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Abstract: The dramatic progress in internet of vehicles (IoVs) inspires further development in electrified 

transportation, and abundant information exchanged in IoVs can be infused into vehicles to promote the controlling 

performance of electric vehicles (EVs) via vehicle-environment cooperation. In this paper, a cooperative power 

management strategy (PMS) is advanced for the range extended electric vehicle (REEV). To this end, the studied 

REEV is accurately modelled first, laying an efficient platform for strategy design. Based on the advanced 

framework of IoVs, the cooperative PMS is meticulously developed via incorporating the self-learning explicit 

equivalent minimization consumption strategy (SL-eECMS) and adaptive neuro-fuzzy inference system (ANFIS) 

based online charging management within on-board power sources in the REEV. The brand-new SL-eECMS 

achieves preferable balance between the optimal effect and instant implementation capability through integrating 

the improved quantum particle swarm optimization (iQPSO), and ANFIS grasps future driving status 

macroscopically, offering the predicted charging request for online charge management. The substantial 

simulations and hardware-in-the-loop (HIL) test manifest that the proposed cooperative PSMS can coherently and 

efficiently manage power flow within power sources in the REEV, highlighting its anticipated preferable 

performance. 

 

Key words: Power management strategy (PMS), self-learning explicit equivalent minimization consumption 

strategy (SL-eECMS), adaptive neuro-fuzzy inference system (ANFIS), improved quantum particle swarm 

optimization (iQPSO), range extended electric vehicle (REEV). 



 

 

NOMENCLATURE 

Abbreviations 
EV electric vehicles IoVs internet of vehicles 
PMS power management strategy REEV range extended electric vehicle 

ANFIS adaptive neuro-fuzzy inference 
system SL-eECMS self-learning explicit equivalent 

minimization consumption strategy 
PSO particle swarm optimization QPSO quantum particle swarm optimization 

iQPSO improved quantum particle swarm 
optimization EMS energy management strategies 

DP dynamic programming PMP Pontryagin minimum principle 

ECMS equivalent consumption 
minimization strategy MPC model predictive control 

EF equivalent factor MEC Mobile edge computation 
MECU mobile edge computation units VCU vehicle control units 
V2V vehicle to vehicle V2I vehicle to infrastructure 
ZE zero emission PE pure electric 
ND normal driving HD hybrid driving 
ED-LUT energy distribution look-up table APU auxiliary power unit 

CS charging sustaining PMSM permanent magnet synchronous 
motors 

SOC state of charge I2I infrastructure to infrastructure 
mmWave millimeter-wave BS base stations 
RF radio frequency CM-MECU charging management MECU 
ZE-MECU ZE MECU N-MECU normal MECU 
BSFC brake-special fuel consumption VP Velocity profile 

Symbols 

  required tractive power   acceleration coefficient 

  gravity   global best position 

  gradient   fitness function 
  rolling resistance factor   feasible space 
  aerodynamic drag factor   local attractor 

  frontal area   characteristic length of potential well 

  vehicle speed   sequence of random numbers 
  acceleration   contraction-expansion coefficient 
  correction coefficient of rotating mass   mean best position 
  transmission efficiency   predefined ratio 
  vehicle mass   Gaussian distribution 
  electric motor torque   optimized parameter 
  final drive ratio   minimum battery power 

  wheel radius  maximum battery power 
  engine net efficiency   nonlinear parameter 
  rotating speed of engine  nonlinear parameter 
  fuel lower heating value  nonlinear parameter 
  fuel consumption rate  nonlinear parameter 
  angular speed of electric motor   linear parameter 
  mechanical power of electric motor  linear parameter 
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  efficiency of electric motor in tractive 
mode 

  linear parameter 

  efficiency of electric motor in 
generator mode 

 linear parameter 

  battery state of charge   linear parameter 
  internal resistance of battery  linear parameter 
  battery power   mentioned input 
  battery capacity in Ah   mentioned input 

  distributed optimal engine power   membership function 

  total instant equivalent fuel 
consumption 

  output of a layer 

  equivalent fuel consumption rate that 
converted from electricity usage 

  premise parameter 

  control step   premise parameter 
  engine power   premise parameter 

  EF    consequent parameter 

 optimal control variable   consequent parameter 

  probability distribution   consequent parameter 
  probability distribution   traffic status 

  metric space   vehicle status 
  order’s Wasserstein distance   average velocity 

  distance function   acceleration 

  sample   vehicle stop time 
  sample   predicted average velocity 
  set   acceleration of the target vehicle 

  probability measures   predicted stop time of the target vehicle 

  Lipschitz semi-norm   predicted initial time 
  position   predicted terminal time 
  velocity   energy in ZE zone 

  particle   initial battery SOC in ZE zone 

  iteration   instant battery SOC in Approach zone 

  dimension space   required energy for left driving in 
Approach zone 

  acceleration coefficient   battery capacity 
 

I. INTRODUCTION 

The aggravation of energy dilemma, environment pollution and global warming appeals technique innovation 

in all disciplines towards net-zero emission of transport [1-4]. As a major contributor to harmful gas emission and 

excessive fossil fuel consumption, public transportation bears the brunt of electrification, spurring the blooming 

of electric transportation solutions in recent years [5, 6]. Among these granted electrified vehicles (EVs), range 
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extended EV (REEV) represents one promising solution [6]. Equipped with multiple power sources, REEVs hold 

tremendous advantages in energy reservation and emission reduction without excessively scarifying driving 

mileage. The additional degree of freedom in energy consumption, counteractively, leads to the imperative 

requirement on power management strategies (PMSs) for optimally governing energy flow within hybrid 

powertrains of REEVs.  

The studies on PMSs, also referred to as energy management strategies (EMSs), for hybrid powertrains have 

been lasting for tens of years, and a substantial of solutions have been advanced. Existing PMSs for hybrid 

powertrains can be divided into rule based ones (such as rule-based strategies [7] and fuzzy logic based methods 

[8]), global optimization-based PSMSs by employing algorithms like dynamic programming (DP) [9] and 

Pontryagin minimum principle (PMP) [10], instantaneous optimization-based PMSs (such as equivalent 

consumption minimization strategy (ECMS) [11] and model predictive control (MPC) [12]), as well as machine 

learning and deep learning based PMSs (like Q-learning [13] and deep Q-learning [14]). Despite the validated 

performance under certain conditions, existing solutions still hold some shortcomings, impeding their application 

performance promotion. In particular, the real-time application performance of some listed methods still needs to 

be improved. Global optimization-based PMSs seek the optimal solutions by traversing all candidate solutions 

within whole cycles, thus obviously increasing the cost of computation and the difficulties in real-time 

implementations. Rule-based methods rely on engineering practice largely and are difficult to adaptively cope with 

complex environments. In addition, the application effect of the presented methods in real time is restricted by the 

greedy dependence on information of future driving. Adaptive tuning of some inner parameters in core algorithms, 

e.g. equivalent factor (EF) in ECMS, demands the pre-knowledge of future driving, making it intractable in 

practical applications.  

