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Abstract: A powerful aspect of effective field theories is connecting scales through renor-
malisation group (RG) flow. The anomalous dimension matrix of the Standard Model
Effective Field Theory (SMEFT) encodes clues to where to find relics of heavy new physics
in data, but its unwieldy 2499 × 2499 size (at operator dimension 6) makes it difficult to
draw general conclusions. In this paper, we study the flavour structure of the SMEFT one
loop anomalous dimension matrix of dimension 6 current-current operators, a 1460× 1460
submatrix. We take an on-shell approach, laying bare simple patterns by factorising the en-
tries of the matrix into their gauge, kinematic and flavour parts. We explore the properties
of different diagram topologies, and make explicit the connection between the IR-finiteness
of certain diagrams and their gauge and flavour structure. Through a completely general
flavour decomposition of the Wilson coefficient matrices, we uncover new flavour selection
rules, from which small subsystems emerge which mix almost exclusively amongst them-
selves. We show that, for example, if we neglect all Yukawa couplings except for that of the
top quark, the selection rules produce block diagonalisation within the current-current op-
erators in which the largest block is a 61×61 matrix. We provide all the ingredients of the
calculations in comprehensive appendices, including SM and SMEFT helicity amplitudes,
and explicit results for phase space integrals and gauge contractions. This deconstruction
of the matrix, and its resulting block-diagonalisation, provides a first step to understand-
ing the IR-relevant directions in the SMEFT parameter space, hence closing in on natural
places for heavy new physics to make itself known.
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1 Introduction

While the reasons to expect new physics beyond the Standard Model (BSM) remain com-
pelling, the fact that we haven’t yet seen definitive evidence for new particles at the LHC
implies a hierarchy between the electroweak scale and the heavier scale of new physics. In
this case, the Standard Model effective field theory (SMEFT) provides a powerful frame-
work to understand the phenomenology of heavy new physics in a model independent way,
in terms of coefficients of higher dimensional operators.

The leading (lepton-number conserving) BSM effects begin at dimension 6 in the
SMEFT. There are a total of 2499 independent baryon-number-conserving parameters in
the dimension 6 Lagrangian, so a pressing issue is to identify the most important subsets
of parameters. It is particularly necessary to identify significant flavour directions, since
nearly all the parameters are elements of flavour matrices. Given the extremely strong
constraints from measurements of flavour changing and/or CP violating processes, a new
physics scale in the TeV or tens of TeV scale implies strong suppression in the Wilson
coefficients of flavour changing or CP-odd operators, which can be achieved for example
by imposing flavour and CP symmetries onto the theory.

The large number of parameters in the SMEFT, and the relatively few very precisely
measured observables, makes the inclusion of loop effects necessary for an understanding of
the constraints on individual operators. The full dimension 6 one loop anomalous dimen-
sions were first calculated in refs. [1–3], and have been implemented in public codes [4–7].
Flavour is inherent in the SMEFT renormalisation group equations (RGEs), since the Higgs
and top quark are kinematically accessible, meaning that significant Yukawa interactions
enter into divergent loop diagrams. At one loop, flavourful observables are hence dependent
on flavour-universal operators (e.g. [8–11]), and flavourless observables are dependent on
flavour violating or non-universal operators (e.g. [12–14]).
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Knowledge of the anomalous dimensions therefore allows us to ask and answer ques-
tions relevant for phenomenology at the weak scale and below. Such questions which have
received attention in the decade since the publication of the full SMEFT anomalous di-
mension matrices can often be phrased as “starting with particular operators at the high
scale, which effects are generated by running?” and “starting with a particular effect at
the low scale, which operators at the high scale can generate it by running?”. The quan-
titative answers to these questions are particularly easily obtained by public codes which
solve the RGEs numerically, and can be used to put new constraints on operators, or gain
insights into connected phenomenology across scales. The inherent patterns and struc-
ture in the anomalous dimension matrix itself, however, remain comparatively unexplored,
and are the focus of this paper. This structure represents important information about the
SMEFT, since when diagonalised the anomalous dimension matrix tells us which directions
in parameter space are enhanced or suppressed in the IR relative to their naive scaling di-
mension of six. Combined with a broad and model-independent prior on the important
coefficients at the UV scale (for example based on the space of tree level weakly coupled
UV completions [15], and/or on flavour and CP symmetries [16, 17]), an understanding of
these directions can thus point to motivated search strategies for new physics in LHC and
flavour data.

Some substructure within the matrix has been found [18]; in particular many zeroes
in the matrix can be understood based on helicity arguments [19]. More recently, on-shell
methods have been found to be powerful in calculating also its non-zero entries [20–29].
In this paper, we explore the additional substructure that can be uncovered once gauge
and flavour information is included. These aspects are often glossed over when studying
EFTs on-shell, whose natural focus is on kinematic and helicity properties.1 But since they
account for the vast majority of the SMEFT parameters, their effects in running cannot
be ignored.

An advantage of working on-shell is that the gauge, flavour, and kinematic parts of
amplitudes factorise simply. Moreover, in the case of indistinguishable particles each of
these pieces inherits a definite transformation under crossing symmetry, which in turn
maps neatly onto irreps of the gauge, flavour, and angular momentum groups [21, 33, 34].
As a starting point, in this paper we focus on the operators with four fields and total
helicity zero ((n,∑h) = (4, 0)), as nothing else mixes into these operators apart from by
amounts proportional to small Yukawas. Moreover, they comprise the majority (1460) of
the parameters2 in the dimension 6 SMEFT, and represent most of the operators that can
be generated at tree level in weakly coupled UV completions [15, 35, 36]. For the Wilson
coefficients of these operators, we show a convenient and completely general decomposition
based on irreducible representations (irreps) of the SU(3)5 flavour group. In this basis,
subsets of coefficients corresponding to various flavour symmetry assumptions can be easily
isolated.

We go on to show that we can understand each entry of the anomalous dimension
matrix in terms of a gauge factor, a flavour factor, and a kinematic factor. Each one of

1See however refs. [28, 30–32] for amplitude EFT bases which take account of flavour indices.
2This number excludes the components of Hud and LedQ operators, for reasons outlined in section 2.5.
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these factors is repeated in many places in the anomalous dimension matrix, generating
patterns. We calculate each of these factors, and explain patterns and zeroes. We thereby
provide the first check of many entries of the known SMEFT anomalous dimension matrix.

Finally, we derive new selection rules based on the quantum numbers of the Wilson
coefficients under the flavour irrep decomposition. This allows us to block-diagonalise the
anomalous dimension matrix (the size of the blocks depending on which small Yukawa
couplings are neglected), where the phenomenology induced by the operators of each block
can be broadly identified through their flavour quantum numbers. This analytic block
diagonalisation is a significant step towards a fully diagonal matrix — in the case where all
light Yukawas (all except yt) are neglected, the largest block allowed by these selection rules
is 61 × 61, a significant reduction on the 1460 × 1460 block achieved by helicity selection
rules alone.

The paper is organised as follows. In section 2, we review the on-shell way of describing
the dimension 6 SMEFT and the helicity non-renormalisation theorems, justifying our
choice of studying the operators with four fields and vanishing total helicity. We introduce
a compact notation to write the kinematic part of the relevant SM amplitudes as well as the
amplitudes corresponding to the chosen set of dimension 6 operators. The symmetric and
antisymmetric gauge structures are shown and we decompose the Wilson coefficients into
their irreducible representations under the full flavour symmetry group of the SM, within
a general spurion analysis. In section 3, we review the on-shell techniques to compute
anomalous dimensions, and show examples of how to compute the IR finite pieces as well
as the soft and collinear divergent pieces. We also detail all possibilities for the gauge and
flavour factors that can arise in the anomalous dimensions, making the connection with
the corresponding diagram topology. In section 4, we analyse the patterns and zeroes of
the anomalous dimension matrix, beyond helicity arguments. We exhibit these patterns in
submatrices of the full anomalous dimension matrix of the (4, 0) operators, separating the
IR finite, soft and collinear pieces, and decomposing each entry by its kinematic, gauge
and flavour factors. Section 5 identifies flavour selection rules and studies how different
approximations lead to different preserved quantum numbers. We also comment on how
our analysis can be extended to operators beyond the (4, 0) operator block. In section 6,
we discuss applications of our work, and give a concrete phenomenological example by
focusing on lepton flavour non-universality in B decays.

