i i

y b

b y





 − − 


+ − 

w x
w

w x
 (2) 116 

The optimization problem in Eq. (2) is feasible if the function ( )f x  can approximate all the training 117 

points within iy  , where,   is a non-negative precision tolerance. However, the above may not be 118 

true for all the training points and for a more generalized approach some error allowance is desired. 119 

Thus, two slack variables, ,i i  
 are introduced to obtain a modified optimization problem [31] as, 120 

 ( )
2

1

, ,1
min s.t. , 0

2 , ,

p
i i i

i i i i

i i i i

y b
C

b y

 
   

 

 


=

 − −  +
+ + 

+ −  +


w x
w

w x
 (3) 121 

Where, C is the regularization constant which regulates the trade-off between the flatness of ( )f x  122 

and the amount by which the fitting error magnitudes of ( )f x exceed . For brevity, the detailed 123 

solution procedure [56] of Eq. (3)  is not included here; instead the result is directly provided.  The 124 

weight vector and subsequently, the regression function ( )f x  can be obtained as,  125 

 ( ) ( ) ( )  
1 1

, , , , 0,
p p

i i i i i i i i

i i

f b C       

= =

= − = − +  w x x x x  (4) 126 

Where, i  and 
i

 are the Lagrange dual variables [56]. The use of SVR for linear regression as 127 

discussed above can be readily extended to nonlinear regression cases. The SVR approximation 128 

function for nonlinear responses is obtained by replacing the dot product ,
i j

x x
 
in Eq. (4) by a 129 

kernel function ( ),K
i j

x x as, 130 

 ( ) ( ) ( )
1

, .
p

i i

i

f K b  

=

= − + ix x x  (5) 131 
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The kernel function must satisfy the Mercer’s condition [57]. In the present study, the following 132 

Gaussian radial basis function (GRBF) kernel is adopted for approximation of LSF, 133 

 ( )
2

2
, exp

2
K

  − 
= −   

i j

i j

x x
x x  (6) 134 

Where,   is a parameter of the GRBF kernel function. In most of the cases, very little information 135 

about the given data is available and a general assumption for smoothness of the derived function is 136 

reasonable which can be well achieved by GRBF [56]. The SVR is implemented here in MATLAB 137 

using Gunn toolbox readily available at http://www.isis.ecs.soton.ac.uk/resources/svminfo/. 138 

The fitting of SVR model by optimizing ε-insensitive loss function as presented here, besides 139 

ε, it has a regularization parameter, C, the GRBF kernel parameter, . The values for C, ε and  are 140 

necessary to build an SVR model. The optimum values of these parameters can be obtained by cross-141 

validation techniques. The search algorithm applied for selection of hyper-parameters for SVR model 142 

is based on Roy et al. [41]. Basically, it solves an optimization sub-problem where the generalised 143 

root mean square error (GRMSE) value obtained by the cross-validation method is minimized. The 144 

optimum value of   is obtained for the pairs of parameters C and ε from a logarithmic grid. Then, the 145 

values of the three parameters corresponds to the minimum cross-validation error norm are selected. 146 

The details of the algorithm can be seen in Roy et al. [41].     147 

3. Proposed three-stage adaptive SVR model-based reliability analysis 148 

The proposed adaptive SVR based metamodel for SRA is basically a three-stage procedure composed 149 

of initial, intermediate and final stages which are elaborated in the present section. The important 150 

issue to address the difficulty of scarcity of samples in the reduced space in case of reliability analysis 151 

of problems involving very small probability of failure by applying importance sampling technique is 152 

elaborated separately.  153 

3.1 Initial stage 154 

The proposed three stages adaptive SVR based metamodeling approach starts with an initial DOE 155 

which is constructed by space-filling design over the entire physical space of the random variables. To 156 

construct an initial SVR model, the optimum choice of the hyper parameters are obtained by 157 

http://www.isis.ecs.soton.ac.uk/resources/svminfo/
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minimizing the GRMSE by leave-one-out cross-validation approach [41] and the corresponding 158 

minimum GRMSE value (say, 
min

GRMSEe ) is noted. Once an initial SVR model is obtained, the 159 

approximate value of an LSF at each MCS point can be obtained to decide whether it is safe or 160 

unsafe. Fig. 1 (a) shows the initial DOE and the approximate safe and unsafe MCS samples by the 161 

initial SVR model for a 2-D problem. If y is the actual value of an LSF, ˆ ( )g X is its approximated 162 

value at point X  and e  is the error of approximation at the point, then one can write the following,  163 

 
ˆ ˆ ˆ( ) ( ) ( ) ( ( ))