Among the discussed methods, ECMS possesses huge potential in real-time implementations with preferable 

control effect that is quite close to DP or PMP [15]. During the implementation of ECMS, the algorithm instantly 

searches the power distribution combination that contributes to the minimum equivalent fuel consumption 

(including the original fuel consumption and the equivalent fuel consumption converted from the consumed 

electric energy). The conversion from electric energy to equivalent fuel consumption is attained by employing EF 

[16], which is the representative index denoting efficiencies of hybrid powertrain in past, current and future driving 



 

 

[16]. Therefore, prediction of future driving conditions is often incorporated into the implementation of ECMS 

[17], while huge computation burden is often imposed on the vehicle on-board hardware, thus discounting the real-

time implementation performance of ECMS.  

The adopted methods to distribute energy within power sources in hybrid powertrains, generally, can behave 

optimally with abundant future driving information and huge computation, appealing novel solutions proposed to 

furnish performance in real time. With the dramatically development of internet of vehicles (IoVs) [18], vehicle-

environment cooperation provides new perspectives to prompt on-board power management [19]. The flexible 

information interaction schemes lower the difficulties of accurately acquiring future driving status [20], and 

advanced cooperation frameworks enable to share partial computation through vehicle’s on-board hardware [21]. 

Mobile edge computation (MEC) is one of progressive asynchronous computation theories that encourages the 

appearance of novel vehicle-environment cooperation methods [22]. In the MEC based framework, mobile edge 

computation units (MECUs) at road side offload partial tasks from on-board vehicle control units (VCUs), and the 

equipped superior vehicle to vehicle (V2V) communication and vehicle to infrastructure (V2I) communication 

enrich the valuable environment information that can be accessed from vehicle side [23]. The MEC based vehicle-

environment cooperation has been applied in charging management [24]. Even though there are some initial 

attempts of vehicle-environment cooperation by MEC, the MEC based applications in electric transportation for 

efficient driving, to the best of the authors’ knowledge, are still rare. 

Despite the technique innovation, new social-economic policies are made to accelerate the transition to net-

zero emission [25, 26]. In some urban traffic networks, zero emission (ZE) zones are prescribed to reduce harmful 

exhaust gas emission [27]. To be specific, vehicles must operate in pure electric (PE) mode in ZE zones to reduce 

emission and noise due to some specific restrictions. On this account, the operation of EVs including REEV, can 

be divided into normal driving (ND) zone, approach zone and ZE zone when operating in urban traffic networks. 

The divided zones on operation route are illustrated in Fig. 1, and in the ND zone, REEV operates in normal state 

by cooperatively utilizing PE mode and hybrid driving (HD) mode. After REEV moves into approach zone, forced 

charge is implemented to replenish electricity for future driving in ZE zone. This compulsory operation guarantees 

sufficient energy saving of battery in ZE zone. In ZE zone, only PE mode is enabled, inducing engines in REEVs 



 

 

to be turned off and electricity to be consumed. After vehicles pulling out ZE zone, normal operation state is 

activated again.  

 
Fig. 1. Illustration on different operation zones in urban traffic network. 
To move forward the state-of-the-art research in the literature, a novel PMS is presented in this study based 

on the advanced MEC framework in IoVs. In this cooperative PMS, self-learning explicit ECMS (SL-eECMS) 

accomplishes energy management with high quality and within the power sources in hybrid powertrain. The 

explicit control policies, denoted as energy distribution look-up table (ED-LUT) which is generated offline with 

optimality, are implemented into online control efficiently with better adaptabilities to driving environment. The 

adaptive neuro-fuzzy inference system (ANFIS), in parallel, predicts the charging levels properly, thereby 

attaining effective online charging management for future driving in ZE zones. The following four contributions 

developed by this study are added to current literature: 

1. A novel control framework in IoVs is constructed to solidly support design and implementation of the raised 

cooperative PSMS.  

2. The self-learning mechanism is incorporated into the novel SL-eECMS according to the Wassertern distance-

based learning method. The explicit control policies for online implementation are updated, given the driving 

conditions judged by the Wassertern distance, to prompt the adaptabilities of the novel strategy to various 

driving environments.  

3. The improved quantum particle swarm optimization (iQPSO) is integrated into the SL-eECMS to offline 

generate and online update ED-LUTs, strengthening optimality of SL-eECMS in real-time application.    

4. The online charge management is realized with the support of ANFIS. By capturing traffic information shared 

through IoVs, ANFIS predicts charging levels corresponding to the forced pure electric driving in future, 

guaranteeing that sufficient electric energy can be prepared in advance.  



 

 

The remainder of this paper is organized as follows. The studied REEV and the related model building are 

described in Section II. The designed cooperative PSMS is detailed in Section III, and Section IV evaluates the 

simulation and hardware-in-the-loop (HIL) test results and validates the performance of the raised method. The 

main conclusions are made in Section VI. 

II. REEV AND MODEL CONSTRUCTION  

2.1 The Studied REEV 

REEVs, as the anagenesis of traditional HEVs, demonstrate better economy improvement, less emission 

reduction and longer driving mileage. The affirmed performance enhancement is obtained through equipping 

larger battery pack and better optimized ICE, as well as employing more advanced PMS. The studied REEV 

configuration is applied in a commercial public bus, and the configuration is shown in Fig. 2, where we can find 

that the electric motor itself outputs the tractive forces to satisfy various driving requirement. The battery pack, 

together with the auxiliary power unit (APU), provides the demanded tractive energy. The APU consists of an ICE 

and a generator, performing as the primary power source in charging sustaining (CS) stage. The ICE is connected 

to the generator through rigid coupling mechanism. In braking mode, the battery pack absorbs the regenerative 

braking energy recycled from electric motor. The detailed parameters of different components in REEV are given 

in Table 1. Note that the allowable range of battery SOC is from 0.2 to 0.8.  

 

Fig. 2. The configuration of the studied REEV. 

Table 1. Detailed parameters of each components in powertrain 

Diesel 
Engine 

Displacement 3.7 L 
Maximum Power 125 kW 
Maximum Torque 650 Nm 

Motor/ 
Generator 

Maximum Power 170 kW 
Maximum Torque 2800Nm 



 

 

Maximum Speed 3900 rpm 

Battery 
Type Lithium-ion 

Capacity 92 kWh 
Nominal Voltage 645 V 

2.2 REEV Model Construction  

a. Vehicle Dynamics   

   The tractive power, generated based on the driving intention from driver, is outputted to overcome the driving 

resistance. The power balance at the output end of hybrid powertrains in REEV can be formulated, as: 

                          𝑃!"# =
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where 𝑃!"# denotes the required tractive power; G, 𝛼, f represents the gravity, gradient and rolling resistance 

factor;	𝐶9 , 𝐴, 𝑣  is the aerodynamic drag factor, frontal area and vehicle speed, respectively; 𝑎  means the 

acceleration; 𝜉, 𝜂:, m is the correction coefficient of rotating mass, transmission efficiency, and vehicle mass, 

respectively. The transmission efficiency 𝜂:  considers the total loss of mechanical and electric path in the 

powertrain. At the wheel side of REEV, the corresponding torque balance can be expressed as:  

                                     𝐹: =
;$%/&'%!
<()

 (2) 

where 𝑇"8 is the electric motor torque, 𝑖'9 is the final drive ratio, and 𝑅=> is the wheel radius.  

b. Engine Model  

   Since the research focus in this study is to improve energy economy of REEV by optimal design on PSMS, 

the dynamic performance of engine is neglected. A static engine mode, including an efficiency map obtained 

through a benchmark test, is employed. Based on the static model, the engine efficiency can be described as: 

                              𝜂"0?2𝑇"0?, 𝑛"0?5 =
;$*+@$*+
A,)-8̇&

 (3) 

where 𝜂"0? means the engine net efficiency, 𝜔"0? represents the rotating speed of engine, 𝑄C>$ denotes the 

fuel lower heating value, and �̇�' is the fuel consumption rate.  

c. Motor/ generator model 



 

 

   Both the electric motor and generator in this study belong to permanent magnet synchronous motors (PMSMs). 