2 SMEFT: the on-shell way

The Lagrangian of the SMEFT at dimension 6 has a large number of parameters and
many hidden redundancies, manifested as field redefinitions which relate different operator
structures. S-matrix elements are unaffected by these redefinitions. The S-matrix of the
EFT is therefore a much simpler object than the Lagrangian, and the complexity induced
by these redundancies can be avoided by studying scattering amplitudes — a basis of
higher-dimensional effects can be constructed directly in term of on-shell massless [37–39] or
massive [40–44] amplitudes. Properties of the SMEFT, obscured in the Lagrangian, become
transparent in terms of these helicity amplitudes, for example powerful non-interference [45]
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and non-renormalisation [19, 46] theorems. Moreover, it was recently shown how the non-
zero entries of the anomalous dimension matrix can be calculated easily via generalised
unitarity3 methods [20–23, 25–27, 48–50]. These methods have the advantage of allowing
calculation of loops using on-shell tree-level amplitudes.

In this section, we describe the (massless) helicity amplitudes induced in the SMEFT
and in the SM, and explain the helicity-based non-renormalisation arguments [19] which
justify our choice of operators to focus on as a starting point. For this set of operators, we
discuss how the kinematic part of the amplitudes can be written in a compact form as a
product of two currents that connects to its partial wave decomposition. We also use group
theory to describe the possible gauge and flavour parts of the amplitudes. In particular, for
the flavour structure, we decompose the Wilson coefficients into their irreducible represen-
tations under the full flavour symmetry of the SM, i.e. SU(3)5, which allow us to perform
a fully general spurion analysis. This naturally allows for a description in terms of new
quantum numbers, similar to isospin and strangeness for the SU(3) of light quark flavours.
We further connect the quantum numbers to the range of phenomenology generated. This
sets the groundwork to analyse the flavour structure of the anomalous dimension matrix
in later sections.

2.1 Singling out the ‘(4, 0)’ operators

If we take all particles to be massless, we can define SM states of definite helicity as

H, ψ+, ψ−, V +, V −, (2.1)

where H represents the Higgs boson, ψ± represent any fermion and V ± represent any
vector, with helicities

h = 0, 1
2 , −1

2 , 1, −1, (2.2)

respectively, defined for incoming particles.4 The various classes of SMEFT dimension 6
operators can then be labelled by coordinates (n,∑i hi), corresponding to the number of
legs n and total helicity ∑i hi of the amplitudes they induce at tree level.5 So, we refer
to e.g. the operators ψ2ψ̄2, ψψ̄H2D and H4D2 as the (4, 0) operators, since they induce
4-point amplitudes with zero total helicity.

This classification of operators in terms of their helicity structure leads to ‘non-
interference’ [45] and ‘non-renormalisation’ [19] theorems. These latter can be understood
as they apply to the SMEFT at dimension 6, by firstly noticing that up to a few exceptions
(discussed below), the (n,∑i hi) coordinates of tree-level SM amplitudes obey the rule∣∣∣∑hSM

∣∣∣ ≤ nSM − 4. (2.3)

3For a review, see [47].
4Taking particles to be incoming is slightly unusual, but perfectly self-consistent. See appendix A for

all our spinor conventions.
5(n,∑

i
hi
)
are linear combinations of the holomorphic coordinates introduced in [19].
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Furthermore, by unitarity, if 2-cuts of a loop amplitude vanish, then the loop is finite, and
cannot contribute to anomalous dimensions.6 This leads to the following relation between
tree-level amplitudes and the amplitudes that they can renormalise [19]:

A B

±

±

∓

∓
= C

 nA∑
hA

+
(
−4
0

)
+

 nB∑
hB

 =

 nC∑
hC

 .

(2.4)

The helicity of the legs on either side of the cut are equal and opposite, since the momenta
of the legs of the tree-level amplitudes are all defined incoming. So if ‘A’ and ‘C’ are
SMEFT amplitudes and ‘B’ is a SM amplitude, when the relations in eqs. (2.4) and (2.3)
are taken in combination, we find constraints on which ‘C’ operators can be renormalised
by which ‘A’ operators, in terms of their respective helicities and number of legs. This is
shown in figure 1: only operators whose (n,∑i hi) coordinates lie on or within any given
pink cone can be renormalized by the operators at the apex of the cone, according to the
restrictions on SM amplitudes (2.3). It can be seen that the X3 (three field strength)
operators with (n,∑i hi) = (3, 3) are not renormalised by any other operator type, and
can only run amongst themselves. The same is true of the (4, 0) operators H4D2, ψ2ψ̄2,
and ψψ̄H2D.

However, we must now come back to the exceptional SM amplitudes, mentioned above
eq. (2.3). It turns out that there are SM amplitudes which break the relation (2.3), since
they have 4 legs but Σihi = ±2, thus allowing renormalisation outside the pink cones. This
is shown by the dotted green arrow in figure 1, allowing the (4, 0) operators to be renor-
malised by (4,±2) operators, and vice versa. However, these exceptional SM amplitudes
can only be produced by Yukawa diagrams with one up-type (Yu) and one down-type (Yd
or Ye) Yukawa interaction, and are therefore always suppressed by small Yukawa entries;
the largest effect possible is suppressed by yb [18, 19].

In summary, we see from these helicity arguments that nothing runs into the (4, 0)
operators apart from by amounts proportional to small Yukawas. On the other hand, the
(4, 0) operators can contribute unsuppressed to the anomalous dimension matrix of ψ̄ψH3

and H6 operators, so they are not a closed system under renormalization. Studying the
running only within the (4, 0) operators is nevertheless a good starting point for a general
analysis of the structure of the anomalous dimension matrix. From a linear algebra point
of view, the running out of the (4, 0) block of the anomalous dimension matrix will not
change the general conclusions of this restricted study, since the eigenvalues of the (4, 0)

6Caveat: if the loop has IR divergences, then the 2-cut may vanish in dimensional regularisation
even though there may be a compensating UV divergence. But IR divergences can only arise in self-
renormalisation diagrams, so this issue will not change the arguments of this section, which are focused on
mixing between different classes of operators. We will come back to the issue of IR divergent diagrams in
section 3.
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Figure 1. The classes of dimension 6 SMEFT operators, plotted according to the number of legs
n, and total helicity, Σh, of their corresponding tree-level amplitudes. The diagram can be reflected
about the n axis by Hermitian conjugation to obtain the full set of operators. Pink cones delineate
operators that can be renormalised by the operators at the apex of the cone. The green dotted
line indicates exceptions to this rule due to SM amplitudes containing a product of two different
Yukawa interactions.

block will remain unchanged, while the eigenvectors will change only by the addition of
admixtures of operators in the other classes.7

Another powerful motivation for focusing on the (4, 0) operators is that they possess the
majority of the parameters: 1460 real parameters, out of 2499 in total for the baryon- and
lepton-number conserving dimension 6 SMEFT. They also represent most of the operators
that can be generated at tree level in weakly coupled UV completions [15, 35, 36], making
them generally phenomenologically important.

7To see this, consider a general Wilson coefficient vector c = (cin, cout) which separates into parts that
are respectively inside and outside the (4, 0) block. The anomalous dimension matrix — modulo the small
exceptional amplitudes considered above — has the block triangular form

γ =

 γ
in→in

0

γ
in→out

γ
out→out

 .