ˆ. ., ( )

e y g y g if sign y sign g

i e e g

= − = + 



X X X

X
  (7) 164 

In the above, ( )sign  and   represent the sign and magnitude of a variable. From Eq. (7), it can be 165 

realized that if the absolute error magnitude in approximating an LSF at any sample point is more than 166 

the magnitude of the approximated value of the LSF then only misclassification of that point may 167 

occur. But, the actual magnitude of error ( e ) at any sample point is unknown as the value of the 168 

implicit LSF ( y ) at the said point is not known. It has been noted that the cross-validation error 169 

norms i.e. GRMSE for SVR based metamodel are comparable with the corresponding prediction error 170 

norm i.e. root mean square error [41,58]. Hence, it can be anticipated intuitively that the points 171 

corresponding to a magnitude of the approximated LSF less than the value of the noted GRMSE value 172 

are most likely be get misclassified. Hence, the accuracies of SVR model in approximating the LSF at 173 

these points are of paramount interest for SRA application. 174 

3.2 Intermediate stage 175 

In the second stage, a set of MCS points, Ω is identified based on the magnitudes of the LSF 176 

approximated by the initial SVR model at MCS points and the previously noted GRMSE value, 177 

min

GRMSEe . If X  represents any MCS point and ˆ( )g X is the magnitude of the approximated LSF at that 178 

point then the set Ω can be identified as,  179 

  minˆ| ( ) GRMSEg e = X X   (8) 180 

It can be readily realized that improved failure estimation by a metamodel depends on its better 181 

approximation capability near the failure boundary. Thus, the SVR model should be constructed so 182 

that the approximation region near the limit state gets more importance. For this, the GRMSE value 183 
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obtained by a hold-out validation approach [59] is minimized to select the SVR hyper-parameters.  In 184 

a hold-out validation, usually two-third of the data are considered as the training set and the remaining 185 

as the test set [59]. Following this, if an initial DOE contains 0p  numbers of data, then 0 2p /  186 

numbers of new training sample from Ω set are included in the DOE. These data points are selected 187 

from the set Ω sequentially based on maximin criterion to effectively fill the reduced space 188 

represented by the set Ω [60]  to ensure that a new training sample is positioned at a maximum 189 

distance from its nearest existing training sample. For this, the minimum distance of a point X  from 190 

the existing training samples is obtained as, 191 

 ( ) nearestd = −X X S   (9) 192 

Where, nearestS is the nearest existing training sample to the point X . The maximin criterion selects 193 

the point having the maximum value of ( )d X from the set Ω and this process of adding new training 194 

samples is repeated sequentially to effectively fill the reduced space represented by the set Ω. 195 

It is important to note here that an SVR model trained with DOE with most of the training 196 

samples selected from unsafe (or safe) domain may be biased in LSF approximation. Therefore, more 197 

or less equal numbers of adaptive points from the safe and the unsafe domains should be included in 198 

the DOE to obtain an unbiased metamodel. To ensure this, the set Ω is partitioned into two sets Ωsafe 199 

and Ωunsafe based on the sign of the approximated LSF, i.e.,  200 

    min minˆ ˆ ˆ ˆ| ( ) , ( ) 0 , | ( ) , ( ) 0safe GRMSE unsafe GRMSEg e g g e g =    =  X X X X X X   (10) 201 

Now, based on the maximin criterion, two training samples are selected from the set Ωunsafe and 202 

another two from the set Ωsafe. Thus, four new training samples are added to the existing DOE. This 203 

process of adding four new training samples is repeated sequentially until 0 2p /  numbers (or, the 204 

nearest multiple of four) of training samples are included into the DOE. Fig. 1 (b) shows the MCS 205 

points of the reduced space, Ω along with the initial DOE and new adaptive training samples selected 206 

from the set Ω. The two sets Ωsafe and Ωunsafe are also distinguished by separate colours in Fig. 1 (b). In 207 

the hold-out validation approach, all the training samples of the initial DOE are considered as training 208 

set and the newly added training samples are kept as the validation set. Thus, the hyper-parameters of 209 

the SVR model so obtained are expected to improve the LSF approximation at MCS points of the set 210 
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Ω than those obtained by the leave-one-out cross-validation where the regions far away from the 211 

failure plane unwisely get equal importance. Once 0 2p /  numbers of new training samples are 212 

added, the second SVR model is constructed and the sets, Ωsafe and Ωunsafe are updated accordingly. 213 

Fig. 1 (c) depicts the updated approximation of safe and unsafe domain based on the second SVR 214 

model. 215 

 216 

Fig. 1. The proposed adaptive sampling procedure showing (a) the initial DOE and the approximate 217 
safe and unsafe MCS samples, (b) the MCS points of the reduced space and the new adaptive training 218 
samples and (c) the updated approximation of safe and unsafe domain based on the second SVR 219 
model. 220 

It may be noted that selecting by maximin criterion, the new training sample is ensured to be 221 

placed away from the existing training samples. Thus, adding alternatively one training sample from 222 

each of the sets Ωsafe and Ωunsafe may place the training samples from one set near the approximated 223 

limit state and the other one from the remaining set far away from the limit state to ensure maximin 224 

criteria. On the contrary, adding more than two data alternatively from each of the sets can increase 225 

the chance to position the new data near the approximated limit state. However, adding more new data 226 

from each set will effectively fill the space of one set chosen first. But this process may not effectively 227 

cover the other space as no point of later set get the chance to positioned near the approximated limit 228 

state as already training samples are placed in the former set to maintain maximin criterion. Hence, 229 

adding two training samples alternatively from each of the set is adopted as an optimal solution.  230 