Likewise, the dynamic behaviors of motors are neglected, due to the optimization target in this paper. For the 

PMSM with tractive and generator mode, the relationship between torque and power can be described as:  

                            𝑃"8 = :
;$%@$%
%%.!

								𝑇"8 > 0
𝑇"8𝜔"8𝜂?"0					𝑇"8 ≤ 0

 (4) 

where 𝜔"8 means the angular speed of electric motor; 𝑃"8 denotes the mechanical power of electric motor; 

𝜂8): and 𝜂?"0 represents the efficiency of electric motor in tractive mode and generator mode, respectively.  

d. Battery model 

For the battery, the performance of temperature and aging effect is ignored after carefully considering the 

optimization target and modelling complexity. A simplified equivalent circuit model, consisting of an open circuit 

voltage source, and an internal resistor connecting in series topology, is employed to characterize the battery 

electrical performance. The general relationship in the simple equivalent circuit model can be described as: 

                                 𝑆𝑂𝐶̇ = − D./EFD./E6<0*!G12!!
H<0*!A12!!

 (5) 

where 𝑆𝑂𝐶  means the battery state of charge (SOC), 𝑉)(  denotes the open circuit voltage of battery, 𝑅/0: 

expresses the internal resistance of battery, 𝑃I1:: represents the battery power, and 𝑄I1:: is the battery capacity 

in Ah. 

III.  NOVEL COOPERATIVE POWER SOURCE MANAGEMENT STRATEGY 

3.1 Novel Control Framework in IoVs  

To develop the cooperative PMS, a special control framework is designed first, as shown in Fig. 3 (a). In this 

designed novel control framework, the on-board VCU in the REEV, together with MECUs at route side and global 

sever at cloud, accomplishes the cooperative management. The V2I, V2V and infrastructure to infrastructure (I2I) 

communication among on-board VCU, MECUs and global server is attained by the millimeter-wave (mmWave) 

communication with its ultra-wide band [28]. Besides, the base stations (BSs) and vehicle are assumed to be 

equipped with single radio frequency (RF) chain to reduce hardware complexity [29]. In daily applications, the 

roles of the mentioned control units can be summarized, as: 



 

 

Global server: Global server unitedly activates MECUs that undertake tasks in cooperative control after 

subscribing the published route information from REEV.  

MECUs: MECUs, as the coordinative controllers, accomplish tasks related to vehicle-environment cooperation. 

Specifically, one MEC module includes three MECUs. Along with the vehicle travel direction, there are charging 

management MECU (CM-MECU), ZE MECU (ZE-MECU) and normal MECU (N-MECU). In CM-MECU, self-

learning process in SL-eECMS based energy management and charging level prediction in online management 

are implemented by referring to the information from traffic state analysis. In ZE-MECU, only traffic state analysis 

is assigned. In N-MECU, self-learning process in SL-eECMS and traffic state analysis are delegated. The traffic 

state analysis in three MECUs focuses on different aspects. Traffic state analysis in CM-MECU collects and 

processes valuable information, and obtains the predicted velocity profile of the REEV on current route segment 

for self-learning in SL-eECMS. Nonetheless, ZE-MECU performs traffic state analysis and shares the evaluation 

results, including the predicted macroscopic traffic state, to CM-MECU to support partial charging management. 

In N-MECU, traffic state analysis, similar with that in CM-MECU, is required by SL-eECMS for the included 

self-learning process. Moreover, CM-MECU, ZE-MECU and N-MECU may consists of several sub-MECUs due 

to the limited serving area of each MECU.   

On-board VCU: The main task of on-board VCU is to accomplish SL-eECMS based energy management and 

online charging management within power sources after subscribing information published from MECUs, which 

include the self-learning results for SL-eECMS and predicted charging level for future driving in ZE zone.  

The presented MEC based cooperative control framework exhausts the powerful sensing and computing 

abilities of IoV, successfully allevitating computation load of vehicle and boosting vehicle-environment 

cooperation.  



 

 

 
(a) 

 
(b) 



 

 

 
(c) 

Fig. 3. Schematic of PMS design. (a) Illustration on the novel cooperative control framework. (b) Illustration on the novel cooperative 
PMS. (c) Implementation process of SL-eECMS. 
3.2 Cooperative PMS for REEV 

According to the constructed cooperative control framework, a cooperative PMS is innovatively developed 

for the power management of the designated REEV. Fig. 3 (b) exhibits the general execution process of the novel 

strategy. The brand-new strategy accomplishes efficient power management by comprehensively utilizing the 

super computation capacity in the cooperative control framework. Both the self-learning process in SL-eECMS 

and the charging level prediction in charging management are moved into MEC module, intensifying the whole 

application efficiency of the presented strategy in real time. In on-board VCU, the high-level control process can 

be divided into two phases, of which phase 1 optimally distributes the energy within the power sources by 

interpolating the generated ED-LUTs. Two types of ED-LUTs are applied: one is for normal driving, and the other 

one accounts for compulsory charge. Several ED-LUTs, corresponding to the various predicted charging levels, 

are prepared for compulsory charge. Besides, the charging order that consists of the charging activation signal is 

outputted in phase 1. The finally output energy distribution is for either normal driving or forced charge decided 

by the charging order. Phase 2 contributes to operation mode selection and generate control order to lower 

component controllers on the basis of the energy distribution and charging order from phase 1. 

In the REEV, the operation selection between normal operation and forced charge is realized by referring to 

the charging order that is derived based on instant GPS coordinates and battery SOC in phase 1. In EV mode, the 

engine speed and torque, selected as the control order, are all set to zero. In HV and forced HV mode, the engine 



 

 

is regulated to operate along the brake-special fuel consumption (BSFC) line. Hence, the engine speed and torque 

can be obtained by interpolating the look-up table of operation points in BSFC line (ELUTs 1 and 2 in Fig. 3 (b)) 

with the distributed optimal engine power (𝑃"0?_9" in Fig. 3 (b)).  