This means that the eigenvalue equation reads

 γ
in→in

0

γ
in→out

γ
out→out

( cin

cout

)
=

 γ
in→in

· cin

γ
in→out

· cin + γ
out→out

· cout

 = λ

(
cin

cout

)
.

for some eigenvalue λ. From the top line one can see that, unless cin = 0, both the eigenvalue λ and the
eigenvector’s cin composition is determined entirely by the γ

in→in
submatrix.
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2.2 Formalism and factorisation for on-shell amplitudes

2-cuts, as shown in eq. (2.4), are not only useful for identifying zeros in the anomalous
dimension matrix, but can also be used to calculate non-zero entries of the matrix [20–
22, 25–27, 49, 50], as we will summarize in section 3. The ingredients needed are simply
on-shell tree-level amplitudes, both at dimension 6 and dimension 4.

Each amplitude can be factorised into three parts: kinematic, gauge and flavour. The
kinematic part carries only Lorentz indices, the gauge part carries only gauge indices (and
can be further factorised into pieces carrying the indices of each SM gauge group), and the
flavour part carries only flavour indices:

A = (kinematics)× (gauge)× (flavour). (2.5)

We can therefore separately construct each of these parts, and decompose them in any way
that simplifies the problem. The overall cut-constructible loop amplitude can then also be
factorised into the tensor product of each of these separate parts.

For the kinematic parts of on-shell amplitudes it is convenient to use spinor-helicity
variables, where the momenta for massless particles is written as

pµσ
µ

αβ̇
= |p〉α[p|β̇ , pµσ̄

µ,αβ̇ = |p〉α[p|β̇ , (2.6)

where σµ
αβ̇

= (1, ~σ), σ̄µ,α̇β = (1,−~σ) and ~σ are the usual Pauli matrices. The bras and
kets represent 2-component spinors, which can be contracted together via the fully anti-
symmetric tensor εαβ . We have that

〈ij〉[ji] = 2pi · pj = sij , (2.7)

where sij = (pi + pj)2 and we use the convention s12 ≡ s, s13 ≡ t and s14 ≡ u. More
details on the spinor-helicity formalism and the conventions used are given in appendix A.
Amplitudes can then be written as product of integer powers of angle and square brackets,

A(1h12h2 · · ·nhn) ∝
∏
i<j

〈ij〉aij [ij]bij . (2.8)

The 3-point renormalisable interactions of the Standard Model can be written

ASM(ψ+ψ+H(†)) ∝ Y [12], ASM(ψ−ψ−H(†)) ∝ Y † 〈12〉, (2.9)

for Yukawa interactions (in our conventions, Y is an element of the Yukawa matrices
Yu, Yd, Ye, and Y † an element of their Hermitian conjugates) and

ASM(ψ+ψ−V −) ∝ 〈23〉2
〈12〉 , ASM(ψ+ψ−V +) ∝ [13]2

[12] , ASM(HH†V −) ∝ 〈13〉〈23〉
〈12〉 ,

(2.10)

for gauge interactions. The gauge and flavour tensors then simply multiply these structures;
the complete forms are given in appendix B.1.

– 7 –
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A factorizable 4-point amplitude can be computed by ‘gluing’ together two 3-point
amplitudes and requiring correct factorization in all-channels. Writing the amplitudes in
this form allows us to easily unveil the helicity patterns of the SM amplitudes. The full list
of 4-point SM amplitudes with zero total helicity, in this notation, is given in appendix B.2.

Moving to SMEFT interactions, we can set n = 4 and dim{spinor} = 2 (i.e. dimension
6 operators) and list all possible contact terms involving particles with helicity |hi| ≤ 1:

A6(V +V +H†H) ∝ [12]2, A6(V +ψ+ψ+H) ∝ [12][13], A6(ψ+ψ−H†H) ∝ [132〉,
(2.11)

A6(ψ+ψ+ψ+ψ+) ∝ [12][34]; [13][24], A6(ψ+ψ+ψ−ψ−) ∝ [12]〈34〉, A6(H†HH†H) ∝ sij ,

where the momentum insertion contracted with spinor brackets is represented by [ijk〉 ≡
[i|pj |k〉. We can see that there are not so many options for the spinor structure, which
reveals the simplicity of the kinematic part of the dimension 6 SMEFT amplitudes in the
unbroken phase [37, 38]. The proliferation of operators is instead due to the rich flavour
and colour structure in the SM fields. Working directly with on-shell amplitudes will allow
us to use the simplicity of the kinematic structure to further explore the complexity of the
flavour patterns. The full list of (4, 0) SMEFT amplitudes, and the map to the operators in
the Warsaw basis [51] can be found in appendix C. In particular, for operators with multiple
copies of a field, we write a basis in terms of symmetric and antisymmetric objects which
make explicit the exchange properties of the amplitudes, as per [38].

2.3 J -vector and partial waves decomposition

In order to calculate the anomalous dimensions within the (4, 0) operators via on-shell
unitarity methods, we will need the tree-level amplitudes induced by those operators, as well
as SM tree amplitudes which also have 4 legs and zero total helicity. All these amplitudes,
both at dimension 4 and at dimension 6, can be written as a product of two currents, and
so we can introduce a more compact form.

In spinor helicity notation, we can collect the currents into a vector J A whose com-
ponents correspond to right- or left-handed fermion currents (components J 1 and J 3

respectively) and a Higgs current (the J 2 component):

J A(ij)α̇β ≡


|i]α̇ |j〉β

1
2

(
|i]α̇ |i〉β − |j]α̇ |j〉β

)
|j]α̇ |i〉β

 , (2.12)

which is normalized such that

εα̇β̇ε
αβ J A(ij)α̇αJ B(ji)β̇β = sij


1 0 0
0 −1

2 0
0 0 1

 . (2.13)

Note that J has the spinor indices of a Lorentz vector. Towards the end of this section we
will show that J A is a triplet of angular momentum in the two body centre-of-mass frame,
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but we begin by explaining how dim-4 and dim-6 amplitudes can be constructed explicitly
from products of J s.

We use the following conventions for the diagrammatic currents: 1, 3 always label
particle momenta and 2, 4 always label antiparticle momenta (where the momenta are
always incoming). The three currents are then depicted as

1

2

= Higgs ,

1,+

2,−

= RH fermion ,

1,−

2,+

= LH fermion , (2.14)

where RH (LH) denote right- (left-) handed. We further use dotted blue/red lines to
depict a current which can be any of the above options, and solid blue/red lines to depict a
current which can be either a left- or right-handed fermion current. Then all the operator
amplitudes in the (4, 0) block of the dimension 6 SMEFT can be drawn by putting two of
these currents together.

In the case of distinguishable currents, the kinematic parts of all (4, 0) operator ampli-
tudes have the form

1

2

3

4

= −2J A(12)J B(34) =


2 [13] 〈42〉 2〈23〉 [31] 2 [14] 〈32〉
2〈41〉 [13] t− u 2 [41] 〈13〉
2〈14〉 [32] 2 [23] 〈31〉 2〈13〉 [42]

 , (2.15)

where A and B are the row and column indices of the matrix, and the contraction with
εα̇β̇ε

αβ is implied whenever the Lorentz indices are omitted from the J A. We can easily
identify (cf. the tables in appendix C) the amplitudes corresponding to operators of the
form ψ2ψ̄2 (A,B ∈ {1, 3}, such as OLL,OLe,Oee), ψψ̄H2 (A = 2 and B ∈ {1, 3} or
vice-versa, such as OHL(1),OHe). Note that it is not possible to have two distinguishable
Higgs currents, so the entry for A = B = 2 in eq. (2.15) doesn’t correspond to any SMEFT
operator, so for four-Higgs operators we must instead consider the case of indistinguishable
currents, which we do now.