3.3 Final stage 231 

At the final stage, the SVR model is updated iteratively for further improvement of failure estimation 232 

by adding four new training samples sequentially from the updated set Ω (as obtained in the previous 233 

stage) into the DOE. In this regard, it may be noted here that a good number ( 0 2p / ) of adaptive 234 
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training samples are already added to the DOE at the intermediate stage. Now, at the final stage, the 235 

DOE is iteratively enriched where accuracy of prediction needs to be improved further for obtining 236 

the correct sign of the LSF. The hyper-parameters to construct the updated SVR model at any iteration 237 

are obtained by hold-out validation approach and the corresponding minimum GRMSE is noted to 238 

update the existing set Ω. The updated set Ω at the end of each iteration is used to select four new 239 

training samples for next iteration and the process is continued until convergence. It is important to 240 

note here that in the hold-out validation approach at this stage, if the updated DOE contains a total 241 

of p  numbers of training samples, then the most recent 3p /  (or, nearest integer) numbers of training 242 

samples are hold-out as validation set and the remaining are taken as the training set. However, all the 243 

p  numbers of training samples are utilized to train the SVR model at each iteration. Thereby, the 244 

SVR hyper-parameters are obtained to emphasize better approximation of the LSF at the MCS points 245 

surrounded by the recent 3p /  numbers of training samples.  As the newest 3p /  number of training 246 

samples of the updated DOE are selected from the set Ω which is reconstructed at each iteration with 247 

the MCS points most vulnerable for misclassification. Thus, the proposed searching scheme of hyper-248 

parameters is expected to further reduce the chances of misrecognition of the actual sign of the LSF at 249 

these MCS points.  250 

The convergence criterion proposed in the present study is based on the variation of Pf values 251 

over the previous two iterations instead of the usual practice of considering value of the last iteration. 252 

Mathematically, this convergence criterion can be expressed as, 253 

 

2 1

max( ) 0 05

i i i i

f f f f

i i

f f

P P P P
, .

P P

− −− −
   (11) 254 

Where, 
2i

fP −
, 

1i

fP −
 and 

i

fP are the values of the probability of failures at (i-2), (i-1) and i-th iterations, 255 

respectively. The above intuitively assumes that if three consecutive iterations give very close 256 

estimate of Pf   values then it can be presumed to be very close to the actual one. Once, the values of Pf 257 

for three consecutive iterations bounded within ±5% of the most updated value, the newest value is 258 

considered as the converged Pf   value. 259 

 260 
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3.4 Proposed modification to deal with small failure probabilities 261 

The success of the proposed three stage sequential updating algorithm depends on the availability of 262 

sufficient number of MCS samples in the sets Ωsafe and Ωunsafe which need to be selected for updating 263 

the SVR model to improve response approximation for reliability estimate. However, in case of very 264 

small probability of failure, the set Ωunsafe may suffer from scarcity of samples and a very few points 265 

may be available having lesser magnitude of approximated LSF than the noted GRMSE value. To 266 

circumvent this difficulty, advanced MCS technique e.g., importance sampling and subset simulations 267 

capable of generating more simulation samples in the failure regions can be employed. However, the 268 

accuracy of Pf estimated by subset simulation technique depends on the accuracies of failure 269 

estimations of all the subsets involved in the entire process which demands prediction accuracy not 270 

only near the final limit state but also in all such subset boundaries. Thus, the proposed three-stage 271 

adaptive SVR approach needs to be applied for each subset and this will largely increase the 272 

requirement of total number of training samples. But importance sampling is free from such difficulty. 273 

Thus, a modification to tackle scarcity of samples for very small probability problem is proposed in 274 

the present study relying on importance sampling technique.  275 

To obtain a quasi-optimal density function for importance sampling method, the MPFP is 276 

evaluated first by Rackwitz-Fiessler FORM algorithm [1]. In doing so, the value of the LSF and its 277 

gradient at any iteration are evaluated from one single regression model constructed to approximate 278 

the LSF at the corresponding iteration step. The two parameters equivalent normal transformation 279 

[61] is adopted to deal with the non-normal random variables in the FORM algorithm. Now, a joint 280 

normal distribution with the evaluated MPFP as mean vector (say, 
MPFP
μ ) and the original SD values 281 

of the random variables as the SD vector is considered to obtain the importance sampling density 282 

function [62,63]. Then the joint PDFs for the importance sampling density function, ISf  at any point 283 

X is obtained as,  284 

 ( )
1

MPFPn
k k

IS

k k

x
f




=

 −
=  

 
X   (12) 285 
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Where,  (*) represents the standard normal PDF; n is dimension of the input space; k is the original 286 

