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Abstract 5 

Support vector machine (SVM) is a powerful machine learning technique relying on the 6 

structural risk minimization principle. The applications of SVM in structural reliability 7 

analysis (SRA) are enormous in the recent past. There are review articles on machine 8 

learning-based methods that partly discussed the development of SVM for SRA applications 9 

along with other machine learning methods. However, there is no dedicated review on SVM 10 

for SRA applications. Thus, a review article on the implementation of various SVM 11 

approaches for SRA applications will be useful. The present article provides a synthesis and 12 

roadmap to the growing and diverse literature, specifically the classification and regression-13 

based support vector algorithms in SRA applications. In doing so, different advanced variants 14 

of SVM in SRA applications and hyperparameter tuning algorithms are also briefly 15 

discussed. Following the detailed review studies, future opportunities and challenges in the 16 

area of applications are also summarized. The review in general reveals that the SVM in SRA 17 

is getting thrust as it has an excellent capability of handling high-dimensional problems 18 

utilizing relatively lesser training data. The review article is expected to enhance the state-of-19 

the-art developments of support vector algorithms for SRA applications. 20 

Keywords: Review, Reliability of Structures, Support vector machine, Support vector 21 

regression, Hyperparameter, Design of experiments. 22 

1. Introduction 23 

The support vector algorithm is a nonlinear generalization of the generalized portrait 24 

algorithm developed in the 1960s [1]. It is firmly grounded in the framework of statistical 25 

learning theory. Its present form was developed at AT&T Bell Laboratories by Vapnik and 26 

co-workers in the early 1990s [2]. Statistical learning theory characterizes the properties of 27 
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learning machines which enable them to generalize well to unseen data [3,4]. The present 28 

article focuses on reviewing on applications of support vector algorithms in structural 29 

reliability analysis (SRA).  30 

Most of the real structures involved complex geometry and nonlinear material 31 

behaviours that required a computationally demanding finite element (FE) analysis or other 32 

numerical techniques for response evaluation. Different metamodeling approaches e.g., 33 

response surface method (RSM) [5,6], radial basis functions networks (RBFN) [7], 34 

polynomial chaos expansion (PCE) [8,9], multivariate adaptive regression splines (MARS) 35 

[10], Kriging method [11,12], artificial neural networks (ANN) [13,14], etc., were developed 36 

to address the computational challenge of large complex SRA problems. However, such 37 

metamodels were developed following the empirical risk minimization principle. The 38 

precisions of such approaches to approximate responses for SRA largely depend on the 39 

number of training data and usually suffer from the overfitting and curse of dimensionality. 40 

On the contrary, the support vector machine (SVM) based on the structural risk minimization 41 

principle and small sample learning [4,15] could estimate implicit function with better 42 

accuracy and generalization capability. The SVM initially developed for solving 43 

classification problems is further extended to solve regression problems. The SVM for 44 

regression known as support vector regression (SVR) has revealed superior performance due 45 

to its inherent capability to circumvent the overfitting problem in regression and improved 46 

response approximation ability [3,4]. Clarke et al. [16] investigated the performance of SVR 47 

in comparison to four commonly used metamodeling techniques namely, RSM, Kriging, 48 

RBFN, and MARS for approximating responses of complex engineering systems. The 49 

application of SVR and its improvement for structural response approximation are vast and 50 
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multidisciplinary. For example, recently, the SVR and RSM are coupled based on two 51 

calibrating strategies to predict the load capacity of shear walls [17]. 52 

The early applications of SVM for SRA [18–21] treated reliability analysis as a 53 

classification problem. The developments in the SVM-based classification approach for 54 

reliability analysis in the recent past are also noted [20,22–26]. Besides classification, the 55 

applications of SVR-based metamodeling in SRA are quite prominent [27–31]. It is expected 56 

that exploiting the real-valued output of regression is more informative than just a sign from 57 

the binary classification and, for this reason, SVR has been preferred over SVM-based 58 

classification [31]. However, the performances of SVM-based metamodels (both 59 

classification and regression) are largely governed by the proper selection of hyperparameters 60 

involved. Several algorithms based on different optimization techniques were developed to 61 

search the SVM hyperparameters e.g., gradient descent algorithm [32], coordinate descent 62 

method [33], grid search [34], five-fold cross-validation method [24], real-value genetic 63 

algorithm [35], particle swarm optimization [36], dynamic particle filter [37], cross-entropy 64 

method [31] etc. 65 

The relevance vector machine (RVM) is introduced to avoid the setting of 66 

hyperparameters by forming sparse Bayesian inference-based learning [38]. However, RVM 67 

involves the selection of a kernel function similar to SVM and parameter tuning is 68 

unavoidable if the selected kernel has a free parameter(s). RVM has also been successfully 69 

applied for SRA [39–41]. Besides RVM, several modifications of SVM were also attempted 70 

for improved SRA, e.g., the applications of least squares support vector machine (LS-SVM) 71 

for regression [42,43], particle filter-SVR [37], extended SVR [44], Bayesian SVR [45] and 72 

support vector density-based importance sampling method  [46]. 73 
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The applications of support vector algorithms in SRA are developing rapidly in the 74 

recent past. There are also some general review articles which briefly covered the 75 

applications of SVM-based metamodeling for approximating structural responses. For 76 

example, Dey et al. [47] reviewed metamodeling approaches for high-fidelity stochastic 77 

analysis of composite laminates.  In this regard, two excellent review articles [48,49] on 78 

machine learning-based methods for reliability analysis, which partly discussed the 79 

development of SVM for SRA applications along with other different machine learning-80 

based metamodels like ANN, Kriging etc., are notable [48,49]. However, the specific details 81 

of reliability estimation methods, sampling strategies for training and selection of 82 

hyperparameters of SVM models are not well covered in the existing reviews [48,49]. 83 

Nevertheless, there is no mention of the number of input parameters involved or the total 84 

number of training samples required in different studies. It is noteworthy that there is no 85 

review article exclusively on SVM for SRA applications. Thus, a dedicated review of the 86 

various SVM algorithms employed for SRA applications will enhance the state-of-the-art 87 

developments of support vector algorithms for SRA applications.  88 

The present article attempts to provide a synthesis and roadmap to the growing and 89 

diverse literature on support vector algorithms. Specifically, various SVM and SVR-based 90 

reliability analysis methods for SRA are critically assessed with regard to computation cost, 91 

dimensionality, order of failure probability, applications, advantages and disadvantages. This 92 

is expected to be useful to understand the nature of engineering problems various SVM 93 

approaches can tackle. Furthermore, different variants of SVM in reliability analysis and the 94 

factors that significantly affect the performance of SVM models, e.g., sampling techniques, 95 

hyperparameter tuning, selection of kernel and loss function are also discussed. The review 96 

study first searches articles with the keywords 'Structural reliability analysis', 'Support vector 97 
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machine', and 'Support vector regression'. Then, articles that develop or implement support 98 

vector algorithms for SRA are critically reviewed. The development of the SVM algorithm 99 

itself is not the subject of the present review; rather its application and related issues of 100 

implementing those algorithms for SRA are focused on. However, a brief theoretical 101 

background of SVM is presented in section 2 for an easy transition from the introduction to 102 

the subsequent sections. The applications of other advanced variants of SVM in SRA are 103 

presented in section 5 followed by various searching methods of prerequisite 104 

hyperparameters of SVM in section 6. The summary of observations and conclusions is made 105 

with the future direction of research in section 7.   106 

2. Support Vector Machine 107 

The foundation of SVM was developed by Vapnik [2] and is gaining acceptance due to its 108 

various attractive features and promising performance. The formulation embodies the 109 

structural risk minimization principle and is found to be superior to the traditional empirical 110 

risk minimization principle employed by conventional machine learning methods. The SVM 111 

was initially developed to solve classification problems. Subsequently, it has been extended 112 

to the domain of regression problems as well (presented in the next section).  113 