In the case of indistinguishable currents, the overall amplitude is (anti)symmetric under
the exchange of the pair of bosons (fermions) or antibosons (antifermions). Necessarily
A = B, and the kinematic parts of the operators for the symmetric and antisymmetric
combinations, respectively, take the form

1

2

3

4

( ) = −4J A(12)J A(34)− 4J A(32)J A(14) =

 0
6t
0

 , (2.16)

1

2

3

4

[ ] = −4J A(12)J A(34) + 4J A(32)J A(14) =


8 [13] 〈42〉
2(s− u)
8〈13〉 [42]

 , (2.17)
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where A is the row index of the vector. Notice that for fermions only the antisymmetric
combination is possible,8 whereas for Higgs currents there are two distinct kinematic factors
for the symmetric and antisymmetric cases.9 We can then see, by referring to appendix C,
that the (anti)symmetrised product of Higgs currents produces the kinematic parts of
the four Higgs operator OHD+ (OHD−). And the antisymmetrised products of fermion
currents produce the kinematic parts of the four fermion operators with identical fermions,
e.g. Odd, OLL, etc.

The kinematic factors associated with the dimension 4 (SM) amplitudes can also be
written as products of two currents, with a propagator factor. The kinematic parts of the
gauge amplitudes can all be written

1

2

3

4

= 1
s12
×−2J A(12)J B(34) , (2.18)

and the Yukawa amplitudes can be written (here, free indices refer to fermions, {A,B} =
{1, 3}, as indicated by the solid lines)

1

42

3

= 1
s14
× J A(12)J B(34) (A 6= B) , (2.19)

1

2

3

4

= 1
s13
× J A(12)J 2(34) , (2.20)

1

2 4

3

= 1
s14
× J A(12)J 2(34) . (2.21)

So, all (4, 0) amplitudes at both dimension 6 and dimension 4 can be phrased as products
of two J A vectors. It turns out that the entries of the vector can be projected into angular
momentum eigenstates, and thus make the connection with the partial wave decomposition
treatments of [21, 39, 52]. For this, consider in the centre-of-mass frame, the θ, φ depen-
dence of a two particle state |J,M, h1, h2〉 with angular momentum quantum numbers J ,

8And gauge and flavour factors must enter in symmetric-symmetric or antisymmetric-antisymmetric
combinations to make an overall exchange antisymmetric amplitude.

9These must be respectively multiplied by symmetric and antisymmetric SU(2) factors to make overall
exchange symmetric amplitudes.
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M (given that the particles have respective helicities h1 and h2). We can infer the two
body state’s dependence in θ, φ by expanding the momenta i and j with respect to spinors
built out of reference momenta pointing in the z+ and z− directions (using the rotation
matrices of [53]):

|i〉 = cθ/2|z+〉 − sθ/2eiφ|z−〉, |j〉 = sθ/2e
−iφ|z+〉+ cθ/2|z−〉,

|i] = cθ/2 |z+]− sθ/2e−iφ |z−] , |j] = sθ/2e
iφ |z+] + cθ/2 |z−] . (2.22)

This allow us to compute 〈θ, φ|J A(ij)〉 and identify the trigonometric functions that appear
with the Wigner d-matrices. Now, given that [21]

〈θ, φ|J,M, h1, h2〉 = eiφ(h12−M)√2J + 1 dJMh12(θ), (2.23)

where h12 = h1−h2, we can compute the J A(ij) projection into different angular momen-
tum eigenstates,

〈J,M,+1
2 ,−

1
2 |J

1(ij)〉 =
∫ dΠ2

4π 〈J,M,+1
2 ,−

1
2 |θ, φ〉〈θ, φ|J

1(ij)〉

= 1√
2J + 1

δJ,1δM,1 |z+] |z−〉. (2.24)

where spinor indices are implicit and the integral measure over the 2-sphere is∫
dΠ2 ≡

∫ 2π

0
dφ
∫ 1

−1
d(cos θ) . (2.25)

Similarly,

〈J,M, 0, 0|J 2(ij)〉 = 1√
2J + 1

δJ,1δM,0
1
2(|z+] |z+〉 − |z−] |z−〉),

〈J,M,−1
2 ,+

1
2 |J

3(ij)〉 = 1√
2J + 1

δJ,1δM,−1|z+〉 |z−] . (2.26)

We see that the J A vector simply collects the states corresponding to the triplet of J = 1
partial waves. All operators within the (4, 0) block can be constructed from these J = 1
currents.

For when it comes to cutting loop amplitudes in section 3, we note therefore that two
legs of the same current are always in a J = 1 state, but two legs from different currents
are not necessarily so [21].

2.4 Gauge structure

Amplitudes contain invariant tensors of SU(3)c and SU(2)L, built out of the external states’
gauge indices. For the (4, 0) operators, we need to consider two cases. First, with one upper
(fundamental) and one lower (anti-fundamental) index of SU(N); in this case the only
invariant tensor is the Kronecker delta δab . Second, with two upper (fundamental) and two
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lower (anti-fundamental) indices of SU(N); in this case there are two possible invariants.
For distinguishable currents, similar to the Warsaw basis,10 we choose the invariants to be

δ δ ≡ δab δcd , λ λ ≡ [λA]ab [λA]cd , (2.27)

where the lambda matrices satisfy Tr[λAλB] = 2δAB and reduce to the Pauli (Gell-Mann)
matrices whenN = 2(3). For indistinguishable currents, it is more convenient to decompose
in terms of combinations with manifest exchange symmetry, δ δ = (δ δ) + [δ δ], where

(δ δ) ≡ δ(a
(b δ

c)
d) ≡

1
2 (δab δcd + δadδ

c
b) , [δ δ] ≡ δ[a

[b δ
c]
d] ≡

1
2 (δab δcd − δadδcb) . (2.28)

The above pairs of invariants satisfy the Fierz relations

(δ δ) =
(
N + 1

2N

)
δ δ + 1

4λλ ; [δ δ] =
(
N − 1

2N

)
δ δ − 1

4λλ . (2.29)

2.5 Flavour structure

To understand the flavour structure of the amplitudes, it will be advantageous to decompose
the Wilson coefficients into their irreducible representations (irreps) under

SU(3)5 = SU(3)Q × SU(3)u × SU(3)d × SU(3)L × SU(3)e . (2.30)

This is the flavour symmetry group of the SM gauge and kinetic terms, with the five
global U(1)s of the full SM Lagrangian factored out (these are trivially conserved by the
dimension 6 SMEFT RG). This SU(3)5 is preserved by the gauge interactions, and hier-
archically broken into smaller subgroups by the Yukawa matrices, which we define via the
Lagrangian11

LYuk = −Yu Q̄uH̃ − Yd Q̄dH − Ye L̄eH. (2.31)

Thus, we can get a better handle on the approximate flavour-space subsystems in the RG
in an appropriate basis of SU(3)5 irreps. By charging the Wilson coefficients under this
flavour group, we will implicitly perform a fully general spurion analysis, in which the full
SMEFT Lagrangian up to dimension 6 is invariant under SU(3)5.