SD value of the kth random variable; kx  and 
MPFP

k  represent the values of the kth random variable 287 

and the corresponding ordinate of the MPFP point, respectively. In this regard, it may be noted that 288 

the reliability is not computed by the FORM rather used to obtain a suitable centre for importance 289 

sampling. Thus, the failure probability accuracy will not be affected much as the failure probability is 290 

finally estimated by importance sampling [48]. 291 

At the initial stage, the MPFP and subsequently, the importance sampling density function are 292 

obtained based on the initial SVR model. Certain number of simulation samples (say, NIS) are 293 

generated from the quasi-optimal density function and the LSF is approximated at all these samples 294 

based on the initial SVR model. The sets Ω, Ωsafe and Ωunsafe are built by the eligible simulation 295 

samples selected based on the criteria detailed in section 3.2. Once the sets Ωsafe and Ωunsafe are 296 

obtained, the DOE can be enriched with new sequential data points. Subsequently, the SVR model is 297 

updated with new training data set. Based on the updated SVR model, a new MPFP is evaluated and 298 

subsequently, the mean values of the random variables for importance sampling density function are 299 

updated. The previous NIS number of simulation samples are replaced by the new NIS number of 300 

simulation samples generated from the updated importance sampling density function. Based on the 301 

approximated values of the LSF at new NIS number of samples obtained based on the updated SVR 302 

model, the sets Ω, Ωsafe and Ωunsafe are rebuilt. Thus, the proposed three-stage adaptive SVR algorithm 303 

continued at the intermediate and the final stages accordingly. 304 

3.5 Outline of the proposed SVR approach 305 

The implementation of the proposed three-stage adaptive SVR algorithm for reliability evaluation is 306 

explained through a flow chart in Fig. 2. To start the algorithm, the maximum allowable number of 307 

brute-force MCS samples, (say, NMC) is decided. Based on an acceptable COV of Pf value, a minimum 308 

value of Pf  (say,
min

fP ) can be obtained up to which the value of Pf  can be estimated following brute-309 

force MCS based estimation procedure. The procedure to obtain the reduce space for sequential 310 

sampling is altered by changing the reliability evaluation method automatically between the brute-311 

force MCS and the importance sampling method based on the value of COV of failure probability. If 312 
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the estimated Pf  is less than
min

fP at any stage then the simulation samples are replaced by NIS number 313 

of samples generated from the importance sampling density function (as discussed in section 3.4) and 314 

the Pf value is estimated by importance sapling method. In any later iteration step, if the estimated Pf 315 

is more than 
min

fP then the value of Pf is estimated again by the brute-force MCS method from the 316 

next iteration. If the estimated Pf is more than
min

fP , even in case of scarcity of samples, the brute-317 

force MCS remains as the reliability estimation method. But, to find the eligible candidates for the set 318 

Ω, NIS number of samples are generated as per the quasi-optimal density function and the values of the 319 

LSF at these sample points are evaluated by the SVR model. It is to mention here that the present 320 

SRA approach is restricted to aleatory uncertainty only and consideration of epistemic uncertainty 321 

[64,65] is beyond the scope of the present study and needs separate consideration.  322 

 323 

Fig. 2. The flowchart of the proposed three-stage adaptive SVR algorithm for SRA. 324 

4. Numerical Study 325 

The proposed adaptive SVR approach based on sequential updating of training data set in three stages 326 

for reliability analysis by duly addressing the small failure probability issue is illustrated by 327 

considering three examples. The first example problem is a ten-bar truss problem for which explicit 328 
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LSF is available. Thus, the reliability computation by brute-force MCS technique using the actual 329 

LSF can be easily performed. This will enable to study the performance of the proposed algorithm by 330 

comparing with the most accurate MCS based reliability results. The second example is a twenty-331 

nine-dimensional standard test problem involving a purely nonlinear mathematical LSF used to 332 

demonstrate the effectiveness of the proposed approach for higher dimensional problem. The last 333 

example is a more realistic one i.e., a space dome truss problem requiring evaluation of an implicit 334 

LSF involving FE analysis of the structure.  335 

The fP evaluation in the present study involves three approaches: (i) the brute-force MCS (ii) 336 

the importance sampling technique and (iii) the proposed SVR based approach. The brute-force MCS 337 

technique proceeds in three steps: (a) random sampling of MCN  sets of input parameters according to 338 

underlying PDFs, (b) evaluating the values of the LSF at all the sample points and (c) post-calculating 339 

the failure probability. The estimated fP  value obtained by brute-force MCS technique and its 340 

variability measured by its COV, MC  can be obtained as [66], 341 

  
1

11
( )

MCN
f

f i MC

i=MC MC f

- P
P = I g , =

N N P
 X   (13) 342 

Where, iX represents the ith sample. The indicator function, I[g(X)] is equal to 1 for g(X)<0 and 0, 343 

otherwise. In importance sampling  method, the fP value and its COV are obtained as [66], 344 

    
2

2

1 1

( ) ( )1 1 1 1
( ) ( )

( ) ( )