3.2.1 Self-Learning Equivalent Minimization Consumption Strategy  

A. Basic ECMS for Energy Management 

ECMS has been widely accepted in instant applications, and can provide close effect to global optimization 

methods [15]. In the implementation, ECMS evaluates the impact on total equivalent fuel consumption from the 

candidate energy distribution combinations at every control step. The total fuel consumption rate �̇�',"#$ can be 

calculated as: 

                               �̇�',"#$(𝑡) = �̇�'(𝑡) + �̇�!"**(𝑡)  (6) 

where �̇�!"** is the equivalent fuel consumption rate converted from electricity usage, 𝑡 is the control step. �̇�' 

and �̇�!"** can be respectively calculated by: 

                                  E
�̇�'(𝑡) =

G$*+(:)
%$*+(:)A,)-

�̇�!"**(𝑡) =
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A,)-

𝑃I1::
 (7) 

where 𝑃"0?  and 𝜂"0?  expresses the engine power and efficiency, respectively; 𝑠 is the EF dominating the 

performance of ECMS, wherein the optimal control variable 𝑢∗ at each step can be calculated as:  

                           𝑢∗ = 𝑎𝑟𝑔𝑚𝑖𝑛[ G3$4(:)O
%$*+(:)A,)-

+ *
A,)-

𝑃!"#(𝑡)(1 − 𝑢)] (8) 

In actual applications, two main manners are widely leveraged in the literature, which are implicit [30] and explicit 

ECMS [31]. In implicit EMCS [30], Eqns. (6) and (7) are directly applied to calculate optimal solutions for each 

step. In explicit ECMS, an ED-LUT is calculated offline by evaluating all possible candidates over a grid that is 

composed of discrete tractive power and battery SOC. Afterwards, the ED-LUT is implemented online to distribute 

energy within powertrain instantaneously. The application effect of implicit ECMS can be discounted if the 

amount of discrete candidate solutions is too large. In vehicle’s on-board hardware, it is quite labored to evaluate 

a large scale of candidate solutions with small control steps (e.g. 0.01s). As a consequence, the control step and 

discrete step should not be too small when applying implicit ECMS. By contrast, the application of explicit ECMS 

is quite simple just by implementing ED-LUT online, making it more suitable for real-time control. Even though 



 

 

implicit ECMS behaves slight worse than explicit ECMS in real-time applications, the implicit solving manner 

makes it rather suitable for adaptive ECMSs, and the EF regulation manner can be freely designed in implicit 

ECMS. Since the ED-LUT in explicit ECMS is generated offline and reluctant to be tuned instantaneously, the 

flexibility of explicit ECMS to various driving conditions becomes slightly worse than implicit ECMS.  

B. Novel SL-eECMS for Optimal Power Source Management 

In this study, a novel SL-eECMS is designed, with the aim of enhancing the adaptability of ECMS to driving 

environment without scarifying capability in instant applications. Fig. 3 (c) illustrates the implementing process 

of SL-eECMS. The explicit ECMS is treated as the basic control algorithm in the SL-eECMS. To ensure optimality 

and adaptability, the iQPSO algorithm is employed to generate ED-LUTs corresponding to different driving 

conditions. Moreover, a self-learning process is integrated in the designed SL-eECMS to select the most 

appropriate ED-LUTs for current driving condition. In particular, history ED-LUTs is generated offline by 

cooperatively exploiting explicit ECMS and iQPSO for different driving conditions that are obtained via the K-

means cluster method according to the collected data in real traffic [32]. In case of the obvious variation in driving 

conditions, self-leaning process, including driving condition learning and ED-LUT updating, is designed 

accordingly. In the self-learning process, the driving condition of current route segment is compared with history 

driving condition that is employed to generate history ED-LUT by the Wasserstein distance [33]. New ED-LUT 

is ordered if difference between current and history driving condition surpasses than the permitted threshold. The 

driving condition learning and ED-LUT updating is completed in MEC module. The initially employed history 

ED-LUTs are stored in on-board VCU, while the updated ED-LUT is shared to on-board VCU from MEC module 

via V2I communication. Furthermore, ED-LUTs for forced charge are not updated in the self-learning process. 

Wasserstein distance is a distance function defined between two probability distributions on a given metric space, 

which can detect difference between two probability distributions [33]. For any two probability distributions 𝑃 

and 𝑄 on metric space 𝑀, the 𝑝 −order’s Wasserstein distance can be formulated as: 

                    𝑊G(𝑃, 𝑄) = P inf
P∈∏(G,A)

∫𝜌(𝑥, 𝑦)S 𝑑𝜋(𝑥, 𝑦)Z

5
6
 (9) 



 

 

where 𝜌(𝑥, 𝑦) is the distance function, 𝑥 and 𝑦 are the samples from set Θ, ∏(𝑃, 𝑄) is the probability measures 

on Θ × Θ with margins 𝑃 and 𝑄. In existing applications, 𝐿5-Wasserstein distance shows satisfying flexibility 

in functional analysis [23]. The general equation that describes 𝐿5-Wasserstein distance can be presented as: 

                        𝑊G(𝑃, 𝑄) = sup
‖'‖U5

b𝐸V~G[𝑓(𝑥)] − 𝐸V~A[𝑓(𝑥)]e  (10) 

where ‖𝑓‖ is the Lipschitz semi-norm, as: 

                              ‖𝑓‖ = sup |𝑓(𝑥) − 𝑓(𝑦)| 𝜌(𝑥, 𝑦)h   (11) 

In this paper, 𝐿5-Wasserstein distance is taken into the self-learning process in the SL-eECMS. During 

operations in certain route segment, the on-duty MECU compares the difference between historical and current 

driving conditions of next route segments via the 𝐿5-Wasserstein distance. Particularly, the probability distribution 

of history velocity profile, corresponding to certain driving condition, applied to generate history ED-LUT and 

stored in on-board VCU, is instantly transmitted to the MECU and contrastively analyzed together with the 

probability distribution of velocity profile in next route segment. The history velocity profile that is related to 

certain driving condition is constructed by the method introduced in [34], and the velocity profile of vehicle driving 

in next route segment can be predicted by the method in our former work [35]. The history ED-LUT is requested 

to be updated in the on-duty MECU by iQSPO if the calculated 𝐿5-Wasserstein distance is larger than the preset 

threshold. The self-learning process strives to insure the most appropriate ED-LUT is prepared for new route 

segment before the REEV moves in. At the beginning of trip, the REEV will select a generic ED-LUT in power 

source management.  

3.2.2 Improved Quantum Particle Swarm Optimization Based ED-LUT Generation 

A. iQPSO for ED-LUT Optimization  

In PSO, each individual is treated as a particle in a N-dimension space. The independent particle, actually, 

represents a solution of the optimization problem, and flows through the defined searching space to approximate 

the optimal solution by updating its position and flow velocity [36]. The position 𝑋/,0 and velocity 𝑉/,0 of the 𝑖th 

particle (1 ≤ 𝑖 ≤ 𝑀) at nth (1 ≤ 𝑖 ≤ 𝑁) iteration can be respectively defined: 

                            k
𝑋/,0 = 2𝑋/,05 , 𝑋/,0H , …𝑋/,0X 5
𝑉/,0 = 2𝑉/,05 , 𝑉/,0H , …𝑉/,0X 5

  (12) 



 

 

During the optimal solution searching, the particle updates velocity and position by referring to the personal best 

position and global best position of the whole swarm, as: 

                      :
𝑉/,0Y5
Z = 𝑉/,0

Z + 𝑐5𝜑/,0
Z 2𝑃/,0

Z − 𝑋/,0
Z 5 + 𝑐H𝜓/,0

Z 2𝐺0
Z − 𝑋/,0

Z 5

𝑋/,0Y5
Z = 𝑋/,0

Z + 𝑉/,0Y5
Z   (13) 

where 𝑗 = 1,2, … ,𝑁 denotes the dimension space, 𝑐5 and 𝑐H are the acceleration coefficients, 𝜑 and 𝜓 are the 

uniformly distributed random variables, 𝑃/,0 is the personal best position, 𝐺0 is the global best position. The 

general optimization problem by PSO can be described, as: 