Note, however, that we are not restricting the form of the Wilson coefficients, nor
reducing the number of parameters, but for two exceptions. In the (4, 0) block OHud and
OLedQ do not take the form of the product of two currents of given particle species, and
so we drop them from our treatment. The mixing of OHud with the rest of the (4, 0) block
is suppressed by a factor of Yu × Yd, the same parametric suppression that isolates (4, 0)
operators from the (4, 2) operators [19]. The mixing of OLedQ with the rest of the (4, 0)
block is even more suppressed, by a factor of Ye × Yd. Dropping OHud and OLedQ in this
manner means we need only consider three classes of Hermitian Wilson coefficients: c, cpq
and cprqs.12

10In this paper, as in the Warsaw basis [51], there is an extra factor of 1
4 for the SU(3) invariant [λA]ab [λA]cd

in ‘(8)’ operators.
11N.B. Our Yukawa matrices are the Hermitian conjugates of those in [1–3].
12These are Hermitian in the sense that (c)∗ = c, (cpq)∗ = cqp and (cprqs)∗ = cqspr.
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The H4D2 operators, with real Wilson coefficient c, are trivially singlets of SU(3)5. Of
the two-fermion operators, ψψ̄H2D, all their Wilson coefficients cpq transform as a

3F ⊗ 3F = 1F ⊕ 8F , (2.32)

under some SU(3)F , F ∈ {Q, u, d, L, e}, with the exception of OHud , whose Wilson coeffi-
cient is an irreducible 3d ⊗ 3u. The convention for the indices here are that upper indices
on the Wilson coefficients label the flavour of a fermion in the operator (i.e. fields that
transform as a 3F ), while lower indices label the flavour of an antifermion (i.e. fields that
transform as a 3̄F ). On the fields themselves, fermions carry lower indices and antifermions
carry upper indices.

Consider now the four-fermion current-current operators, ψ2ψ̄2. In the case of dis-
tinguishable currents F1, F2 ∈ {Q, u, d, L, e} and F1 6= F2, the Wilson coefficients cprqs
transform as a direct product of two current decompositions

3F1 ⊗ 3F1 ⊗ 3F2 ⊗ 3F2 = (1F1 ⊗ 1F2)⊕ (1F1 ⊗ 8F2)⊕ (8F1 ⊗ 1F2)⊕ (8F1 ⊗ 8F2) . (2.33)

In the case of indistinguishable currents, as with the kinematic and gauge structures
above, it is convenient to decompose the Wilson coefficients in flavour space in terms
of components that are entirely symmetric, or entirely antisymmetric, in the identical
particles:

cprqs = c
(pr)
(qs) + c

[pr]
[qs] , (2.34)

where

(c) ≡ c(pr)
(qs) ≡

1
4
(
cprqs + crpqs + cprsq + crpsq

)
, (2.35a)

≡ c[pr]
[qs] ≡

1
4
(
cprqs − crpqs − cprsq + crpsq

)
. (2.35b)

The (anti)symmetrised components in turn map neatly onto SU(3)F irreps. The symmetric
coefficient c(pr)

(qs) decomposes as

(3F ⊗ 3F )sym ⊗
(
3F ⊗ 3F

)
sym = 6F ⊗ 6F = 1F ⊕ 8F ⊕ 27F , (2.36)

whereas the antisymmetric coefficient c[pr]
[qs] decomposes as

(3F ⊗ 3F )antisym ⊗
(
3F ⊗ 3F

)
antisym = 3F ⊗ 3F = 1F ⊕ 8F . (2.37)

Note that, due to the absence of an antisymmetric gauge tensor, the Oee operator does
not support an antisymmetric flavour tensor c[pq]

[rs] [3], as its combination with the neces-
sarily antisymmetric kinematic structure would result in an overall exchange symmetric
amplitude, in violation of spin statistics.

To formulate the explicit decomposition into irreps, we use the conventions of [54,
55] developed for the SU(3) of light flavours u, d, s, and their familiar quantum numbers
of isospin and strangeness. Each component of a Wilson coefficient’s decomposition is
indexed by
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• dirrep, the irrep dimension;

• I, total “lightspin” (the generational analogue of isospin);

• I3, third component of “lightspin”, and

• Y, “thirdness” (the generational analogue of strangeness, a.k.a. hypercharge).

Acting on the fundamental 3F , these three quantum numbers {I, I3,Y} are realised by
matrices proportional to

λ2
1 + λ2

2 + λ2
3, λ3, λ8 , (2.38)

respectively, in terms of the Gell-Mann matrices.13 The {I, I3,Y} values of components
of the fundamental and antifundamental irreps are shown in figure 2. It can be seen here
that only the first two generations have non-zero I3 (hence the suggestion of the name
“lightspin”) while the third generation has only non-zero Y (hence “thirdness”).

We pause here to define what we mean by the generation indices. As far as possible,
it is most convenient to align these with the mass basis, which is straightforward and
implies no loss of generality for all fields except for Q (so, for example the right-handed
up-type fields uR, cR, tR can be simply labelled u1

R, u
2
R, u

3
R). Due to the CKM misalignment

between up-type and down-type left handed quarks, for the Q generations we can choose
either to work in the basis where Yu is diagonalised (‘up-basis’) or where Yd is diagonalised
(‘down-basis’). These are related by a rotation in quark flavour, i.e. by an SU(3)Q rotation,
under which components within an SU(3)Q irrep rotate amongst themselves, but the irreps
themselves remain unchanged. In the rest of this paper, we choose to work in the ‘up-
basis’, meaning that the flavour index on the quark doublet is identified with that of the
up-type quarks: Qp ≡ (upL, V p

q d
q
L)T . This is a convenient basis in which to understand the

anomalous dimension matrix, since the large top Yukawa in this basis is aligned entirely
to the third generation, which makes its effects more transparent.

We return now to the flavour decomposition of Wilson coefficients. If the dimension
dirrep of its irrep is larger than 1, the coefficient is flavour non-universal. Meanwhile, the
‘magnetic’ quantum numbers of the generational SU(3), I3 and Y, parameterise the degree
of off-diagonality. In terms of the number ni of ith generation particle (i.e. upstairs) indices
in the Wilson coefficient (and the number ni of ith generation antiparticle (i.e. downstairs)
indices)

I3 = 1
2 (n1 − n2)− 1

2 (n1 − n2) , (2.39)

Y = 1
3 (n1 + n2 − 2n3)− 1

3 (n1 + n2 − 2n3) . (2.40)

13We work in a convention where these are defined λ1 =

 · 1 ·
1 · ·
· · ·

, λ2 =

· −i ·i · ·
· · ·

, λ3 =

1 · ·
· −1 ·
· · ·

,

λ8 = 1√
3

1 · ·
· 1 ·
· · −2

.
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I3

Y

1
2

− 2
3

c3,1c3,2

c3,3

I3

Y

1
2

2
3

c3̄,1 c3̄,2

c3̄,3

Figure 2. Components of the fundamental irreps 3 and 3. Total lightspin (I) key: = 0, = 1
2 .

I3

Y

c1,1 I3

Y

1

1
c8,1c8,2

c8,3c8,4c8,5

c8,6

c8,7c8,8

I3

Y

2

2
c27,1c27,2c27,3

c27,4c27,5c27,6c27,7

c27,8c27,9

c27,10c27,11c27,12c27,13c27,14

c27,15c27,16c27,17 c27,18

c27,19c27,20c27,21c27,22

c27,23c27,24

c27,25c27,26c27,27

Figure 3. Components of the irreps 1, 8 and 27 as a function of their flavour charges. Total
lightspin (I) key: = 0, = 1

2 , = 1, = 3
2 , = 2.

For example, the coefficient c11
23 has n1 = 2, n2 = 1, n3 = 1 and hence (I3,Y) =(

3
2 , 1
)
. In figure 3 we show the components of the singlet, octet and 27-plet irreps on the

{I, I3,Y} plane.