IS ISN N

X i X i
f i IS i f

i= i=IS IS i f IS IS IS i

f f
P = I g , = I g P

N f P N N f


  
 − 
   

 
X X

X X
X X

  (14) 345 

Where, Xf  and ISf are the joint PDFs for the actual input space and the generated importance 346 

samples, respectively. NIS is the total numbers of importance samples generated. For SVR based 347 

reliability analysis, one needs LSF value from the SVR model. Once the SVR model is finalized, 348 

linking it to the MCS or importance sampling method-based reliability analysis is straightforward. For 349 

this, a set of values of all the random variables are generated and the trained SVR model is invoked to 350 

provide responses and reliability is estimated accordingly. The result of the MCS based failure 351 

estimate using the actual LSF is considered as the reference result. 352 
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For comparative study, the reliability results are also obtained by the most widely used active 353 

learning reliability methods. In doing so, the AK-MCS method [47] is first attempted and if it is found 354 

that the method demands very large population of samples then the AK-IS method [48] is employed. 355 

The U-function proposed by Echard et al. [47] is used as the learning function for all the active 356 

learning methods for numerical study. In addition, the results are also obtained by the sequential 357 

updating based SVR approach proposed by Roy and Chakraborty [55] for comparison and it is 358 

referred as ‘Sequential SVR’ in the rest of the article. In cases of very small probabilities, only AK-IS 359 

method is compared with the proposed there-stage SVR method as the other two methods (AK-MCS 360 

and ‘Sequential SVR’) are not capable with computationally feasible number of simulation samples.  361 

4.1 Example 1: A ten-bar truss  362 

The ten-bar truss as shown in Fig. 3 is taken as the first example. The cross-sectional areas of the 363 

horizontal members (A1), vertical members (A2), diagonal members (A3), Young’s modulus (E), length 364 

(L) and load (P) are considered as independent random variables. The statistical characteristics and 365 

physical boundaries of the considered six random variables are detailed in Table 1. This example is 366 

adopted from Choi et al. [67] where reliability analysis was demonstrated considering displacement at 367 

nodes as the criteria. The LSF for reliability is considered with respect to the tip displacement at node 2 368 

as following [67], 369 

 

3 2 2 3 2 2

1 2 3 3 1 2

1 3

2 2

1 2 3 1 1 2 3 3 1 2

[4 2 (24 ) (7 26 )

4 {(20 76 10 ) 2 (25 29 )}]

disp allow

T

PL
g d A A A A A A

A A ED

A A A A A A A A A A

= − + + +

+ + + + +

 (15) 370 

Where, 
2 2 2 2

2 1 3 1 2 3 1 2 1 3 1 24 (8 ) 4 2 (3 4 ) ( 6 )TD A A A A A A A A A A A A= + + + + +  and allowd  is the 371 

allowable limit of the tip displacement at node 2.  372 
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 373 

Fig. 3. The planar ten-bar truss (redrawn from [67] ) 374 

Table 1.The details of the random variables of the ten-bar truss 375 

Random 

variables (unit) 

Probability distribution Physical boundary 

Type Mean COV Lower limit Upper limit 

A1 (m
2) Normal 7.5×10−3 0.1 5.25×10−3 9.75×10−3 

A2 (m
2) Normal 1.5×10−3 0.1 1.05×10−3 1.95×10−3 

A3(m
2) Normal 5.0×10−3 0.1 3.5×10−3 6.5×10−3 

E (N/m2) Normal 7.0×1010 0.05 5.95×1010 8.05×1010 

L (m) Lognormal 9.0 0.05 7.65 10.35 

P (N) Gumbel Max. 3.5×105 0.1 2.45×105 4.55×105 

To study the effectiveness of the proposed three-stage adaptive SVR approach for reliability 376 

estimation, an initial DOE consists of 30 training data points are constructed over the entire physical 377 

domain of the random variables according to the uniform design (UD) table, U30(306) (readily available 378 

at http://www.math.hkbu.edu.hk/UniformDesign). The UD is a space-filling design and has the 379 

distinctive feature of accommodating the largest possible number of levels for each variable and the 380 

discrepancy for UD is the smallest amongst all the space-filling designs [68]. Thus, in order to 381 

construct an efficient metamodel, the UD scheme [69] is adopted in the present study. With these 30 382 

initial training data, the intermediate stage adds 16 new data (the nearest multiple of four to half of 383 

30). Then in the final stage, four data are added iteratively until convergence. The prerequisite 384 

parameters to implement the algorithm are set as: NMC = 105;
min

fP = 10-3 (compliant with COV of Pf  < 385 

0.1) and NIS = 104.  386 

http://www.math.hkbu.edu.hk/UniformDesign
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The result of brute-force MCS based failure estimate with 105 MCS samples using the actual 387 

LSF is considered as the reference result if the COV of
fP  is less than 0.1; otherwise, the reference Pf 388 

value is estimated by importance sampling method. The estimated 
fP  values by the proposed 389 

approach after each update of the SVR model for different dallow are shown in Fig. 4. The reference 390 

results are shown in the same plot for comparative study. The probability of failures estimated by the 391 

‘Sequential SVR’ method are also shown in the plot, wherever, the method works with reasonable 392 

number of MCS samples. Regarding the AK-MCS method, Echard et al. [47] suggested that the 393 

algorithm can start from an initial DOE composed of a dozen of random samples from the MCS set. 394 