2.1 SVM for classification 114 

The SVM primarily describes classification with support vector methods [4]. In the 115 

classification problem, the goal is to separate two classes by a function that is induced from 116 

the available examples and the classifier works well on unseen examples, i.e., it generalises 117 

well. The concept is elucidated by a simple example in Figure 1 (a). Note that many possible 118 

linear classifiers can separate the data, but there is only one that maximises the margin. This 119 

linear classifier is known as the optimal separating hyperplane.  120 
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 121 
Figure 1. (a) Representation of separating hyperplanes for two-class data and (b) the optimal 122 

hyperplane to separate two-class data. 123 

Consider the problem of separating a set of training vectors belonging to two separate 124 

classes, ( ) ( ) ( ) 1 1 2 2 p p, y , , y , , , yx x x , nx R ,  1 1y , + − with a hyperplane, 0b+ =w.x .  125 

The set of vectors is said to be optimally separated by the hyperplane if it is separated without 126 

error and the distance of the closest vector to the hyperplane is maximal. The optimal 127 

hyperplane is given by maximizing the margin 2/||w|| (see Figure 1 (b)). Maximizing the 128 

margin is equivalent to minimizing ||w||/2, leading to the following quadratic programming 129 

(QP) problem, 130 

  
21

Min. s.t., 1
2

i iy b + w w x   (1) 131 

Apart from the classification in linear space, the SVM approach can be readily applied 132 

for nonlinear classification as well by utilizing kernel tricks to implicitly map the inputs into 133 

high-dimensional feature spaces. Figure 2 explains one such mapping where a two-134 

dimensional input space ( )1 2,x x  is mapped into a three-dimensional feature space ( )1 2 3, ,z z z  135 

by using the mapping, 2 2

1 1 2 1 2 3 2, 2 ,z x z x x z x= = = . It can be observed from Figure 2 that the 136 

two-class data are not linearly separable in the original input space but so is possible in a 137 

three-dimensional feature space.  This aspect will be further discussed later. 138 
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 139 
Figure 2. Mapping of input space into high-dimensional feature space. 140 

2.2 Support vector regression 141 

The SVM classification essentially searches the maximal margin to separate two classes by 142 

an optimal hyperplane. For this, a QP problem with inequality constraint is solved. However, 143 

the SVM method will be time-consuming and huge space demanding for reliability analysis 144 

involving a large size of training data as the size of the matrix of the QP problem is directly 145 

proportional to the number of training samples and random variables. The classification 146 

problem of SVM can be also applied to solve regression problems known as SVR [27].  147 

For a given set of training data, ( ) ( ) ( ) 1 1 2 2 p p, y , , y , , , yx x x , nx R , yR , if 148 

there is a set of functions that map a point in the space n
R onto the space R  i.e., 149 

 ( ) nF f , , f :=   →x w w R R   (2) 150 

where   is a set of parameters and w is an unknown parameter vector that needs to be 151 

determined. Then, the regression is a function f F  that corresponds to the lowest expected 152 

risk as follows, 153 

 ( ) ( )( ) ( )R f e y f , d P , y= − x w x
D

  (3) 154 
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In which, ( )( )e y f ,− x w is an error function and defined in SVR as [3],  155 

 ( )( ) ( ) max 0 0e y f , , y f , , − = − − x w x w   (4) 156 

The above is known as the ε-insensitive loss function. It neglects the error if the difference 157 

between the predicted value ( )f ,x w and the observed value y  is less than ε. Different types 158 

of error functions like Gaussian or quadratic, Laplacian or least modulus, and Huber’s robust 159 

loss functions are applied for SVR applications. Note that the advantage of a sparse 160 

decomposition will be lost unless ε ≠ 0 i.e. for using loss functions other than the ε-161 

insensitive one [3]. Following this, the ε-insensitive loss function is quite commonly used. 162 

2.2.1 SVR for linear regression  163 

The linear regression in SVR is expressed as,  164 

 ( )f =  +x w x b   (5) 165 

Here, w x  represents the dot product and w decides the orientation of a separating plane 166 

from the origin and b is bias. The SVR algorithm illustrated here considers an ε-insensitive 167 

loss function. To approximate all data points within iy  , the problem can be expressed as a 168 

convex optimization problem [3]. As follows,  169 

 
21

Min. s.t ,
2

i i

i i

y b
.

b y





− − 


+ − 

w.x
w

w.x
  (6) 170 

It is to be noted that ensuring the above perfectly may not be true for all samples. Thus some 171 

error allowance is anticipated [4] for generalization. To accomplish this, by introducing two 172 

slack variables, the optimization problem is modified as follows, 173 

 ( )
2

1

1
Min. s.t., 0

2

p
i i i

i i i i

i i i i

y b
C ,

b y

 
   

 

 


=

− −  +
+ + 

+ −  +


w.x
w

w.x
  (7) 174 
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In the above, C represents the regularization constant, 
i i,    are the two slack 175 

variables for the ith sample and p is the total number of samples. The corresponding primal 176 

Lagrange function can be defined as,  177 

 

( ) ( ) ( )

( ) ( )

2

prim

1 1

1 1

1

2

p p
* * *

i i i i i i

i i

p p

i i i i i i i i

i i

L ,b, , , , , , C y b

b y

          

      



= =

   

= =

= + + − + − + +

− + − − + − +

 

 

w w w.x

w.x

 (8) 178 

where,     and  are the Lagrange multipliers. Hence, the dual variables in Eq. (8) need 179 

to satisfy positivity constraints i.e., 0* *, , ,     . According to the Karush–Kuhn–Tucker 180 

(KKT) stationarity condition [50], the partial derivatives of primL with respect to the primal 181 

variables ( )*,b, , w vanish at the primal optimal point i.e.  182 

( ) ( ) ( )

( ) ( )prim prim prim

1 1

0, 0 and 0
p p

* *

i i i i i i i*
i i i

L L L
C

b
     



 

= =

  
= − − = = − = = − − =

  
 w x

w
  (9) 183 

where the set of vectors 
( ) ( ) ( )( )* * *

i i i, ,   represents both the sets ( )i i i, ,   and ( )* * *

i i i, ,   . 184 

Moreover, the KKT complementary slackness gives, 185 

( ) ( ) ( )(*) (*)0, 0,  and 0.i i i i i i i i i iy b b y C        + − + + = + − − + = − =w.x w.x   (10) 186 

Now using Eq. (9) and (10) along with the primal feasibility (constraints of Eq.(7)) and the 187 

dual feasibility (
* *, , , 0     ), the Lagrange dual problem can be obtained as, 188 

( ) ( )( ) ( ) ( )

( )  

dual

1 1 1 1

1

1
Max.

2

s.t., 0 0

p p p p
*

i i j j i j i i i i i

i j i i

p

i i i i

i

L , y

, , , C

          

   

   

= = = =

 

=

=− − − − + + −

− = 

  



x .x

  (11) 189 

The weight vector can be also derived from Eq. (9) as,  190 
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 ( )
1

,
p

i i i

i

  

=

= −w x   (12) 191 

and, substituting the above in Eq. (5), the function ( )f x  can be obtained as, 192 