2.5.1 Phenomenological interpretation of flavour quantum numbers

Explicitly, for the two-fermion operators transforming as 3F ⊗ 3F , the components of the
singlet (c1,1) and the octet (c8,i where i = {1, · · · , 8}) are related to the components of the
Warsaw basis coefficients cpq by14

c1,1 = c1
1√
3

+ c2
2√
3

+ c3
3√
3
, c8,1 = c1

3, c8,2 = c2
3, c8,3 = c1

2, c8,4 = c2
2√
2
− c1

1√
2
,

c8,5 = −c2
1, c8,6 = − c1

1√
6
− c2

2√
6

+
√

2
3c

3
3, c8,7 = c3

2, c8,8 = −c3
1. (2.41)

With these relations we can see more deeply the physical meaning of the SU(3)F quantum
numbers {I, I3,Y} shown in figure 3. The singlet c1,1 is the diagonal and flavour-universal

14Recall (cpq)∗ = cqp, (cprqs)∗ = cqspr.
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part of the Wilson coefficient, while the two components of the octet which also sit at
the origin in the {I3,Y} plane (c8,4 and c8,6) are diagonal but flavour non-universal. All
components away from the origin are flavour off-diagonal; furthermore if they have zero
thirdness (Y = 0) then they involve only the first two generations (c8,3 and c8,5), while
components with non-zero thirdness are off-diagonal involving the third generation (c8,1,
c8,2, c8,7, c8,8), as expected from eq. (2.40).

For the 27-plet irrep of the 4-fermion operators, this pattern continues. Specifically, the
three irrep components at the origin of the {I3,Y} plane (shown on the right in figure 3) are
diagonal but flavour non-universal, as seen in their relation to the Warsaw basis coefficients:

c27,12 = 1√
6

(
c11

11 + c22
22 − 4c(12)

(12)

)
, c27,16 = 1√

10

(
c11

11 − c22
22 − 4c(13)

(13) + 4c(23)
(23)

)
,

c27,18 = 1√
30

(
c11

11 + c22
22 + c33

33 + 2c(12)
(12) − 6c(13)

(13) − 6c(23)
(23)

)
. (2.42)

Any component away from the origin has some degree of off-diagonality. For components
lying on the inner dashed hexagon of the 27-plet (i.e. that are at the same position on the
plane as an octet component), this off-diagonality is not maximal, meaning that one of the
fermion flavours is unchanged in the interaction. For example, the two components at the
point (1, 0) can be written in terms of the Warsaw basis coefficients as

c27,11 = c
(12)
22 − c

11
(12), c27,15 = 1√

5

(
4c(13)

(23) − c
11
(12) − c

(12)
22

)
, (2.43)

where it can be seen that there is one flavour change between the first two generations, and
none in the third generation. This is in keeping with what we might expect for something
with zero thirdness Y but non-zero lightspin I, based on what we have seen for the octet
case. Conversely, the components on the inner dashed hexagon with Y 6= 0 are each off-
diagonal in the third generation but flavour-conserving in one of the first two generations.

Finally, the components on the outer dot-dashed hexagon of the 27-plet are maximally
flavour violating, meaning that no fermion involved in the interaction retains its flavour.
Again, their Y and I3 values indicate which generations are involved. For the components
with zero thirdness, c27,14 and c27,10, only the first two generations are implicated in the
interaction; in terms of the Warsaw basis coefficients these are simply c27,10 = c11

22 and
c27,14 = c22

11. Physically, if these describe a four-quark operator with down-type quarks,
they are the coefficients mediatingK0−K0 mixing (or for a four-lepton operator, muonium-
antimuonium oscillations). The components on the other vertices of the outer hexagon
are each maximally off-diagonal between the third generation and one of the first two
generations (and hence would mediate Bs or Bd mixing in a down-quark operator). The
components at the midpoints of the sides of the outer hexagon are instead off-diagonal in
all three generations. We provide relations between all the Wilson coefficients in the mass
basis to the irrep basis, and vice versa, in appendix G.

To expand on these arguments, in table 1 we give general examples of the types of
phenomenology that can be generated by operators whose coefficients have various charges
under the quark and lepton flavour groups. The C row and 3 column refer to com-
ponents lying at the vertices of the hexagon in the corresponding octet (see figure 3), as
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well as components with the same {I, I3,Y} charges in the 27-plet. The last row and
column, 4 and D , refer to components lying on the larger hexagon in the correspond-
ing 27-plet. In this case, the operator must be a singlet under all other flavour groups,
since at dimension 6 the 27-plet irrep can only exist as part of a 4-fermion operator with
identical currents. By ‘MFV FCNCs’ we refer to flavour changing neutral currents between
left-handed down-type quarks dpL → dqL, suppressed by CKM factors V ∗tpVtq as in the SM.
These can arise from operators involving only the third generation of quark doublets (N.B.
We are working in the ‘up-basis’ where the quark doublet is defined Qp ≡ (upL, V p

q d
q
L)T ).

By ‘non-MFV FCNCs’ we refer to all other types of FCNCs, for example between up-type
quarks, or right handed down-type quarks, and which do not come with CKM suppressions.
The ‘MFV FCNC’ phenomenology is the only part of table 1 which depends on our choice
of ‘up-basis’: in the equivalent ‘down-basis’, Wilson coefficients with these charges would
induce flavour changing neutral currents between left-handed up-type quarks upL → uqL
instead, suppressed by CKM factors V ∗qbVpb.

Since this framework is couched in flavour groups, it is also straightforward to identify
the subsets of coefficients that may arise from flavour symmetric BSM physics. If we assume
the new physics respects an exact U(3)F flavour symmetry, then the only non-zero Wilson
coefficients are the ones for which dF = 1 (i.e. singlets). If instead the new physics couples
in a way which respects an exact U(2)F symmetry, then any dimensionality is allowed, but
all the other quantum numbers {I, I3,Y}F = 0, so only one component of each of the octet
and 27-plet survives.

In summary, by writing all the Wilson coefficients of the (4, 0) block in this fully general
‘flavour irrep basis’, we can categorise their flavour effects in terms of the quantum numbers
{dirrep, I, I3,Y}F . Another major advantage of this basis is that it renders the anomalous
dimension matrix automatically block-diagonal, as we will show in section 5.

3 Anomalous dimension matrix from generalized unitarity

In this section, we recap the approach of [21, 22, 25] to calculating anomalous dimensions
in theories such as the SMEFT. We explain how IR finite and IR divergent kinetic pieces
of the anomalous dimensions of the (4, 0) dimension 6 operators are calculated in this
approach, using the J vector notation of section 2.3. We then explain the calculation of
the gauge and flavour pieces of the anomalous dimension matrices, and advertise some of
their features and implications, to be discussed in more detail in the next section.

The 1-loop amplitudes can be expressed using the Passarino-Veltman (PV) [56] de-
composition such that

A1-loop =
∑
i

di I
box
4,i +

∑
i

ci I
triangle
3,i +

∑
i

biI
bubble
2,i +

∑
i

aiI
tadpole
1,i +R, (3.1)

where Ibox
4,i , Itriangle

3,i , Ibubble
2,i and Itadpole

1,i are D-dimensional scalar integrals with four, three,
two, and one propagator(s), respectively, and i indexes the different arrangements of the
external leg momenta at their vertices. The coefficients di, ci, bi, ai, and R are rational
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1 2 3 4

Lepton
Quark

d{Q,u,d} = 1 d{Q,u} > 1, {I3,Y}{Q,u} = 0 (I2 + 3
4Y

2){Q,u,d} = 1 (I2 + 3
4Y

2){Q,u,d} > 1

A

d{L,e} = 1 Higgs, EW, . . . top, MFV FCNCs non-MFV FCNCs e.g. meson mixing

B LFUV (quark flavour conserved) LFUV in MFV FCNCs LFUV in non-MFV FCNCs —

d{L,e} > 1, {I3,Y}{L,e} = 0 e.g. LFUV in Z decays e.g. RK

C LFV (quark flavour conserved) LFV in MFV FCNCs LFV in non-MFV FCNCs —

(I2 + 3
4Y

2){L,e} = 1 e.g. µ→ 3e, H → τµ e.g. B → Kµe

D e.g. muonium oscillations, — — —

(I2 + 3
4Y

2){L,e} > 1 τ+ → µ−e+e+

Table 1. Coarse overview of phenomenology generated by operators whose Wilson coefficients
have different flavour charges. The rows (labelled by circled letters) give four different scenarios for
leptonic flavour charges. We have grouped together L and e here, but for each case we assume that
only one carries the flavour charges given. Similar logic applies to the columns (labelled by circled
numbers), which list charges for Q, u and d (note that the scenarios listed are not exhaustive).
Within the table, we give examples of phenomenology that can be generated by operators carrying
the specified charges, including lepton flavour violation (LFV), lepton flavour universality violation
(LFUV) and flavour changing neutral currents (FCNCs).

functions of kinematic invariants (and also include gauge and flavour factors). The practi-
calities of calculating the anomalous dimensions from cut loop amplitudes depends on the
integrals appearing in their Passarino-Veltman decomposition: we can usefully classify the
amplitudes as (a) IR finite, (b) containing soft IR divergences, and (c) containing collinear
IR divergences.