The results obtained by U-function based AK-MCS method starting with 12 MCS samples as training 395 

data is denoted by ‘AK-MCS+U’. However, the proposed SVR method and the ‘Sequential SVR’ 396 

start from an identical initial DOE with 30 UD samples. But, the ‘AK-MCS+U’ method starts with an 397 

initial DOE with lesser samples. It is to be noted here that the performance of any adaptive method is 398 

expected to be influenced by the initial design. Thus, for meaningful comparative study, the 399 

performances of the two adaptive methods are compared with an identical initial DOE. Thereby, 400 

another AK-MCS method starting from the same initial DOE i.e., with 30 UD samples (denoted by 401 

‘30UD+AK-MCS+U’) is also considered for comparison.  402 
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 403 

Fig. 4. The comparison of estimated Pf values using various approaches for different dallow values 404 

It can be observed from the Fig. 4 that the 
fP  values estimated by the proposed SVR model 405 

are quite close to the reference results. The computational efficiency of the proposed method is 406 

studied with respect to the numbers of actual function evaluation to obtain the actual value of the LSF. 407 

It can be noted that more numbers of actual function call represent more computational time 408 

requirement irrespective of problem size and computing platform. The proposed three-stage SVR 409 

approach takes only 54 to 70 numbers of training data for different dallow values. The results of the 410 

‘Sequential SVR’ method have similar accuracy with little lesser number of data (i.e., 47 to 49). But, 411 

the ‘Sequential SVR’ method is unable to estimate reliability in case of dallow = 0.13 m due to scarcity 412 

of candidate points in the reduced space. The ‘AK-MCS+U’ and ‘30UD+AK-MCS+U’ estimate Pf 413 

with good accuracy. But, the AK-MCS methods require more numbers of iterations as well as more 414 

numbers of training data than the proposed three-stage adaptive SVR approach. The ‘30UD+AK-415 

MCS+U’ method takes a smaller number of iterations e.g., 97 and 26 than the ‘AK-MCS+U’ method 416 
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e.g., 99 and 37 for dallow= 0.1 and 0.13 m, respectively. However, the ‘AK-MCS+U’ method requires a 417 

smaller number of total training samples e.g., 12+99=111 and 12+37=49 than the 30UD+AK-418 

MCS+U’ method e.g., 30+97=127 and 30+26=56 in case of dallow= 0.1 and 0.13 m, respectively. It 419 

shows that the initial DOE data points (30 UD samples) reduce the number of iterations but there is no 420 

benefit with respect to total number of training samples. Hence, the initial DOE based on 30 UD 421 

samples does not facilitate the AK-MCS method for this problem.  422 

The value of dallow is further increased (i.e., 0.14 and 0.15 m) to study the performance of the 423 

proposed three-stage adaptive SVR approach for small failure probability case. Instead of AK-MCS, 424 

AK-IS is employed for reliability estimation. The corresponding results are shown in Fig. 5. It can be 425 

observed that the AK-IS method takes lesser number of training data (53 and 68) than the proposed 426 

three stage adaptive SVR method (62 and 90) for this particular problem. However, it can be noted 427 

that the AK-IS method is unable to start with small initial data (unlike AK-MCS) as it requires to find 428 

the MPFP first by employing FORM which involves several iterations with gradient evaluations [48]. 429 

In detail, initial number of samples predominantly depends on number of iterations in FORM and the 430 

input dimension. For example, FORM with seven iterations with six input variables required 50 (i.e., 431 

7×(1+6)+1 = 50) numbers of data for evaluation of the actual implicit function. The AK-IS method 432 

requires 50 (i.e., seven iterations for FORM) and 64 (i.e., nine iterations for FORM) number of initial 433 

data for dallow = 0.14 and 0.15 m, respectively. Though, AK-IS method requires marginally lesser 434 

samples in this problem than the proposed method; the initial data requirement of AK-IS method 435 

might be very high for high dimensional problems. This is demonstrated in the next example. 436 
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 437 
Fig. 5. The comparison of estimated Pf values for dallow= 0.14 and 0.15 m. 438 

4.2 Example 2: A twenty-nine-dimensional test problem 439 

A twenty-nine dimensional (29-D) standard test problem is taken to demonstrate the effectiveness of 440 

the proposed approach for comparatively higher dimensional problem. The LSF is expressed as, 441 

 ( )
2 4

29 29 29
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1 1 1

1 1
1 2 29

2 2
allow i i i

i i i
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  X  (16) 442 

Where, Yallow is the allowable value of the function. Each random variable is considered to be lognormal 443 

with mean and COV of 10.0 and 0.1, respectively and truncated between 7.0 and 13.0. The initial DOE is 444 

constructed using UD table, U30(3029) over the entire input space. The necessary parameters are taken as: 445 