 ( ) ( )
1

.
p

i i i

i

f b  

=

= −  +x x x   (13) 193 

2.2.2 SVR for nonlinear regression  194 

For solving real problems, a linear SVR may not be always appropriate. The linear SVR can 195 

be readily extended to nonlinear regression. The key idea is to map the input vector x , into a 196 

high dimensional feature space, z  through a function ( ) x as explained in Figure 3 and then 197 

to solve a linear regression in z  [27].  Now, the dot product, i jx x in Eq. (11) required to be 198 

replaced by, ( ) ( )i j x x ; the computation of which in high dimensional space is quite 199 

expensive.  By defining the kernel function ( )i jK ,x x  to implicitly map x  into z  [4], an 200 

expensive computational requirement can be avoided.  201 

 202 
Figure 3. Mapping of input space into a high-dimensional feature space (redrawn from [51]). 203 

  Once, the kernel function ( )i jK ,x x  is introduced in the SVR, the selection of a 204 

proper mapping function and computation of the dot product ( ) ( )i j x x  is no more 205 

required. The various Kernel functions used in SVR applications include homogeneous and 206 
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inhomogeneous polynomials, multi-layer perceptron or sigmoid, spline, Laplacian (or 207 

exponential) and Gaussian radial basis functions (RBF). The Fourier series, ANOVA-spline, 208 

B-splines, additive kernels and tensor product kernels can be also used in many applications 209 

[3]. The polynomial and RBF type functions are the most commonly used kernel function for 210 

response approximation. Though, the polynomial kernel functions have no free parameters; 211 

they may not capture highly nonlinear responses properly. Whereas, the free parameter of 212 

RBF kernels allows the SVR to efficiently approximate wide variations of nonlinear 213 

responses [23]. By proper selection of the parameter, the RBF kernel can be employed for 214 

samples of any distribution. There are two types of RBF Kernel i.e., the Laplacian or 215 

exponential and Gaussian. Due to the capability of smoothening the derived function, the 216 

Gaussian RBF (GRBF) is a favoured choice. Smola and Schölkopf [3] highlighted the 217 

justification of assuming a general smoothness if small information can be obtained from the 218 

given data. Thus, the use of GRBF kernel is widely adopted in various literatures on SVM 219 

applications.  220 

Now, by replacing the dot product with the kernel function, the optimization problem 221 

in Eq. (11) can be represented as,  222 

 

( )( ) ( ) ( ) ( )

( )  

1
Max.

2

s.t., 0 0,C

p p p p
* * * *

i i j j i j i i i i i

i=1 j=1 i=1 i=1

p
* *

i i i i

i=1

- - K , + + y -

- ,

        

   

− −

= 

  



x x

  (14) 223 

Finally, the SVR metamodel for approximation of nonlinear responses can be obtained as, 224 

 ( ) ( ) ( )
1

p
*

i i i

i

f K , b 
=

= − +x x x . (15) 225 

It is worth noting here that if either of i  or 
i
  is positive, the corresponding ix  will 226 

contribute to the computation of the regression function and these contributing input vectors 227 
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are the so-called support vectors. The above-mentioned SVR algorithm can readily be 228 

implemented in the MATLAB platform with the Gunn toolbox [52] available at 229 

http://www.isis.ecs.soton.ac.uk/resources/svminfo/.  230 

It is important to note that the loss function parameter,   and the regularization 231 

parameter, C are involved in the SVR algorithm.  The latter controls the complexity and 232 

degree to which a deviation larger than the former is tolerated. If C is assigned too large i.e. 233 

infinity, the parameter cannot introduce any additional capacity control [52]. Consequently, 234 

the most possible complex SVR model is formed allowing a very small value of tolerance.  235 

3. SVM Classification in Reliability Analysis 236 

In reliability analysis, samples can be divided into two classes based on whether the value of 237 

the considered limit state function (LSF) exceeds its threshold or not. Accordingly, any 238 

classification tool can be trained by a limited number of data samples to predict the class of 239 

unseen data. Thus, SVM being a classification tool is successfully employed for the same.  240 

3.1 SVM-based reliability analysis methods 241 

In SRA framework, the probability of failure (
fP ) can be estimated by a multi-dimensional 242 

integral as follows, 243 

 ( )
( ) 0

f

g

P f d


=   X

X

X X   (16) 244 

where ( )f
X

X  represents the joint probability density function (PDF) of X and g(X) is the 245 

LSF considered as unsafe if g(X) < 0 and safe otherwise. However, it is a formidable task to 246 

solve the above. Therefore, various analytical methods (e.g., the first-order reliability method 247 

(FORM), the second-order reliability method (SORM)) and simulation methods based on the 248 

Monte Carlo simulation (MCS) technique are employed. SVM was utilized to replace the 249 

implicit LSF evaluations for reliability analysis by various analytical and simulation methods. 250 

http://www.isis.ecs.soton.ac.uk/resources/svminfo/
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It is first implemented by Rocco and Moreno [18] for reliability evaluation. They performed 251 

reliability analysis by treating it as a problem of two-class classification. Based on the 252 

information from a few data samples, an SVM model is trained for classifying the samples of 253 

an MCS population (say, containing NMC samples) into safe and unsafe categories. Then, Pf is 254 

obtained as /f f MCP N N= , where Nf is the number of unsafe samples. Thus, the approach 255 

provides fast execution of the MCS technique for reliability evaluation of complex systems 256 

involving implicit LSF. Another classification approach for reliability analysis with 257 

stochastic FE modelling was developed by Hurtado and Alvarez [53]. A kernel method for 258 

classification usually applied in the fields of pattern recognition or image analysis is 259 

employed for this purpose. They developed a greedy sequential procedure to minimize the 260 

number of evaluations of the involved LSF. The algorithm is based on the key concept of 261 

support vectors. The approach ensures that the evaluation of LSF is only required at the 262 

points closest to the failure boundary. Li et al. [20] developed an SVM-based MCS method 263 

for SRA. The training of SVM provides the output which indicates only the location of 264 

samples in the failure or safe regions and the probability of failure was estimated accordingly 265 

by the MCS method. Jiang et al. [24] employed SVM by generating uniform support vectors 266 

for MCS-based reliability analysis. This method can also be applied to reliability analyses of 267 

large structures involving multiple failure modes. The relevant techniques of data 268 

normalization and optimization of kernel parameters of the SVM model are presented with 269 

the proposed method for efficient SRA. Pan and Dias [25] proposed a pool-based adaptive 270 

SVM approach of metamodel construction to estimate failure probability. The MCS was 271 

employed to compute the failure probability based on the obtained SVM classifier. Hurtado 272 

and Alvarez [54] developed a method of generating an optimal population for learning SVM 273 
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to estimate failure probability in MCS framework. Alibrandi et al. [23] proposed a novel 274 

sampling strategy for the training of SVM for MCS-based SRA.  275 

Instead of a two-class problem, Zhang et al. [55] developed a three-class classification 276 

problem utilizing SVM for SRA involving both random and interval variables. The 277 

separating hyperplanes of the three-class classification problem were described by projection 278 

outlines on the limit-state surface. Very limited regions are covered by projection outlines. 279 

Thereby, they concentrated only on improving the approximation of projection outlines for 280 

reducing computational demand. Thereby, a new reliability evaluation technique, where the 281 

projection outlines are adaptively and locally approximated, was developed based on the 282 

refined SVM model in the MCS framework.  283 

Besides the brute force MCS method, various advanced MCS techniques were also 284 

integrated with SVM for reliability estimation, particularly for small failure probability cases. 285 