                               min 𝑓(𝑥), s.t. 𝑋 ∈ 𝑆 ⊆ 𝑅X  (14) 

where 𝑓(𝑥) is the fitness function to evaluate the effect of each iteration, 𝑆 is the feasible space. The trajectory 

analysis in [37] proves that PSO algorithm may achieve convergence in optimization if individual particle 

converges to its local attractor 𝑝/,0 = 2𝑝/,05 , 𝑝/,0H , … , 𝑝/,0X 5, as: 

                        𝑝/,0
Z =

(5[0,*
8 G0,*

8 Y(#\0,*
8 &*

8

(5[0,*
8 Y(#\0,*

8 = Θ/,0
Z 𝑃/,0

Z + 21 − 𝛩/,0
Z 5𝐺0

Z  (15) 

The local attractor in (15) indicates that each particle is updated to ensure convergence by following 𝑃/,0 and 𝐺0 

towards the local attractor. From the perspective of Newtonian dynamics, each particle in the process of 

convergence moves to its local attractor with its kinect energy decreasing to zero. Consequently, each particle can 

be seen as one flying point with attraction potential centered at 𝑝/,0 in Newtonian space. Extending the case to 

quantum mechanics, each particle can be regarded as one moves in a quantum potential filed in an N-dimension 

Hilbert space. After endowing particle with quantum behaviors, QPSO can be designed accordingly.  

In QPSO algorithm, the quantum state of particle is described by the wave function rather than position and 

velocity in original PSO [38]. The probability density function that specifies flying position of each particle can 

be derived from Schrödinger equation [38]. The position of each particle can be measured by employing Monte 

Carlo inverse transformation [38]. Accordingly, the position of one particle in QPSO can be expressed, as: 

                                𝑋/,0Y5
Z = 𝑝/,0

Z ±
]0,*
8

H
𝑙𝑛 P 5

O0,*95
8 Z (16) 

where 𝐿/,0 is the characteristic length of potential well, and 𝑢/,0Y5
Z  is the sequence of random numbers. The value 

of 𝐿/,0 can be determined by following equation, as: 



 

 

                                   𝐿/,0
Z = 2𝜏y𝑋/,0

Z − 𝐶0
Zy (17) 

where 𝜏  is the contraction-expansion coefficient, 𝐶0
Z = (𝐶05, 𝐶0H, … 𝐶0X	)  is the mean best position that is the 

average of 𝑃/,0. Substituting (17) into (16), the manner to update position of each particle in QPSO can be rewritten, 

as: 

                             𝑋/,0Y5
Z = 𝑝/,0

Z ± 𝛼y𝑋/,0
Z − 𝐶0

Zy𝑙𝑛 P 5

O0,*95
8 Z (18) 

Compared with normal PSO, the particle updating in QPSO focuses on only position and omits velocity updating. 

As a result, the complexity of algorithm and swarm iteration is reduced, and the calculation efficiency is prompted. 

Despite the promising advantage, the premature ripening of particles still exists in the stage close to convergence, 

trapping solutions into local optima. To avoid falling into local optima, a Gaussian distribution based mutation is 

added in particle updating. That is, a perturbation 𝑀0
Z=(𝑀0

5, 𝑀0
H, …𝑀0

X	) is considered in the position updating, as: 

                                     𝑀0
Z = 𝐶0

Z + 𝜀ℵ  (19) 

where 𝜀 is the predefined ratio, ℵ denotes a Gaussian distribution. Hence, the position updating manner in the 

improved QPSO can be written as: 

                            𝑋/,0Y5
Z = 𝑝/,0

Z ± 𝛼y𝑋/,0
Z −𝑀0

Zy𝑙𝑛 P 5

O0,*95
8 Z  (20) 

B. ED-LUT Optimization  

In explicit ECMS, the solutions are generated offline by traversing all possible combinations of discrete 

tractive power and battery SOC. As discussed in literature, EF in ECMS is sensitive to controlling performance 

and deserves be tuned accordingly. To eliminate the constraint on explicit ECMS in adaptive control, iQPSO is 

preferred to generate ED-LUTs for different driving conditions. In actual applications, EF values corresponding 

to different battery SOC are optimized under different driving conditions. Hence, particles in iQPSO represents 

EF values under different battery SOC. The optimization problem by the iQPSO is, within the given driving cycle, 

to minimize total values of the fitness function, which can be written as: 

                               𝑓(𝑥) = ∑ G$*+
%$*+A,)-

+ *(^)
A,)-

𝑃I1:: (21) 

where X is the optimized parameter. During the EF optimization, the subjected constraints can be expressed as: 



 

 

                             

⎩
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⎨
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⎧

𝑆𝑂𝐶8/0 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶81V
𝑃I1::_8/0 ≤ 𝑃I1:: ≤ 𝑃I1::_81V
𝑇"0?_8/0 ≤ 𝑇"0? ≤ 𝑇"0?_81V
𝜔"0?_8/0 ≤ 𝜔"0? ≤ 𝜔"0?_81V
𝑇"8_8/0 ≤ 𝑇"8 ≤ 𝑇"8_81V
𝜔"8_8/0 ≤ 𝜔"8 ≤ 𝜔"8_81V

   (22) 

In the ED-LUT optimization for normal operation, constraints on battery can be further expressed, as: 

                          �
𝑃I1::_8/0 = 𝑃I1::_8/0	 _0)!(𝑆𝑂𝐶)
𝑃I1::_81V = 𝑃I1::_81V	 _0)!(𝑆𝑂𝐶)

 (23) 

where 𝑃I1::_8/0	 _0)! and 𝑃I1::_81V	 _0)! respectively denotes the minimum and maximum battery power under 

certain battery SOC for normal operation. Similarly, the constraints on battery in the ED-LUT optimization for 

forced charge can be also described, as: 

                          �
𝑃I1::_8/0 = 𝑃I1::_8/0	 _(>1(𝑆𝑂𝐶)

𝑃I1::_81V = 0  (24) 

where 𝑃I1::_8/0	 _0)! denotes the minimum battery power under certain battery SOC for forced charge.  

3.2.3 Adaptive Neuro-Fuzzy Inference System Based Charging Management  

A. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The ANFIS is a hybrid method that combines the fuzzy intelligence and neural network, which is quite 

qualified in solving complex and nonlinear problems. In ANFIS, the neural network is utilized to estimate the 

parameters of membership functions, and efficiently tunes the conversation of human intelligence in various 

conditions. Assuming ANFIS holds two inputs and one output, the two fuzzy if-then rules of a Sugeno fuzzy model 

in ANFIS can be described as [39]: 

Rule 1: if 𝑥 is 𝐴5 and 𝑦 is 𝐵5; then 𝑓 = 𝑝5𝑥 + 𝑞5𝑦 + 𝑟5; 

Rule 2: if 𝑥 is 𝐴H and 𝑦 is 𝐵H; then 𝑓 = 𝑝H𝑥 + 𝑞H𝑦 + 𝑟H; 

where 𝐴5, 𝐴H, 𝐵5 and 𝐵H are the nonlinear parameters; 𝑝5, 𝑝H, 𝑞5, 𝑞H, 𝑟5 and 𝑟H are the linear parameters.  