NMC = 106;
min

fP = 10-4 and NIS = 5×104. The estimated 
fP  values obtained by the proposed approach, 446 

the two AK-MCS methods and the ‘Sequential SVR’ method along with the reference results are 447 

shown in Fig. 6 for different Yallow.  It has been noted that for the case of Yallow = 3.0×1013, the 448 

proposed algorithm changes from brute-force MCS to importance sampling method for reliability 449 

estimate at the initial stage; but it returns to brute-force MCS again at intermediate stage and 450 

continues to employ brute-force MCS up to the final stage. This switching of reliability method is 451 

based on the estimated 
fP values at any iteration stage. The observation on the performance of 452 

‘Sequential SVR’ method is similar to the previous problem. In case of Yallow = 2.8×1013, 2.9×1013 and 453 

3.0×1013, learning of the ‘AK-MCS+U’ method with 106 brute-force MCS samples is stopped at the 454 
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initial step as no MCS points are detected as unsafe even with such large numbers of MCS sample 455 

size. On the other hand, in the case of ‘30UD+AK-MCS+U’ method, the stopping criterion for 456 

learning is not satisfied even after adding 120 new data (i.e., use of total 150 training data) for Yallow = 457 

2.7×1013, 2.8×1013, 2.9×1013 and 3.0×1013 values.  458 

 459 
Fig. 6. The comparison of estimated Pf values for different Yallow values. 460 

Further, to study the performance of the proposed three-stage adaptive SVR approach for low 461 

probabilities, the 
fP  values are also estimated for comparatively higher values of Yallow e.g., Yallow 462 

=3.5×1013 and 3.6×1013. The corresponding results are shown in Fig. 7. It can be observed from the 463 

figure that the proposed three-stage adaptive SVR method estimates the failure probabilities 464 

successfully with maximum of 118 training data. However, the AK-IS method consumed 121 data 465 

before starting of active learning iterations. These 121 data are basically used by four iterations in 466 

FORM to obtain the MPFP (i.e., 4×(29+1)+1=121). Moreover, the convergence of active learning is 467 

not reached even after 120 iterations i.e., after utilization of total 240 training data in cases of Yallow= 468 

3.5×1013 and 3.6×1013. It can also be observed that for several times, the estimated 
fP  values by the 469 
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proposed SVR approach do not change significantly for two successive iterations in case of Yallow = 470 

3.5×1013. This reveals the efficiency and accuracy of utilizing the convergence criterion based on the 471 

results of consecutive three iterations over that of two iterations.  472 

 473 
Fig. 7. The comparison of estimated Pf values by various approaches for Yallow= 3.5×1013 and 3.6×1013. 474 

4.3 Example 3: A space-dome truss  475 

The third example problem is reliability analysis of a space-dome truss involving implicit LSF. The 476 

schematic diagram of the space truss is shown in Fig. 8 [70]. The six independent random variables 477 

considered are: the material Young’s modulus (E) of all the bars, the cross section areas of the top 478 

radial bars ( 1A for bar numbers 1-6), the peripheral bars ( 2A for bar numbers 7-12), the bottom 479 

inclined bars ( 3A for bar numbers 13-24), the point load 1P  at the centre node and the point load 2P  at 480 

the six nodes of the middle hexagon. The reliability analysis is performed with respect to the 481 

maximum vertical displacement of the node under load 1P , the implicit LSF for which can be 482 

expressed as, 483 

 
z

allow P1g = Δ −  (17) 484 

Where, 
1

z

P  is the vertical displacement of the node under load 1P  and allow  is the allowable 485 

maximum displacement of the same. The displacement 
1

z

P  which is necessary to evaluate the LSF is 486 

required to be computed based on FE analysis of the structure. The statistical properties and physical 487 

boundaries of the random variables are shown in Table 2.  488 
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 489 
Fig. 8. Schematic diagram of the space truss (redrawn from [70]) 490 

Table 2. The details of the random variables of the space truss 491 

Random variables (unit) 
Probability distribution Physical boundary 

Type Mean COV Lower limit Upper limit 

A1 (m
2) Normal 0.013 0.1 0.0091 0.0169 

A2 (m
2) Normal 0.01 0.1 0.007 0.013 

A3(m
2) Normal 0.016 0.1 0.0112 0.0208 

E (GPa) Normal 205 0.05 143.5 266.5 

P1(kN) Gumbel Max. 20 0.15 14 26 

P2(kN) Gumbel Max. 10 0.12 7 13 

An initial DOE consisting of 30 data points is constructed using UD table, U30(306) over the 492 

entire physical space to estimate reliability by the proposed approach. The prerequisite parameters 493 

considered are: NMC = 5×104;
min

fP = 2×10-3 and NIS = 104. For comparative study, failure probabilities 494 

are also estimated by the previously mentioned two AK-MCS methods and ‘Sequential SVR’. The 495 

estimated values of 
fP by the different methods at each step of iterations for different allow  are shown 496 

in Fig. 9. The reference results are obtained by evaluating the actual LSF for 5×104 brute-force MCS 497 

samples if the COV of estimated Pf is less than 0.1; otherwise, importance sampling method is 498 
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employed. For comparison, the reference results are shown in the same plot. The 
fP  values estimated 499 

by the final SVR models are observed to be very close to the reference results for this problem also. It 500 

can be noted from Fig. 9 that the proposed method takes only 54 to 62 numbers of training data for 501 