Hurtado [21] proposed a method of SRA by combining importance sampling with an SVM 286 

classifier. The training samples from the regions of little probabilistic interest are avoided by 287 

utilizing the importance sampling technique. Equally, the importance sampling also exploits 288 

the support vector margin to exclude samples that are positioned outside of it. They 289 

numerically illustrated that the proposed importance sampling approach filtered with a 290 

support vector margin drastically reduces the number of samples required by the conventional 291 

importance sampling method. Ling and Lu [56] proposed a novel two-stage SVM based on 292 

an importance sampling technique to efficiently deal with SRA problems involving multiple 293 

failure regions and small failure probabilities. Bourinet et al. [22] developed a new approach 294 

based on SVM classification for estimating small failure probability by employing the subset 295 

simulation procedure proposed by Au and Beck [57]. An SVM classifier is built for the 296 
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boundary of each intermediate failure event of the subset simulation technique. The new 297 

method is referred to as 2SMART. 298 

Apart from the simulation-based reliability analysis method, SVM was also integrated 299 

with the Taylor series expansion-based analytical reliability analysis methods. Li et al. [20] 300 

developed an SVM-based FORM where the partial derivatives of the final expression of 301 

SVM (before sign determination) with regard to each variable were calculated. Alibrandi et 302 

al. [58] developed the secant hyperplane method by enhancing the FORM to treat SRA as a 303 

classification problem. They emphasized that a metamodel for efficient SRA should be 304 

directly based on the failure surface in the region of higher probability density instead of the 305 

LSF. In this method, a suitable secant hyperplane to the failure plane provides an 306 

approximation which is significantly improved with respect to a tangent hyperplane. 307 

Alibrandi et al. [59] noted that the limit-state approximated by the existing nonlinear SVM-308 

based methods does not have good computational efficiency in high dimensions. Thus, they 309 

proposed a novel linear SVM with implications of high-dimensional geometry for SRA. The 310 

starting model is built based on the selection of a set of sample points along the direction of 311 

the design point. Therefore, the limit state can be approximated with a hyperplane secant to 312 

the limit state based on the design point. This provides an alternative linear response surface 313 

based on SVM and the distance of this surface from the origin of the standard normal space is 314 

considered equivalent to the reliability index. It is noted that the performances are not 315 

affected by the number of random variables.  316 

3.2 DOE schemes for SVM-based reliability analysis 317 

Besides methods adopted for reliability analysis, the performance of SVM in SRA also 318 

depends on the selection of training samples. This section focuses on various sampling 319 

schemes explored for successful applications of SVM in SRA. Li et al. [20] generated 320 
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training samples for SVM from a uniform distribution with mean ± K × SD, where, K is a 321 

positive number and SD represents the standard deviation of each random variable. The data 322 

scaling is applied to improve the stability of the SVM training process and generalization 323 

ability. The implemented data scaling for the basic variables was expected to alleviate the 324 

effect of different physical properties and dimensions on the training of SVM. Hurtado [21] 325 

proposed a modification of the Markov chain Monte Carlo (MCMC) simulation method to 326 

obtain the most probable failure point (MPFP) that accepts only those states of the Markov 327 

chain having greater joint PDF value than that of the previous state and the LSF was 328 

evaluated accordingly. These samples on the failure side along with a few safe samples were 329 

used to fit the initial SVM model. A new training sample lying inside the margins of the 330 

current SVM is selected iteratively until the failure estimate stabilizes. Basudhar and 331 

Missoum [60] proposed an algorithm that selects a new training sample having the highest 332 

probability of being misclassified by the SVM decision function and constrained to a 333 

minimum distance from the existing training samples which is determined by a function of 334 

the hypervolume of the design space, the problem dimensionality, and the number of training 335 

samples. Basudhar and Missoum [61] proposed an improved adaptive sampling scheme for 336 

the construction of explicit boundaries. Basically, they presented substantial modifications to 337 

their previous adaptive scheme [60]. Basudhar and Missoum [61] further improved the choice 338 

of a new sample such that it removes the locking of SVM, a phenomenon that was not taken 339 

care of in the previous version of the algorithm. The locking of SVM in the previous scheme 340 

means the selection of new samples only on the SVM boundary and the modification of the 341 

SVM boundary due to such a sample may be negligible if the margin is thin. The approach 342 

can be applied to define decision boundaries for reliability analysis and optimization of 343 

complex systems. Pan and Dias [25] proposed an adaptive sampling based on a learning 344 
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strategy which gives more weight to the samples in the vicinity of the failure surface, far 345 

away from the existing training samples and located in the margin. A pool-based adaptive 346 

SVM approach was employed for metamodel construction with a minimum number of 347 

training samples, for which a learning function is proposed to select informative training 348 

samples sequentially. Zhang et al. [55] studied an adaptive local approximation method 349 

where the initial SVM model was sequentially updated by adding new training samples 350 

located around the projection outlines. The 2SMART method [22] first builds an initial DOE 351 

by selecting cluster centres of 200,000 standard Gaussian samples. Then the active learning 352 

method adds multiple new points at each iteration. The new points are the cluster centres of 353 

samples of the work population (obtained by the usual modified Metropolis algorithm) 354 

which, either, lie within the margins of SVM, or, change their classes in successive two 355 

iterations or are very close to the classifier for two consecutive iterations. Ling and Lu [56] 356 

employed the K-means clustering in the first stage of their two-stage method to select 357 

multiple new training points (the cluster centres of candidate samples) at each iteration for 358 

updating the SVM model with a fast convergence of the algorithm. In the second stage, a new 359 

learning function is proposed to select training points sequentially (one per iteration) for 360 

further refinements of the SVM model. The proposed learning function give importance on 361 

samples laying inside the SVM margin, located very close to failure boundary, having high 362 

chances of misclassification and sufficiently away from existing training points.  363 

Hurtado and Alvarez [54] proposed an optimization method for learning statistical 364 

classifiers like SVM for SRA. The approach produces an optimal population by solving an 365 

unconstrained optimization problem based on the LSF to maximize the entropy. They found 366 

that Sobol quasi-random numbers among several proposals assured a high entropy from the 367 

initial step. The optimal learning population for SVM-based SRA was achieved by a 368 
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sequential minimization program using particle swarm optimization. Jiang et al. [24] 369 

proposed an efficient method for generating uniform support vectors which are composed of 370 

safe and failure samples near the failure surface. Using the uniform design scheme, initial 371 

samples are generated first. Then, each initial sample was transformed into a uniform sample 372 

pair based on the failure load and safe load close to the limit load. The method can increase 373 

the proportion (compared to the whole DOE) and uniformity of support vectors in the input 374 

space. Consequently, it reduces the number of required training samples in response 375 

approximation. Alibrandi et al. [59] selected the starting linear SVM model based on a set of 376 

training points along the direction of the design point and, then, a new training point inside 377 

the margin of SVM was added iteratively until the convergence of estimated failure 378 

probability. Alibrandi et al. [23] further proposed a novel sampling strategy based on 379 

sampling directions, instead of sampling points, which was specifically designed for SVM-380 

based SRA. Suitable sampling cone(s) were introduced to determine the sampling directions. 381 

Though SVM is quite common in machine learning-based applications, it is too much 382 

sensitive to outliers in training samples due to the unboundedness of the convex loss [62]. 383 

Robust SVMs by replacing the convex loss with a non-convex bounded loss [62] and with 384 

generalized quantile loss [63] were developed to deal with noise and outliers. Data 385 

imbalance, a common issue for the classification problem, is addressed in three ways [64] i.e. 386 

by assigning a distinct cost, modifying traditional algorithms and by data pre-processing that 387 

includes undersampling and oversampling methods [64]. Besides two-class and three-class 388 

SVM, there is one-class SVM [65]. The applications of one-class SVM are notable for 389 

learning in presence of class imbalance [66]. However, one-class SVM is not widely applied 390 

to SRA and only a single literature [67]  is found on this topic. 391 
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The notable contributions to SVM classification-based reliability analysis are 392 

summarized in Table 1. Besides the employed reliability estimation methods and DOE 393 

schemes, the information on the numerical example problems studied are also mentioned in 394 

the table. Among the input dimensions of demonstrated numerical examples, the highest 395 

number is reported. The order (power of 10) of the lowest probability estimated is mentioned 396 

and the maximum number of training samples or the number of actual function evaluations 397 

(NE) required for SVM classification-based reliability analysis among all the illustrated cases 398 

of each study is also cited. The maximum input dimension of the problems and the estimated 399 

minimum probability of failure provided in table 1 will be useful to choose which kind of 400 

system or engineering is suitable for an approach. 401 

Table 1. SVM-based classification approaches for reliability analysis 402 

Reliability 

method 

DOE Ref. Illustrated 

Examples 

Input 

dim. 