The ANFIS generally consists of five layers, which is referred to fuzzification, product, normalized, 

defuzzification and output layer. The transformation and calculation in the five layers can be: 

Layer 1: The relationship between the two inputs and the corresponding outputs are described by the membership 

function, as: 



 

 

                                 :
𝑂Z5 = 𝜇38(𝐼5)	𝑗 = 1,2
𝑂Z5 = 𝜇`8(𝐼H)	𝑗 = 1,2

 (25) 

where 𝐼5 and 𝐼H are the two mentioned inputs, 𝜇38 is the membership function, 𝑂Z5 is the output of this layer. 

The membership function can be expressed, as: 

                             𝜇38(𝑥) =
5

5Yab
cVE(8d

18
#e fg

18 	𝑗 = 1,2  (26) 

where 𝑎Z, 𝑏Z, 𝑐Z are the premise parameters.  

Layer 2: The weight of a rule 𝑤Z for next layer is calculated by multiplicative operator, as: 

                             𝑂ZH = 𝑤Z = 𝜇38(𝐼5) ∙ 𝜇`8(𝐼H)	𝑗 = 1,2  (27) 

Layer 3: The weight of rule at 𝑗 th node is normalized, as: 

                                𝑂Z, = 𝑤h��� =
=8

=5Y=#
	𝑗 = 1,2  (28) 

Layer 4: The contribution of each rule toward the final output is computed, as: 

                             𝑂Z6 = 𝑤i���𝑧/ = 𝑤i���2𝑝Z𝐼5 + 𝑞Z𝐼H + 𝑟Z5  (29) 

where 𝑝Z, 𝑞Z, and 𝑟Z are the consequent parameter.  

Layer 5: The overall output of ANFIS is obtained by employing a summing function, as: 

                          𝑂Zj = ∑ 𝑤i���𝑧/Z = ∑ =8
=5Y=#

2𝑝Z𝐼5 + 𝑞Z𝐼H + 𝑟Z5Z   (30) 

The ANFIS is trained via supervised learning. To regulate the parameters in ANFIS, a hybrid algorithm is 

exploited by integrating the gradient descent method and least square method, of which the first method is in 

charge of estimating the premise parameters (𝑎Z , 𝑏Z , 𝑐Z), and the latter one determines the consequent linear 

parameters (𝑝Z , 𝑞Z , 𝑟Z ). In the forward training process, the least square method captures the consequent 

parameters while keeping the premised parameters fixed. Then, the error between the predicted values and raw 

data are propagated backward. The least square method identifies the premise parameters by minimizing the 

quadratic cost function. Moreover, in the backward propagation, consequent parameters remain unchanged.  

B. Charing Level Prediction in Online Charging Management  



 

 

To satisfy the requirement of zero emission driving, sufficient electricity must be replenished during vehicle 

driving in Approach zone. To charge battery online properly, the consumed electricity in ZE zone needs to be 

predicted. Nevertheless, it is impractical to precisely predict energy consumption under the limits of massive 

computation, complicated traffic data distribution and powertrain dynamic. Instead of accurately predicting the 

utilized electricity, CM-MECU covers Approach zone only forecasts the charging level by ANFIS 

macroscopically. The inputs of the ANFIS based predictor are vectors related to traffic and vehicle status, while 

the output of the ANFIS based predictor are three different charging levels: low, medium and high. Diversified 

ED-LUT, according to the identified charging level, is implemented in explicit ECMS during the charging stage 

afterward. In the charging level prediction, traffic and vehicle status vectors are chosen by binary Dragonfly 

method [40], as: 

                            �
𝑇* = (𝑉1$" , 𝐴1$" , Τ$k., 𝑁!*, 𝑁I*)

𝑉* = (𝑣1$" , 𝑎1$" , 𝜏$k.)
  (31) 

where 𝑇*  and 𝑉*	denotes the traffic and vehicle status, respectively; 𝑉1$" , 𝐴1$"  and Τ$k. means the average 

velocity, acceleration and vehicle stop time of all the vehicles on certain route segment, respectively; 𝑣1$" and 

𝑎1$" expresses the predicted average velocity and acceleration of the target vehicle on certain route segment; and 

𝜏$k.  represents the predicted stop time of the target vehicle on certain sector. 𝑣1$" , 𝑎1$"  and 𝜏$k.  can be 

obtained in CM-MECU by method in our previous work based on the shared traffic data [35]. Likewise, 𝑉1$", 

𝐴1$"  and Τ$k.  can be statistically calculated in CM-MECU. The defined charging levels are obtained via 

clustering energy consumption results that are calculated by: 

                               𝐸!"#_l" = ∫ 𝑃!"#(𝑡)𝑑𝑡
:'
::

 (32) 

where 𝑡. is the predicted initial time when the REEB drives into ZE zone, 𝑡9 is the predicted terminal time that 

the REEB leaves ZE zone, and 𝐸!"#_l" is the required energy in ZE zone. 𝑡. and 𝑡9 can also be captured by 

method in [35]. To clearly categorize charging levels, velocity profiles collected from real driving in ZE zone are 

applied to calculate electricity consumption by (32), preparing for the K-mean clustering based charging level 

classification [32]. Then, typical driving cycles for generating ED-LUTs in forced charge are derived by the 

method introduced in [34] on the strength of driving profiles that are homologous to diverse charging levels. In 

online charging management, one particular ED-LUT for certain charging level is implemented in on-board VCU. 



 

 

In other words, the predicted charging levels, named as “low”, “medium” and “high”, will instruct the adaptation 

degree of different ED-LUTs, in which the EF values corresponding to different charging level are properly 

optimized. Consequently, various final charging level can be obtained to make sure there is enough electric power 

to drive the vehicle in the ZE zone. 

As described previously, the forced charge is activated according to instant geographic position and battery 

SOC. In other words, the vehicle switches into the forced charge mode on the condition that it is located in 

Approach zone, and the initial battery SOC in ZE zone is smaller than the defined value. The initial battery SOC 

in ZE zone can be predicted, as: 

                          𝑆𝑂𝐶/0/_l" = 𝑆𝑂𝐶/ −
m3$4_26Ym3$4_<$

,.-o1	
  (33) 

where 𝑆𝑂𝐶/0/_l" and 𝑆𝑂𝐶/ denotes the initial battery SOC in ZE zone and instant battery SOC in Approach zone, 

respectively; 𝐸!"#_1S is the required energy for the remaining driving in Approach zone, which can be calculated 

by the same method described in (32); and 𝑊I is the battery capacity in kWh. In online charging management, 

the future traffic state is predicted every 30s.  

 Indeed, each ED-LUT exploits one fixed EF, which has been optimized by the QPSO algorithm offline. If the 

driving condition is detected to change significantly by calculating the Wassertein Distance, the ED-LUT will be 

updated by generating a new optimal EF value. The application of ED-LUT is to make sure the online application 

capacity of ECMS can be maximized, thus avoiding the repeating solution searching in each online control step. 

In the next step, substantial simulations and corresponding discussions are conducted to examine the performance 

of the devised control framework. 