In practice, we only need consider three scalar integrals that appear in 2 → 2 ampli-
tudes [22]:

Ibub,massive
2 =

1

2

3

4
=
∫ d4k

(2π)4i

1
k2(k + p3 + p4)2 , (3.2)

Ibub,massless
2 = i =

∫ d4k

(2π)4i

1
k2(k + pi)2 , (3.3)

Itriangle
3 =

1

2

3

4
=
∫ d4k

(2π)4i

−1
k2(k + p3)2(k + p3 + p4)2 . (3.4)

It will be convenient to factorise the product of the dimension 6 and SM amplitudes
coming from Cut [A1-loop] into a product of their respective kinematic, gauge, and flavour
factors:

A6 ×ASM = (kinematics)× (gauge)× (flavour) . (3.5)

In the remainder of this section, we derive each of these pieces in turn for the anomalous
dimensions of the (4, 0) operators. We begin with the kinematic factors in the next subsec-
tion. The gauge factors are discussed in section 3.2 and the flavour factors in section 3.3.

– 18 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
6

3.1 Kinematic factors

We calculate the kinematic pieces of the anomalous dimension matrices using the PV
decomposition of the loop diagrams, classifying them by their IR properties. As we will
show, just a few phase space integrals appear. The magic behind this simplicity is angular
momentum conservation, which was explored in [21, 39]. The summary of our results using
the diagrammatic representation presented in section 2.3 is shown in appendix E and we
detail a few examples in the following.

3.1.1 IR finite pieces

Many of the 4-point loop amplitudes that appear in the calculation of the anomalous
dimensions are IR finite. This includes all amplitudes responsible for mixing between
operators with different species of particles. Their PV decomposition comprises a single
scalar bubble15

A1-loop(1, 2, 3, 4) = b
1

2

3

4
, (3.6)

where we have written Ibub,massive
2 diagrammatically. If we define a ‘Cut’ operation that

places two scalar propagators on-shell,16 then the r.h.s. is trivialised

Cut
[
bIbub,massive

2

]
∝ b

(∫
dΠ2

)
, (3.7)

where dΠ2 is the two-body phase space measure in the center-of-mass frame, eq. (2.25).
For the loop amplitudes relevant for the anomalous dimension matrix, the l.h.s. evaluates
to a product of a tree amplitude A6, containing a dimension 6 operator, and a Standard
Model tree amplitude, ASM.

Cut [A1-loop(1, 2, 3, 4)] ∝
∫

dΠ2 A6(1, 2, 3′, 4′)×ASM(−4′,−3′, 3, 4) , (3.8)

where the primed momenta are a (θ, φ) rotation of their unprimed counterparts in the
centre-of-mass frame.

Evaluating the above, we extract directly the coefficient bi, and therefore infer the UV
divergence of the 1-loop amplitude. Normalising the above expressions appropriately leads
to the master formula of [22] in the IR finite case,

3′1

4′2

A6,j

3−3′

4−4′
ASM = γij

31

42

A6,i

−2(i)nψ
∫ dΠ2

2ρ · 4π
∑
ext.
A6,j(1, 2, 3′, 4′)×ASM(−4′,−3′, 3, 4) = γij A6,i(1, 2, 3, 4) , (3.9)

15Generally, one might worry about tadpole diagrams, but they do not contribute to the anomalous
dimension of the operator at one loop, nor do they contribute to the discontinuities in the amplitude (as
can be seen in dimensional regularisation, where they are trivially scaleless and zero in the case of massless
particles).

16E.g., via the substitution i
k2 → 2πθ(k0)δ(k2) acting on two scalar propagators [57, section 2.1].
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where
∫
dΠ2 is the 2-sphere measure (eq. (2.25)), nψ is the number of fermion lines cut and

ρ = 0(1) if the particles being cut are (in)distinguishable. ∑ext denotes a sum over possible
ways of arranging pairs of the external legs on different sides of the cut. The anomalous
dimension matrix, γij , is defined at the level of Wilson coefficients as

dCOi
d lnµ =

∑
j

1
16π2 γijCOj . (3.10)

The SM gauge amplitudes with distinguishable currents consist only of the s-channel
diagram, so the product of the possible dimension 6 and SM amplitudes is given by

= γdist
loop , (3.11)

where the dotted black line (i.e. the particle in the loop) can be either a fermion ψ or a
Higgs H, which leads to the phase space factors γdist

ψ and γdist
H , respectively. Writing the

amplitudes in terms of J vector as shown in section 2.3, we have that the l.h.s. of eq. (3.11)
is then given by17

−2(i)nψ
∫ dΠ2

4π (−2J A(12)J B(3′4′))(−2J B(4′3′)J C(34))
s34

. (3.12)

We use the trick of [20] to rotate the spinors associated with the internal loop momenta
such that:
|3′〉
|4′〉

 =

 c θ
2
−s θ

2
eiφ

s θ
2
e−iφ c θ

2


|3〉
|4〉

 ,
|3′]
|4′]

 =

 c θ
2
−s θ

2
e−iφ

s θ
2
eiφ c θ

2


|3]
|4]

 . (3.13)

Notice that the little group in the l.h.s. and r.h.s. of eq. (3.9) has to be the same, so
the spinors associated with the external particles cancel out. After rotating the internal
spinors, we can write

J B(3′4′) = MBX
L JX(34), J B(4′3′) = MBX

R JX(43), (3.14)

where we define the phase-space matrix, which carries all angular dependence, as

MBX
L =


c2
θ
2

2s θ
2
c θ

2
e−iφ −s2

θ
2
e−2iφ

−s θ
2
c θ

2
eiφ c2

θ
2
− s2

θ
2
−s θ

2
c θ

2
e−iφ

−s2
θ
2
e2iφ 2s θ

2
c θ

2
eiφ c2

θ
2


, (3.15)

17Note that the particle and antiparticle of a single current are always distinguishable.
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and the phase space matrix MBX
R can be obtained switching 3 ↔ 4, eiφ ↔ e−iφ and

s θ
2
↔ −s θ

2
. This allows us to have all angular information encoded in the product of the

matrices MBX
L MBY

R (note that the index B is not summed over). Fixing B = 1, 2, 3 we
can get the phase-space factors when cutting a right-handed fermion, Higgs or left-handed
fermion, respectively. The phase-space factor defined in eq. (3.11) is then given by

γdist
loop = −2(i)nψ

∫ dΠ2
4π MBX

L MBY
R

(−2J Y (43)J C(34))
s34

. (3.16)

Next, using eqs. (2.13) and (3.15), we find that the phase space factors depend only on the
degrees of freedom in the loop, i.e.