(max.) 

Order 

of Pf 

(min.) 

NE 

(max.) 

Advantages and 

disadvantages 

FORM Samples 

generated from 

uniform 

distribution with 

mean ± K×SD 

[20] 

Quadratic limit 

state, fourth 

order limit 

state, three-span 

continuous 

beam. 

3 10-4 100 

Easy to implement, 

not enough accurate 

in many cases.  

Secant 

Hyperplane 

Method 

(enhanced 

version of 

FORM)  

Sample points 

along the 

direction of the 

design point + 

adaptive 

sampling inside 

the margin of 

SVM  

[59] 

Analytical limit 

state, stochastic 

dynamic 

analysis: 

oscillator with 

nonlinear 

damping  

49 10-5 500 

Suitable for 

reliability analysis in 

high dimensions, 

complex 

computational 

procedure.  

Sample points 

along the 

direction of the 

design point + 

adaptive 

sampling inside 

the margin of 

SVM 

[58] 

Dynamic 

analysis of a 

frame, 

stochastic 

dynamic 

analysis of an 

oscillator with 

nonlinear 

damping 

66 10-2 1580 

Suitable in very 

high-dimensional 

domains, provides 

bounds on the Pf, 

complex 

computational 

procedure. 

Brute-force 

MCS 

Samples 

generated from 
[20] 

Quadratic limit 

state, fourth 
3 10-4 100 

Easy to implement, 

not enough accurate 
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uniform 

distribution with 

mean ± K×SD 

order limit 

state, three-span 

continuous 

beam 

in many cases.  

Sobol sequence + 

adaptive 

sampling by the 

entropy 

maximization 

using a particle 

swarm 

optimization [54] 

A 2D function 

with multiple 

design points, A 

highly concave 

function, A 2D 

series system 

with multiple 

failure points, A 

3D series 

system, A 5D 

parallel system, 

A function with 

failure 

probability 

independent of 

dimensionality  

30 10-4 4000 

Generalized method 

for any statistical 

learning classifier, 

applicable for 

multiple LSFs and  

multiple design 

points, number of 

samples needed for 

training slowly 

increases with 

dimensionality, 

requiring 500-1000 

evaluations to  

obtain optimum 

training samples. 

Uniform design + 

generation of 

sample pairs  

[24] 

Multiple failure 

modes (integral 

capacity of a 

truss string 

structure), 

single failure 

mode 

(displacement 

of a frame 

structure, and 

displacement of 

a truss) 

15 10-3 40 

Applied to both 

single and multiple 

enveloped failure 

modes,  generation 

method of sample 

pair increases 

accuracy, needs a 

small number of FE 

analysis to achieve 

an accurate SRA, 

number of samples 

and number of levels 

of each variable for 

generation of 

uniform support 

vector is experience-

based. 

Sampling 

strategy based on 

sampling 

directions by 

introducing 

sampling cones  
[23] 

Elastic analysis, 

limit state 

where SORM is 

not accurate 

enough, limit 

state with 

multiple design 

points, buckling 

analysis of 

systems 

5 10-4 87 

Require reduced 

number of samples, 

effectiveness to 

high-dimensional 

problems is not 

verified. 

LH + adaptive 

sampling by 
learning strategy 

by giving 

[25] 

A series system 

with multiple 

design points, 

dynamic 

response of a 

250 10-3 2363 

Easily 

implementable,  

accurate with 

moderate number of 

training data,  
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importance to the 

points near the 

limit-state and 

away from 

existing training 

samples 

nonlinear 

oscillator, high-

dimensional 

example, tunnel 

face stability 

converges before the 

stopping criterion, 

not suitable for very 

small Pf. 

Importance 

Sampling 

Initial samples 

nearby the MPFP 

were obtained by 

MCMC + 

adaptive 

sampling inside 

the margin of 

SVM 

[21] 

A 2D case, a 

4D case and a 

7D series 

(plastic frame) 

7 10-4 37 

Very less training 

data required, 

number of solver 

calls is independent 

of Pf, applicable for 

small Pf, experience 

needed to select 

stating point of 

Markov chain. 

Adaptive multi-

point enrichment 

by the K-mean 

clustering in the 

first stage + one 

point selected by 

a learning 

function 

augmented 

sequentially in 

the second stage 

[56] 

2D example 

(single, two and 

four failure 

branches), A 

nonlinear 

undamped 

single degree of 

freedom (DOF) 

system, A latch 

lock mechanism 

of hatch 

6 10-7 103 

Can estimate rare 

failure event, reduce 

the number of 

function evaluations,  

suitable size of 

initial DOE depends 

on problem 

complexity (prior 

knowledge about 

order of Pf  and 

nonlinearity of LSF 

are needed). 

Subset 

Simulation 

Initial samples 

from a uniform 

distribution + 

adaptive multi-

point sampling 

by selecting 

informative 

cluster centres of 

samples of the 

work population 

[22] 

2D LSF with 

multiple design 

points, Two 

DOF. 

primary/second

ary damped 

oscillator, High 

dimensional 

example 

250 10-7 10707 

Can estimate rare 

failure event, can 

handle problems 

involving multiple 

design points 

suitable for 

moderately high 

dimensional spaces 

(up to a few hundred 

random variables) 

but not for very large 

ones. 

 403 

4. SVR in Reliability Analysis 404 

The SVR is extensively employed for SRA with various reliability estimation methods. 405 

Various schemes for selecting training data to construct an SVR-based metamodel were also 406 

proposed. This section provides an overview of the contributions to SVR-based metamodel in 407 

SRA applications. 408 
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4.1 SVR-based reliability analysis methods   409 

Different SVR-based metamodeling approaches were developed to obtain an approximate 410 

LSF which can be used to obtain partial derivatives necessary for Taylor series expansion-411 

based reliability analysis methods. Richard et al. [29] developed an adaptive SVR-based 412 

metamodeling approach for reliability analysis based on Taylor series expansion. The 413 

gradient and Hessian matrix required for FORM and SORM were extracted from the SVR-414 

based metamodel. Li et al. [68] proposed an SVR-based metamodel for reliability analysis of 415 

tunnel structures by FORM.  416 

In simulation-based reliability analysis methods, an indication function is only 417 

required to know whether a simulation sample is unsafe or not. Once the LSF is 418 

approximated by an SVR model, the value of the indication function can be obtained based 419 

on the approximate value of the LSF at any sample point. Then, Pf is obtained as, 420 

 ( )
1

1 MCN

f i

iMC

P I g
N =

=    X   (17) 421 

where, the indication function, I[g(Xi)], is equal to 1, if, LSF at Xi is unsafe and 0, otherwise. 422 

Most of the studies on SVR-based reliability analysis employed the MCS method. SVR-423 

based MCS method is applied in SRA [28,30,51,69], structural system reliability analysis of a 424 

cable-stayed bridge [70], and seismic reliability analysis of structures [71].  425 