IV. SIMULATION AND EVALUATION 

In this section, comprehensive simulations are performed to validate the performance of the proposed 

cooperative PSMS in adaptive energy management and online charging management. The simulation evaluation 

can be divided mainly into two parts: one is focused on the adaptive energy management by the SL-eECMS, and 

the other one pays attention to the ANFIS based online charging management. Note that during the assessment, 

VP denotes velocity profile, and RS means the route segment. Moreover, LC, MC and HC represent low, medium 

and high level charging level. The simulation is conducted on a workstation with an i7-8700 processor and 16 



 

 

gigabyte memory. In the evaluation test, the virtual scenarios installed with IoVs is constructed by incorporating 

PreScan and Matlab/Simulink toolbox. The built virtual scenarios provide simulation on control application in 

IoVs. Note that all the initial battery SOC is set to 0.25 to enable charging process can be activated to 

comprehensively assess the performance of the raised solution.  

A. Assessment on SL-eECMS Based Energy Management   

To investigate the capability of the designed SL-eECMS, two case studies are performed. In each case study, 

the first 2000 s indicates that the REEV operates in current route segment, while it drives into next route segment 

after 2000 s. The velocity profiles for case studies are presented in Fig. 4. In the first case, real velocities of next 

route segment are obviously smaller than the history velocities for generation of ED-LUT. While, real velocities 

of next route segment are rather larger than the history velocities in case study 2.  

As shown in Fig. 4, when the driving condition of next route segment presents noteworthy differences, the 

proposed SL-eECMS updates the ED-LUT timely. In the first case study, instantaneous driving velocity of next 

route segment tends to be slower, discouraging the engine’s participation due to poor efficiency at low speed. 

Hence, the updated ED-LUT urges battery to output more electricity, contributing to energy saving by more 

efficient powertrain operation. In the second case, the velocities of next route segment are much higher than history 

velocities. The high driving velocities favour engine’s power and battery’s charging because of higher operation 

efficiencies. The proposed SL-eECMS detects the difference and updates the ED-LUT. Thus, more electricity is 

charged into battery during 2000 s to 4000 s in next route segment in case study 2.  

 
(a) 



 

 

 
(b) 

Fig. 4. Comparison between SL-eECMS and Original ECMS. (a) Self-learning process of SL-EMCS in case 1. (b) Self-learning process 
of SL-EMCS in case 2. VP denotes the velocity profile, RS means the route segment, Original ECMS expresses common explicit ECMS. 

Fig. 5 exhibits the component performance by the SL-eECMS in two cases. As the velocity profiles before 

2000 s remain the same in two cases, Fig. 5 only show the component performance from 2000 s to 4000 s. The 

analysis shown in Fig. 4 (a) reveals that more electric energy in next route segment is recommended in the first 

case study. As a consequence, the generator current, which describes the operation of engine and the variation of 

battery voltage by the updated ED-LUT, is smaller than that by the history ED-LUT. Simultaneously, the battery 

current is larger than that by the original ED-LUT. In case study 2, the engine is ordered to operate with higher 

proportion by new ED-LUT for the improved efficiency. Consequently, the generator current in next route segment 

by new ED-LUT is much larger than that by the saved ED-LUT. Owing to the charged electricity, the battery 

voltage by new ED-LUT in next sector becomes higher. Besides, the resulted negative battery current supplied by 

the fresh ED-LUT is smaller, expressing that more electricity is replenished by APU. Fig. 6 highlights the engine 

operation points projected on the engine-fuel-consumption contour, and further evaluates the performance of the 

raised SL-eECMS among benchmarks. As can be clearly illustrated, the performance of SL-eECMS performs 

better than original ECMS, with more engine operation points distributing in the low fuel consumption regions. 

The performance of SL-eECMS, judged by the engine operation points in higher efficient zones, behaves more 

closed to DP, compared with the original ECMS, leading to a promising energy-saving performance.  
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(b) 

Fig. 5. Component performance compare in two cases. (a) Component performance in case 1. (b) Component performance by in case 2. 
Original ECMS expresses common explicit ECMS. 

Fig. 7 illustrates the comparison in fuel consumption by different methods in two case studies. Original ECMS 

denotes the common explicit ECMS without integrating the self-learning process. As the driving conditions are 

all the same at first 2000 s in two cases, there is no difference in fuel consumption by various methods. After 2000 

s, the diving conditions of next route segment present prominent difference, compared with the historical 

conditions, inducing ED-LUT updating in SL-eECMS. In the first case study, more electricity is consumed by the 

updated ED-LUT to avoid engine operation in poor efficiencies, thus saving certain fuel consumption. Even though 

the engine is suggested to operate more by the updated ED-LUT in the second case study, the fuel consumption 

by the new ED-LUT is still less than that by the history ED-LUT. The reason leads to less fuel consumption lies 

in that the iQPSO based generation method adds optimal knowledge into EF tuning, thereby capturing the most 



 

 

appropriate EF vector for the specific driving condition. Table 2 lists the numerical results of energy consumption 

and calculation time by different methods, further assessing the capability of SL-eECMS.  

 

Fig. 6. Compare of engine operation points by different methods.  

 
(a) 

 
(b) 

Fig. 7. Fuel consumption compare in two cases. (a) Fuel consumption compare in case 1. (b) Fuel consumption compare in case 2. VP 
denotes the velocity profile, Original ECMS expresses common explicit ECMS. 

Table 2 Numerical results of energy consumption and calculation time by different methods 

Case Method Fuel 
Consumption (g) 

Equivalent Fuel 
Consumption 

(L/100km) 

Fuel Economy 
Improvement 

(%) 

Total 
Calculation 

Time (s) 

Step 
Calculation 

Time (s) 

1 DP 626.1 14.25 6.06 8864 2.216 
SL-eECMS 643.7 14.87 1.97 2932 0.733 



 

 

Original ECMS 679.3 15.17 - 384 0.096 

2 
DP 609.6 14.17 9.81 8852 2.213 

SL-eECMS 620.2 14.59 7.13 2944 0.736 
Original ECMS 642.1 15.71 - 392 0.098 

Note: Original ECMS expresses common explicit ECMS, and DP means the dynamic programming as the benchmark.  

In Table 2, the equivalent fuel consumption denotes the sum of the original fuel consumption and the 

equivalent fuel converted from the consumed electricity. In addition, the calculation time means the CPU 

processing time, and the step calculation time is calculated by dividing total calculation time over simulation steps. 

In the simulation, the sampling time and control step are set to 1 s. According to the numerical results listed in 

Table 2, the proposed SL-eECMS achieves better fuel economy than common explicit ECMS in both case studies. 

This is because SL-eECMS is enabled with adaptabilities to various driving conditions after integrating the self-

learning process. The enhanced adaptability to various driving environment narrows the gap between DP and 

ECMS. The optimality of SL-eECMS is raised to 95.8% of that by DP, which is a significant improvement, 

compared with the common explicit ECMS. Moreover, SL-eECMS is proved to be qualified in instantaneous 

optimization in practical applications. The step calculation time by SL-eECMS is smaller than 1 s, manifesting 

that the updated ED-LUT can be prepared before vehicle moves into next route segment and consequently satisfies 

the requirement on control step in real time. The common explicit ECMS, although it costs less time than SL-

eECMS, cannot be suitable for all driving conditions, highlighting worse performance than the novel SL-eECMS.  