Δallow = 0.011, 0.0115, 0.012 and 0.0125 m. Though, the ‘Sequential SVR’ method requires little 502 

lesser number of training data (45 to 49); like the previous examples, it is unable to produce any result 503 

in case of Δallow = 0.0125 m due to scarcity of candidate samples in the reduced space. As earlier, both 504 

‘AK-MCS+U’ and ‘30UD+AK-MCS+U’ methods take more number of training data for most of the 505 

cases. The value of allow is further increased to 0.013 and 0.0135 m for studying the performance of 506 

the proposed method for small probability of failure case. The corresponding results are compared 507 

with the reference values in Fig. 10. Only 54 numbers of total training samples are required by the 508 

proposed method for both the cases of allow = 0.013 and 0.0135 m.  509 

 510 
Fig. 9. The comparison of estimated Pf values for different allow values. 511 
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 512 
Fig. 10. The comparison of estimated Pf values obtained by the proposed approach and the reference 513 

value for allow  = 0.013 and 0.0135 m. 514 

 515 
In general, it is observed that the final estimates of Pf values are quite accurate with respect to 516 

the reference results even for very small Pf values. The computational efficiency of the proposed 517 

approach studied with respect to the numbers of actual function evaluation shows that the proposed 518 

three-stage SVR approach and the ‘Sequential SVR’ method have similar accuracy with less numbers 519 

of data by the ‘Sequential SVR’.  But, the ‘Sequential SVR’ is unable to estimate small failure 520 

probability cases. The ‘AK-MCS+U’ and ‘30UD+AK-MCS+U’ estimate Pf  with good accuracy. But, 521 

the AK-MCS method involves more number of iterations and training data than the proposed three-522 

stage adaptive SVR approach. The performance of AK-IS method is found to be largely depended on 523 

the input dimension of the problem. In this regard, it is to be noted that the initial Kriging model of 524 

AK-IS method is trained with all the points required to obtain MPFP by FORM. Thereby, the number 525 

of initial training data and subsequently the total number of training data is expected to be very large 526 

for high dimension problem. It may be noted that in case of small probabilities, brute-force MCS is 527 

avoided to obtain the reference results due to huge computational involvement for problems involving 528 

FE analysis. In such cases, the importance sampling technique is employed. This may introduce error 529 

in the actual estimate of Pf values resulting in some differences of the results of the proposed SVR 530 

method with the reference results. Better efficiency and accuracy of utilizing the proposed 531 

convergence criterion based on three iterations is observed over the conventional one. i.e., based on 532 

two iterations only. It is quite obvious that the proposed convergence criterion demands at least one 533 

additional iteration than the conventional stopping criterion. Thus, the number of total training data 534 
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required by the ‘Sequential SVR’ method (based on the conventional stopping criterion) is marginally 535 

less than that of required by the proposed adaptive SVR approach. But, as already discussed, the 536 

‘Sequential SVR’ method suffers from the issue of scarcity of candidate points in the reduced space 537 

for small failure cases.  538 

5. Summary and conclusion 539 

A three-stage adaptive SVR based metamodel is explored where the training data are sequentially 540 

sampled in three-stage for improved estimate of reliability of structures. In particular, the algorithm 541 

employs importance sampling method to address the non-availability of sufficient number of 542 

simulation points near the approximated failure plane to deal with small failure probability cases. The 543 

proposed approach automatically chooses the appropriate simulation method between the brute force 544 

MCS technique and the importance sampling method based on a threshold COV of the estimated 545 

probability of failure. The advantage of the proposed approach is that it reduces the sample size 546 

requirement to estimate reliability with reasonable accuracy for very small probability of failure case 547 

also. The improved performance of the proposed approach in reliability estimation is demonstrated 548 

through three numerical examples. The results of all the three examples clearly indicate the 549 

effectiveness of the proposed algorithm in reliability estimation including estimating very small 550 

probability of failure for wide ranges of allowable limits. The effectiveness of the proposed improved 551 

stopping criterion based on the results of three consecutive iterations to avoid false convergence in 552 

estimating reliability is clearly noted in all the numerical examples. Further, failure probabilities are 553 

estimated by sequential sampling based adaptive SVR (‘Sequential SVR’) and active learning based 554 

adaptive Kriging (AK-MCS and AK-IS) methods for comparative study. The proposed approach is 555 

found to be superior over the reliability results obtained by the active learning methods in most of the 556 

cases, especially the observation is much prominent for higher dimension problem. In general, the 557 

proposed approach is found to be effective when judges with respect to the computational efficiency 558 

along with the accuracy to estimate very small probability of failure. The proposed approach being 559 

generic in nature can be readily extended to reliability analysis of nonlinear structural system. The 560 
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present study is applied for SRA involving single LSF. However, the approach can be extended for 561 

SRA involving multiple LSFs which needs further study.  562 
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