SVR is also integrated with various advanced MCS techniques for reliability analysis 426 

problems involving low failure probabilities. Bourinet [31] proposed an SVR-based 427 

reliability analysis method hinged on a subset simulation technique to assess low failure 428 

probabilities. The method constructed a sequence of SVR models to reach the failure domain 429 

gradually. A highly curved failure surface at a single MPFP, a smooth high-dimensional LSF 430 

and a parallel system were taken to verify the efficiency of the method. Roy and Chakraborty 431 
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[72] developed a three-stage adaptive SVR-based approach which can be implemented with 432 

both MCS and importance sampling techniques for SRA. The importance sampling was 433 

centred at MPFP which was obtained by the FORM. The necessary gradients were evaluated 434 

using the SVR model.  435 

4.2 DOE schemes for SVR-based reliability analysis 436 

Various DOE schemes have been developed for efficient reliability estimation by SVR-based 437 

metamodeling approach. Li et al. [73] adopted the median Latin hypercube (LH) sampling to 438 

obtain the training samples for the multi-input multi-output SVR model which was used for 439 

SRA of problems involving multiple LSFs. Further, Li et al. [68] proposed a hybrid approach 440 

combining uniform design and SVR-based metamodel for reliability analysis of tunnel 441 

structures. The approach integrates the merits of both the uniform design and the SVR model 442 

for response approximation. Noting the lowest discrepancy of uniform design from the 443 

theoretical uniform distribution, Roy et al. [51]  also employed uniform design to construct 444 

DOE for SVR-based MCS method of SRA.  445 

Besides single-shot DOE schemes, various adaptive DOE schemes for the training of 446 

the SVR model have also been proposed by different researchers. The primary aim of such 447 

adaptive sampling schemes is to improve the accuracy of an  SVR model near the limit-state 448 

instead of the whole input domain. Richard et al. [29] developed an adaptive DOE scheme for 449 

the training of SVR-based metamodel and applied it to SVR-based FORM and SORM for 450 

reliability analysis. The key feature of the adaptive DOE scheme is that it can rotate 451 

according to the direction of the gradient of the SVR approximation to capture the 452 

nonlinearity of LSF with reduced computational cost. However, the structure of experimental 453 

designs (being based on the classical DOE) depends on the input dimension. Thereby, the 454 

computational cost increases with the number of random input variables which was reported 455 



24 

 

in their study. Dai et al. [28] proposed a new local approximation method based on SVR and 456 

adaptive Markov chain MCS for SRA. The adaptive Markov chain simulation was combined 457 

with the importance sampling method to generate samples near the most likely failure region. 458 

The SVR model was trained by the generated samples. The SVR approximation was 459 

iteratively updated with additional training samples generated by adaptive Markov chain 460 

simulation. The iteration process continues until convergence is achieved on the estimated 461 

probability of failure. The stopping criterion was judged by a relative deviation of the two 462 

successive values of the probability of failure. Bourinet [31] proposed an adaptive approach 463 

based on an SVR-based metamodel for assessing low failure probabilities. The method 464 

hinges on a subset simulation technique and iterative construction of a sequence of adaptive 465 

SVR models. The adaptive training samples were progressively added for moderate accuracy 466 

in the safe domain and filled the failure domain as much as possible to improve the accuracy 467 

of SVR models in the failure domain. In this regard, Bourinet [31] claimed that distance-468 

based and other space-filling criteria frequently used in literature could not be efficient in 469 

higher dimension problems. Therefore, additional training points were generated from the 470 

existing SVR models with the modified Metropolis-Hastings MCMC algorithm [57]. To 471 

reduce the training cost, some training points were excluded at each iteration based on the 472 

evaluated LSF value. 473 

Roy and Chakraborty  [69] proposed an adaptive sequential sampling approach of 474 

SVR-based metamodel construction for SRA in the MCS framework. In this approach, an 475 

initial DOE was built over the entire input space by a space-filling design. Adaptive samples 476 

were selected from a subset of MCS points consisting of half of the failure and safe points 477 

closer to the limit-state. SVR-based metamodel was found superior in the comparative study 478 

with the moving least-square method, Kriging and RVM approaches. However, the algorithm 479 
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suffers from the scarcity of candidate samples for adaptive sampling in case of low failure 480 

probability. Roy and Chakraborty [72] further developed an adaptive SVR-based reliability 481 

analysis method modifying the previous approach. The reduced space for adaptive sampling 482 

was constructed by simulation samples having a magnitude of the approximated LSF less 483 

than the generalized root mean squared error of the cross-validation method employed for 484 

selecting perquisite hyperparameters. The issue of scarcity of candidate samples was 485 

circumvented by generating samples near the limit state based on the importance sampling 486 

technique.  487 

Like SVM, SVR also faces difficulty to deal with outliers or noisy data [74]. The 488 

negative effects of outliers on SVR can be reduced by two distinct strategies [75]. In the first 489 

strategy, a pre-processing step to remove outliers is applied before employing SVR. 490 

Incorporating a robust loss function in the SVR formulation is another strategy. The second 491 

direction is noted to be used frequently e.g., a novel LS-SVR in combination with robust 3σ 492 

and adaptive weight [76], hybrid robust SVM for regression [77] were attempted to deal with 493 

outliers. The robust SVM with generalized quantile loss [63],  by converting the constraints 494 

of the standard SVM to fuzzy inequalities [75] can also deal with noise and outliers in SVR 495 

applications.  496 

4.3 Selection of kernel and loss functions for SVR model 497 

The selection of kernel functions and loss functions to construct an SVR model is an 498 

important issue for the success of reliability analysis. Noting the frequent use of RBF in the 499 

context of SVR due to its capability of approximating the resulting surface for a wide range 500 

of strongly nonlinear implicit functions, Richard et al. [29] used RBF as the kernel function. 501 

It is reported that the polynomial kernel function requires more iteration to reach the same 502 

level of accuracy as obtained using RBF. Dai et al. [28] selected a fourth-order polynomial as 503 
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the kernel function for SVR approximation. However, it requires 500 to 1000 training 504 

samples. Dai et al. [30] further presented a new multiwavelet linear programming SVR 505 

method for reliability analysis. An innovative and efficient SVR model for response 506 

approximation was developed by addressing the issue of model sparsity of classical SVR 507 

from two different perspectives. Firstly, linear programming SVR was employed to take the 508 

advantage of model sparsity, the flexibility of using more general kernel functions, and the 509 

computational efficiency of linear programming SVR over classical SVR. Secondly, by 510 

constructing the autocorrelation function of multiwavelets, a novel multiwavelet kernel was 511 

employed in the context of linear programming SVR for structural response approximation to 512 

yield a more compact and sparse representation by leveraging the flexibility of linear 513 

programming SVR in choosing the kernels. In most of the studies [31,51,69,72], the ε-514 

insensitive loss function and GRBF kernel were chosen.  515 

The notable contributions to SVR-based reliability analysis are summarized in Table 516 

2 with similar information as provided in Table 1 for SVM classification. 517 

Table 2. Notable contributions to reliability analysis based on SVR metamodel 518 

Reliability 

method 

DOE Ref. Illustrated 

Examples 

Input 

dim. 

(max.) 

Order 

of Pf 

(min.) 

NE 

(max.) 