4.2 Evaluation on ANFISI Based Charging Management 

Requested by the specific requirement, the forced charge for future driving in ZE zone sparks the particular 

design of online charging management. To evaluate the performance of the developed online charging 

management method, an exclusive driving cycle is designed, as shown in Fig. 8 (a). The driving cycle is dived 

into four parts: normal driving 1 (0 s-1000 s), forced charge (1000 s-1500 s), forced EV mode (1500 s-2500 s) and 

normal driving 2 (2500 s-3000 s). In forced EV sector, there are three different velocity profiles corresponding to 

diverse driving requirements in ZE Zone and disparate charging levels.  

As illustrated in Fig. 8 (a), the forced charge is activated when the vehicle drives into the Approach Zone. 

The predicted charging levels, referring to as different driving requirement in ZE Zone, informs the on-board VCU 

to charge battery with diverse levels, resulting in different battery SOC increase from 1000 s to 1500 s. The 

designed charging management method avoids the exhaustive discharge in ZE zone by the ANFIS based charging 



 

 

prediction, thereby enabling the terminal battery SOC in ZE zone close to the initial battery in Approach Zone. 

Fig. 8 (b) shows component operations under different charging levels and driving requirement. In the forced 

charge, the generator current under HC is larger than MC and LC, providing larger charging power by APU. With 

larger charging power, the battery voltage under high charging level are charged to higher values. The indexes of 

battery and generator prove that the online charging management can meet the specific driving requirement under 

different driving conditions in ZE zone.  

 
(a) 

 
(b) 

Fig. 8. Compare in charging management. (a) Comparison of battery SOC in different charging management. Forced EV-LC means the 
velocity profile in ZE zone corresponding to low charging level, Forced EV-MC expresses the velocity profile in ZE zone corresponding 
to medium charging level, and Forced EV-HC represents the velocity profile in ZE zone corresponding to high charging level. (b) 
Comparison of component operation in different charging management. HFC, MFC and LFC respectively means forced charge 
corresponding to high, medium and low charging level; HFEV, MFEV and LFEV respectively denotes forced pure electric drive on different 
driving conditions that are corresponding to high, medium and low charging level.  

Table 3 compares the energy consumption and calculation time in charging management. The eECMS-LC, 

MC and HC respectively means the explicit ECMS based charging management strategy under low, medium and 



 

 

high charging levels. In the comparison, the rule-based method that charges battery to certain SOC value is adopted 

as the benchmark. Apparently, the raised online charging management strategy can charge battery efficiently under 

different charging levels. During online charging, APU operates to output the tractive power and charge battery 

simultaneously. The proposed method not only enables that enough battery can be replenished, but also regulates 

APU to drive vehicle effectively. Compared with the rule-based method, the proposed charging management 

strategy can save fuel consumption by up to 42.8%. The satisfied performance of the presented charging 

management strategy owes to the optimal solution search by the explicit ECMS and accurate charging level 

prediction by the ANFIS. The prediction time listed in Table 3 shows that ANFIS can predict charging levels 

within 1 s, making it suitable for real-time applications.   

Table 3 Numerical results of energy consumption and calculation time in charging management 
Method Fuel Consumption (g) Fuel Reduction (%) Prediction Time (s) 

eECMS-LC 269.6 42.8 0.619 
eECMS-MC 316.9 32.8 0.621 
eECMS-HC 389.2 17.4 0.617 

Rule based method 471.6 - - 
Note: eECMS-LC, eECMS-MC and eECMS-HC respectively means the explicit ECMS methods for low, medium and high level 
charging.  

Through the sufficient simulation evaluation, it can be concluded that the proposed method improves the 

adaptability of common explicit ECMS to driving environment, and attains better fuel economy for REEV. 

Furthermore, the ANFIS based charging level prediction ideally directs online charging management with the 

instruction from explicit ECMS, further contributing to energy saving of REEV.  

4.3 Evaluation in HIL test 

To further validate the raised method in fast optimal solving, a HIL test is conducted on the platform, as 

shown in Fig. 9. The HIL test platform is made up of three host personnel computers (PCs) and one real-time 

controller. The control strategies are compiled in host PC 1 and downloaded to the real-time dSpace based 

controller. The vehicle model, including component sub-models, is executed in PC 2 and PC 3. The information 

of ND, Approach and ZE zones shown in Fig. 1 and driving cycles shown in Fig. 4 and Fig. 8 (a) are combined 

into three test scenarios, which are supplied by host PC 1. The communication between the controller and host 

PCs is attained via the CAN bus communication. 



 

 

 

Fig. 9. HIL test platform. 

The HIL test is respectively performed on the same driving cycles shown in Fig. 4 and Fig. 8 (a). Table 4 

lists the test results of the proposed SL-eECMS in energy management, and Table 5 demonstrates the assessment 

of the raised method in charging management. As can be found from Table 4, the raised SL-eECMS performs 

better than original ECM, with 4.8% fuel saving in Case 1 study, and also outperforms the rule-based strategy in 

real time, with 6.9% reduction in fuel consumption. In Table 4, the one step time cost means the one-step optimal 

solution solving time. As can be found, the raised SL-eECMS can obtain optimal solution for one-step control in 

less than 0.01 s, satisfying the requirement for real-time implementation. In Table 5, the proposed on-board 

charging management method performs well under different charging levels, compared with the rule-based 

strategy in practical situations. The optimal solution solving speed is also acceptable, with one step time cost less 

than 0.01 s under various charging levels, proving the online application potential of the raised algorithm. 

Table 4 Numerical results of energy consumption and calculation time by different methods 

Case Method Fuel Consumption (g) Fuel Reduction (%) One Step Time Cost (s) 

1 
Rule based Strategy 701.2 - 0.0056 

SL-eECMS 652.3 6.9 0.0093 
Original ECMS 687.1 2.1 0.0087 

2 
Rule based Strategy 667.2 - 0.0055 

SL-eECMS 626.2 6.1 0.0096 
Original ECMS 649.3 2.7 0.0086 

Table 5 Numerical results in HIL test 

Method Fuel Consumption (g) Fuel Reduction (%) One Step time Cost (s) 
eECMS-LC 271.3 44.1 0.0091 
eECMS-MC 319.5 34.1 0.0093 
eECMS-HC 392.3 19.0 0.0095 

Rule based method 484.5 - 0.0067 
V. CONCLUSIONS 

This paper presents a novel cooperative power source management strategy by virtue of Internet of Vehicles. 

The developed cooperative strategy incorporates instantaneous energy management and charging management, 

accomplishing efficient power source management. The self-learning explicit equivalent minimization 



 

 

consumption strategy, integrating the improved quantum particle swarm optimization, is preferred to complete 

energy management, and the adaptive neuro-fuzzy inference system is applied in online charging management. 

Simulation and hardware-in-the-loop test evaluation demonstrates the anticipated performance of the raised 

method. In energy management, the presented method behaves better than common equivalent minimization 

consumption strategy, and the optimality raised by the proposed method reaches 95.8% of that by global dynamic 

programming. In charging management, proper online battery charge is performed according to the predicted 

charging level. By the novel developed method, the fuel consumption during online charge can be saved up to 

42.8%.  

In the future work, we plan to perform the research on understanding the interaction between wireless 

transmission quality and implication of the cooperative control strategies, trying to minimize the communication 

time delay and maximize the efficiency of information transformation. Besides, vehicle-environment cooperation 

methods that incorporate more information into vehicle control will be carefully investigated, and the impact on 

vehicle performance from driving behaviours will also be studied.  
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