Advantages and 

disadvantages 

FORM Star-shaped DOE + 

adaptive sampling 

by rotating 

according to the 

direction of the 

gradient of the 

SVR 

approximation 

[29] 

A 4D linear 

explicit LSF, a 

7D explicit 

series, a 21D 

nonlinear 

implicit LSF  

7 10-4 220 

Avoid numerical 

instabilities related 

to the numerical 

estimations of the 

curvatures directly 

from the LSF, 

DOE size depends 

on the dimension 

Uniform design 

[68] 

Tunnel stability, 

implicit LSF for 

real-life tunnel 

via a numerical 

method 
7 10-2 28 

Require a small 

number of 

sampling points, 

the heuristic 

selection process 

of model 

parameters, 

validated only for 
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Pf higher than 10-2  

Brute-force 

MCS 

Adaptive sampling 

by adaptive 

Markov chain 

simulation 

[28] 

A series system 

with multiple 

design points, 

10-bar planar 

truss, Two-bay 

six-story frame, 

two DOF 

Primary/second

ary damped 

oscillator 

10 10−5 1000 

Good local 

approximation 

capability near the 

failure plane, takes 

500-1000 training 

samples even for 

less complex 

problems 

Uniform design 

[51] 

10D test 

problem, Space-

bar truss 
10 10-2 30 

Easy to implement,  

Not enough 

accurate especially 

for low Pf cases 

LH/Uniform 

design + adaptive 

sampling based on 

a maximin 

criterion and the 

number of failure 

samples 

[69] 

Ten-bar truss, 

space-bar truss, 

29D test 

problem, heat 

conduction 

(random fields), 

six-storey 

building 

75 10-4 124 

Enough accurate 

with limited data, 

Suffers from the 

scarcity of samples 

in case of low Pf 

LH sampling 

[30] 

Robustness 

against noises 

in LSF, 10-bar 

planar truss, a 

four-storey 

building excited 

by a single 

period 

sinusoidal pulse 

of ground 

motion 

10 10-2 250 

Robust to noisy 

LSF, C and ε were 

chosen constant, 

poor accuracy even 

with a higher 

number of training 

data 

Importance 

Sampling 

Uniform design + 

adaptive sampling 

based on a 

maximin criterion 

and a cross-

validation error 

norm 

[72] 

Ten-bar truss, 

29D test 

problem, space-

bar truss 75 10-4 124 

Enough accurate 

with limited data, 

can estimate low 

Pf, limited to single 

LSF-based SRA 

problems 

Subset 

Simulation 

Adaptive DOE by 

modified 

Metropolis-

Hastings MCMC 

algorithm [57] 
[31] 

Two DOF 

primary/second

ary damped 

oscillator, 

smooth equally 

curved high 

dimensional 

example,  

5D parallel 

system 

250 10-4 1264 

Able to estimate 

low Pf, require a 

few hundred 

evaluations of LSF 

for high accuracy, 

not suitable for 

high dimensional 

problems involving 

random fields or 

random processes. 
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5. Variants of SVM in Reliability Analysis 519 

Apart from SVM and SVR, other variants e.g., RVM, LS-SVM etc. are also applied widely in 520 

the field of reliability analysis. These are reviewed separately in this section. Studies on RVM 521 

and LS-SVM are presented first in the following two sub-sections. Then, the studies related 522 

to the application of other variants are discussed.  523 

5.1 RVM 524 

RVM is the particular specialization of the general Bayesian framework to obtain sparse 525 

solutions for regression and classification tasks utilizing models with linear parameters 526 

introduced by Tipping [38]. In RVM, the same data-dependent kernel basis as the functional 527 

form of SVM is used. Thus, it provides probabilistic predictions and greater sparsity than that 528 

of SVM. Unlike the SVM, RVM does not involve the free regularization parameter C and the 529 

loss function parameter. The kernel basis used for RVM may or may not satisfy Mercer's 530 

condition which is the essential criterion for the selection of kernel function in SVM. RVM 531 

has been successfully applied to solve different reliability analysis problems. RVM is 532 

employed to predict the implicit LSF for FORM-based slope reliability analysis [78,79]. An 533 

adaptive reliability method combining RVM and importance sampling was developed by 534 

Changcong et al. [40]. An active learning algorithm-based adaptive RVM within a 535 

probabilistic Bayesian learning framework to perform reliability analysis was developed by 536 

Li et al. [80]. Adaptive RVM was also combined with Markov-chain-based importance 537 

sampling for reliability analysis [81]. Ghosh and Chakraborty [41] proposed an RVM-based 538 

Bayesian framework for seismic fragility analysis of structures where demand prediction 539 

models were efficiently constructed utilizing limited numbers of training data.  540 
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5.2 LS-SVM 541 

Guo and Bai [42] noted that SVR is time-consuming and huge space demanding for 542 

reliability analysis involving a large number of simulation samples. They introduced the LS-543 

SVM for regression to overcome those shortcomings. Seismic reliability assessment of 544 

reinforce-concrete structures including soil-structure interaction was investigated using 545 

wavelet weighted LS-SVM which was designed by combining the weighted LS-SVM and a 546 

wavelet kernel function [43]. An LS-SVM-based response surface was combined with FORM 547 

for reliability analyses of tunnels [82]. An effective sampling strategy for adaptive reliability 548 

analysis based on LS-SVM was developed to improve the efficiency of reliability analysis in 549 

practical rock engineering problems [26]. LS-SVM was also applied to slope reliability 550 

analysis [83]. Reliability analysis of the settlement of a pile group in clay was also performed 551 

using LS-SVM [84]. 552 

5.3 Other miscellaneous variants of SVM 553 

Apart from the various SVM approaches discussed in the previous sub-sections, there are 554 

some more variants also. For example, Song et al. [85] proposed an adaptive virtual SVM-555 

based method for reliability analyses of high-dimensional problems. In this method, virtual 556 

samples were obtained by the universal Kriging method to improve the accuracy of SVM 557 

classification for highly nonlinear problems. Cheng and Lu [45] developed Bayesian SVR 558 

models which can provide a point-wise probabilistic prediction for active learning 559 

algorithms-based SRA. A support vector density-based importance sampling method was 560 

developed for reliability assessment [46]. Kriging regression and SVM classification were 561 

combined for damage tolerance reliability analysis [86]. The extended support vector 562 

regression (X-SVR) was employed for dynamic reliability analysis [44].  563 
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6. SVM Hyperparameter Tuning 564 

The construction of an SVM model involves different prerequisite hyperparameters. 565 

Generally, a suitable kernel function is selected first for an SVM model. Then, the 566 

regularization parameter (C), the tube size (ε) for the ε-insensitive loss function and the free 567 

parameter(s) of the selected kernel function are tuned to construct an efficient SVM model. 568 

The success of response approximation by SVM largely depends on the proper selection of 569 

these parameters.  This section briefly reviews the related developments.  570 

Chapelle [32] proposed a methodology to automatically tune multiple parameters (i.e. 571 

the regularization parameter, C and the radius of the Gaussian kernel, σ) by gradient descent 572 

algorithm to construct an SVM model. This is based on the possibility of computing the 573 

gradient of various bounds on the generalization error with respect to these parameters. Ito 574 

and Nakano [33] proposed a method to optimize the hyperparameters of an SVR model. The 575 

method is based on the minimization of leave-one-out cross-validation error (mean squared) 576 

by using a coordinate descent method. Clarke et al. [16] manually optimized the free kernel 577 

parameter (i.e. the radius of Gaussian kernel, σ) for a given training data to build an efficient 578 

SVR model. Chen [35] proposes a new method termed genetic algorithms-SVR, which 579 

optimizes all the SVR parameters (C, ε and bandwidth of the GRBF kernel function, σ2) 580 

simultaneously. The real-valued genetic algorithms were employed to determine the optimal 581 

parameters of the SVR model to minimize the generalized mean absolute percentage error of 582 

the five-fold cross-validation method on the training data. Hsu et al. [34] recommend a 583 

logarithmic grid search on two parameters i.e. C and the GRBF kernel parameter γ for 584 

selecting their optimum values to obtain an SVM classification model. The parameter γ is 585 

directly related to the bandwidth of the GRBF kernel function, σ2 as, γ = 1/(2σ2). The pair of 586 

(C, γ) with the best cross-validation accuracy, i.e., the percentage of data that are correctly 587 
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classified were selected. The 2SMART method [22] employed a three-fold cross-validation 588 

technique for  selection of an appropriate kernel function parameter, σ at the initial step and 589 

this selected value of σ was used for all further steps of the algorithm. 590 

Demyanov et al. [87] proposed two new approaches using the Akaike Information 591 

Criterion (AIC) and the Bayesian Information Criterion (BIC) to estimate the best values of  592 

SVM model parameters. This study employed the SVM method for classification problems 593 

and selected the GRBF as the kernel Function. The first approach is margin-based which 594 

operates using distances of points from the hyperplane. The second one is density-based and 595 

it analyses the disposition of support vectors. Therefore, four different algorithms: Margin-596 

AIC, Margin- BIC, Density-AIC and Density-BIC were presented in the study. Among these, 597 

the Density-AIC is observed to outperform the others. Lins et al. [36] employed particle 598 

swarm optimization to choose the most suitable values of SVM model parameters aiming at 599 

minimizing prediction error. The developed SVM model was applied to deal with time series 600 

data-based reliability prediction problems. Zhao et al. [37] proposed a novel parameter 601 

selection method that combines the SVR and particle filter. The initial values of the 602 

parameters were set first, and then a particle filter was used to update these values as new 603 

reliability data are available. The method can adapt the hyperparameters according to the new 604 

training data. The dynamic particle filter-SVR method was applied for the reliability 605 

prediction of time-series data. Zhao et al. [88] proposed a method of SVR parameters 606 

selection by combining an analytic selection method and a genetic algorithm. Prior selection 607 

by the analytic selection method enables the use of available prior knowledge for guiding the 608 

optimization process by genetic algorithm. This avoids divergence and local optima and 609 

accelerates convergence. The constructed SVR model was applied for system reliability 610 

prediction problems based on available time series data. Jiang et al. [24] chose a quadratic 611 
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polynomial as the kernel function for SVM classification. The possible ranges of C and 612 

polynomial kernel parameter γ are set as [2-20, 230] for obtaining optimum values of C and γ 613 

by using the five-fold cross-validation method.  614 

Bourinet [31] used the GRBF kernel function for the construction of an SVR model 615 

and to find the optimal values of SVR hyperparameters, a stochastic search algorithm known 616 

as the cross-entropy method introduced by Rubinstein [89] was applied. The hyperparameter 617 

space was explored in a logarithmic (base-10) scale within carefully preselected ranges. 618 

Noting the huge computation cost to perform leave-one-out cross-validation even for not so 619 

large dataset, true leave-one-out cross-validation was avoided by obtaining bounds on 620 

approximations of the leave-one-out cross-validation error. For this purpose, the span bound 621 

approximations derived for ε-insensitive SVR by Chang and Lin [90] was applied. The 622 

optimal values of SVR model parameters (C, ε, γ) were obtained by minimizing an estimate 623 

of the leave-one-out error.  624 

Roy et al. [51] first searched the optimum GRBF kernel parameter σ at each node of a 625 

logarithm (base-10) grid of C-ε by minimizing the leave-one-out cross-validation error. Then, 626 

the final choice of the three parameters was obtained by selecting the grid point 627 

corresponding to the lowest error norm. Noting the computational demand of the leave-one-628 

out cross-validation method, they used the same hyperparameter searching algorithm by 629 

replacing the leave-one-out cross-validation method with a two-fold [69] and a holdout [72] 630 

cross-validation method in the latter steps of iteration for adaptive SVR-based reliability 631 

analysis. The notable contributions to hyperparameter tuning for constructing SVM models 632 

are summarized in Table 3.   633 
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Table 3. Various methods of hyperparameter tuning for SVM 634 

Kernel 

function 

Free 

parameters 

searched  

Method of optimization Ref. 

Polynomial C, γ grid search in the range [2-20, 230] by five-fold cross-

validation method 
[24] 

Gaussian 

RBF 

σ manual optimization for ε = 10−4  [16] 

three-fold cross-validation technique [22] 

C, γ grid search on C and γ using cross-validation [34] 

C, σ minimizing estimates of the generalization error of SVMs 

using a gradient descent algorithm 
[32] 

C, σ2, ε using real-valued genetic algorithms [35] 

C, γ, ε combination of an analytic selection method of prior 

selection followed by a genetic algorithm for intelligent 

optimization  
[88] 

logarithmic (base-10) grid search by minimizing an 

estimation of the leave-one-out error with the cross-entropy 

method 

[31] 

C, σ, ε minimizing the leave-one-out cross-validation (mean 

squared) error with a coordinate descent method 
[33] 

particle swarm optimization [36] 

dynamic particle filter [37] 

minimizing the leave-one-out cross-validation (root mean 

squared) error for searching optimum σ in different nodes 

of the logarithm (base-10) grid of C-ε  

[51] 

Note: γ represents two separate parameters for Gaussian RBF and polynomial kernel functions. 635 

7. Summary and Conclusions  636 

SVM has emerged as a powerful metamodel for its foundation based on the structural risk 637 

minimization principle. The detailed reviews of the literature presented clearly reveal that the 638 

SVM-based SRA is getting wide attention for its capability to excellently deal the high 639 

dimensional problems with fewer samples. Based on the detailed review of the literature 640 

presented here, critical observations are summarized in this section. 641 

The SVM for SRA was initiated by Rocco and Moreno [18]. Subsequently, the SVM 642 

classification approach was followed by many researchers. Nevertheless, SVM classification 643 

does not provide the approximate value of an LSF. Rather, it predicts the sign of the LSF and 644 

the distance from the approximate failure plane. On the contrary, SVR can approximate the 645 
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value of the LSF. The use of SVM in SRA is not only limited to classification and regression 646 

approaches but also, includes several other variants like RVM, LS-SVM, Bayesian SVR, X-647 

SVR, virtual SVM etc.  648 

The SVR model generally involves free parameters i.e. a loss function parameter, ε 649 

and a regularization parameter, C. In addition, adopting kernel function to deal with nonlinear 650 

regression problems involved additional parameter(s). The accomplishment of an SVM-based 651 

model significantly hinges on the appropriate selection of such parameters. Generally, the 652 

cross-validation approach is applied with an appropriate optimization procedure to obtain the 653 

SVR model parameters without further function evaluations.  654 

In both the classification and regression-based SVM models, most of the studies 655 

preferred the GRBF as the kernel function due to its capability of approximating the resulting 656 

surface for a wide range of strongly nonlinear implicit functions. Uses of a polynomial kernel 657 

are also noted in SVM applications as it is simple and free from kernel parameter tuning. 658 

However, it was reported that if a polynomial kernel function is used, more iteration is 659 

required to reach the same level of accuracy as obtained in the case of GRBF.  660 

Apart from the hyperparameters, the DOE scheme has a significant impact on the 661 

performance of the SVM model. Several adaptive sampling schemes have been developed 662 

and applied successfully for efficient SRA. There are DOE schemes which are specifically 663 

designed for different SVM-based metamodels. Active learning-based algorithms are also 664 

combined with the advanced SVM variants which can provide predictive variance.  665 

The significant developments in the application of SVM toward reliability analysis 666 

are clearly observed in the existing literature. Yet, there are scopes of further developments in 667 

this field. The existing hyperparameter searching algorithms preselect a kernel function and a 668 

loss function. A new search algorithm may be explored that will include kernel and loss 669 
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function selections. The ensemble of metamodels is a new trend in reliability analysis. Along 670 

with PCE, Kriging and other metamodels, SVM has already been used as a component 671 

metamodel for an ensemble. New ensembles, where SVM with various hyperparameter 672 

settings or kernel or loss function or its advanced variants will only be used, may be explored 673 

for SRA. Relevant adaptive sampling schemes for such ensembles are also an important area 674 

of research.  675 
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