γdist
loop,ψ = 4

3 (for B = 1, 3) and γdist
loop,H = 2

3 (for B = 2) . (3.17)

We now turn to loop diagrams involving SM Yukawas. In the case where a single
current is cut, the SM amplitudes on the right of the cut have poles only in the t and/or
u-channels. For any allowable rearrangement of the helicities, the t-channel diagram gives

= γdist
ext , (3.18)

where γdist
ext indicates that the phase space factor in this case depends on the external

particles on the right side of the cut. In terms of the J -vectors we have that the l.h.s. of
eq. (3.18) is given by

−2(i)nψ
∫ dΠ2

4π (−2J A(12)J B(3′4′))J
B(4′3′)J C(34)

s3′3
. (3.19)

The only difference with the gauge s-channel calculation is that we have to include an extra
angular factor that appears due to the pole in the SM amplitude, i.e. s3′3 = s2

θ
2
s34.

γdist
ext = −2(i)nψ

∫ dΠ2
4π MBX

L MBY
R

J Y (43)J C(34)
s2
θ
2
s34

. (3.20)

Notice that, for example for B = 3 (and similarly for B = 1), the phase space integral gives

−2(i)nψ
∫ dΠ2

4π
M3X
L M3Y

R

s2
θ
2

=

 1 0 0
0 −4 0
0 0

 , (3.21)

where the final entry in the matrix is blank because it corresponds to a topology that
doesn’t exist: a Yukawa diagram cannot be constructed out of four left-handed fermion
fields. We then find that, in contrast to the gauge case, the phase space integral is indepen-
dent of the particle in the loop and changes if the external current is fermionic or scalar.
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The calculation for Yukawa u-channel SM diagram (which can have a fermion or a Higgs
propagator) is analogous and leads to exactly the same result, i.e.

γdist
ext,ψ = 1 , γdist

ext,H = 2, (for any B). (3.22)

Another possibility is the case where two currents are cut. In contrast to the previous
case, here the phase space factors differ depending on the SM diagram topology and the
external particles. In the case of only external fermions we have that

= γdist
ψ4, u , (3.23)

= γdist
ψ4, s , (3.24)

and in the case in which there is a scalar current:

= γdist
ψ2H2, u , (3.25)

= γdist
ψ2H2, s , (3.26)

where the result is independent of the helicity configuration allowed. The cases with the
u-channel SM diagram can be calculated using

−2(i)nψ
∫ dΠ2

4π (−2J A(13′)J B(24′))J
B(4′3′)J C(34)

s4′3
, (3.27)

with the appropriate A,C for each case. For the s-channel diagram we just need to replace
s4′4 → s34. The result for the phase space factors is

γdist
ψ4, u = −1, γdist

ψ4, s = −2 ,
γdist
ψ2H2, u = 2, γdist

ψ2H2, s = 1 . (3.28)
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In the case of indistinguishable currents, there is just the s-channel gauge contribution.
The possible cases are

( ) = γindist,S
H , (3.29)

[ ] = γindist,AS
H , (3.30)

[ ] = γindist,AS
ψ , (3.31)

where S stands for the symmetric case and AS for the antisymmetric. One can show
that when cutting a fermion current that belongs to a four fermion operator with identical
particles, we can just multiply the phase space factor in the distinguishable case by a factor
4. For the cases with Higgs lines we need to compute

−2(i)nψ
∫ dΠ2

4π (−4J2(12)J2(3′4′))S/AS(−2J2(4′3′)J2(34)) 1
s34

. (3.32)

The final result is then

γindist,S
H = 2, γindist,AS

H = 2
3 , γindist,AS

ψ = 16
3 . (3.33)

3.1.2 IR divergent (soft)

Soft IR divergences can complicate the calculation of the anomalous dimensions, by in-
troducing additional discontinuities which mean that the triangle diagrams in the PV
decomposition, despite being UV finite, can still contribute to the 2-particle cut. These
pieces therefore need to be subtracted off. There are only a limited set of circumstances
where these soft divergences can appear, namely, in self-renormalisation diagrams involving
SM gauge interactions.18 The PV decomposition of these diagrams is:

A1-loop = b
1

2

3

4
+ c

1

2

3

4
, (3.34)

where the triangle contains a soft IR divergence. Applying the same Cut operation to
both sides

Cut [A1-loop] ∝ b
(∫

dΠ2

)
− c

(
1
s34

∫
dΠ2

1
sin2 θ

2

)
, (3.35)

18‘Self-renormalisation’ here includes the mixing of different invariant colour structures in operators built
from the same species of particles.

– 23 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
6

we see the uncut scalar propagator of the triangle graph diverges as θ → 0. Both
Cut [A1-loop] and the contribution of the cut triangle graph are therefore infinite. Their
combination must be finite however, and allows us to extract the coefficient of the bub-
ble graph.

Cutsub [A1-loop] = Cut [A1-loop]− k
(

1
s34

∫
dΠ2

1
sin2 θ

2

)
∝ b

(∫
dΠ2

)
, (3.36)

where the coefficient k is determined to be whatever is necessary to make the integral finite.
The dimensionful k can always be expressed in terms of a soft factor Fsoft and the tree-level
amplitude A6,i(1, 2, 3, 4) [21].19 This leads to the master formula

3′1

4′2

A6,j

sub

3−3′

4−4′
ASM = γij

31

42

A6,i

−2(i)nψ
∫ dΠ2

2ρ · 4π

(∑
ext.
A6,j(1, 2, 3′, 4′)×ASM(−4′,−3′, 3, 4)

−Fsoft
1

sin2 θ
2
A6,i(1, 2, 3, 4)

)
= γij A6,i(1, 2, 3, 4) . (3.37)

where Fsoft is chosen to make the l.h.s. finite.
For example, in the diagram

sub

= γ , (3.38)

per eq. (3.37), we can write the (purely kinematic part of the) l.h.s. as

−2(i)nψ
∫ dΠ2

4π

(−2J A(12)J B(3′4′))(−2J B(4′3′)J C(34))
s3′3

−Fsoft
1
s2
θ
2

(−2J A(12)J C(34))

 ,
(3.39)

where B = C = 1, 3, s3′3 = s2
θ
2
s34. As before, we can rotate the internal momenta using

eq. (3.13). Notice that even though the diagram is distinct, the IR divergent part has
the same form as the contribution from the Yukawa diagram shown in eq. (3.19) (apart

19The soft factor Fsoft can be calculated as proportional to a product of the appropriate gauge genera-
tors [21, 58], but is also completely determined by demanding cancellation of the divergence, as shown in
the example below.
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from a overall −2 factor coming from the SM amplitude). This means that before the
θ-integration we have for B = 3:

−2(i)nψ
∫ dΠ2

4π M3X
L M3Y

R

(−2J 3(43)J 3(34))
s2
θ
2
s34

= 4
∫ 1

−1

d(cos θ)
2



−s2
θ
2

0 0

0 −2c2
θ
2

0

0 0 −
c4
θ
2
s2
θ
2


.

(3.40)

So we need to set Fsoft = 1 in order to make the θ-integration finite for the C = 3
component:20

γ = 4
∫ 1

−1

d(cos θ)
2

1
s2
θ
2

(
−c4

θ
2

+ 1
)

= 6 . (3.41)

We collect all the soft IR divergent phase space factors in appendix E.2.

3.1.3 IR divergent (collinear)

There are also pieces of the anomalous dimension matrix which cannot be calculated by
2-cuts. This is because they arise from graphs which reduce to a massless bubble. Dia-
grammatically,

A1-loop = b . (3.42)

Massless bubble scalar integrals vanish under all cuts (and indeed are simply zero in dimen-
sional regularisation). Nevertheless, they contain UV divergences that we must account for,
and which are masked by equal and opposite collinear IR divergences. On-shell, the IR (and
therefore also UV) divergence may be calculated from the real part of 2→ 3 diagrams [25]
or via the IR singularities of the stress-energy tensor [20]; off-shell, the UV divergences are
accounted for by wavefunction renormalisation factors. These pieces therefore only affect
self-renormalisation diagrams, although (unlike the soft IR divergences described above)
they can change flavour indices since they can involve Yukawa interactions. They can be
calculated as

γcollAtree =
∑
l

γ(l) · Atree , (3.43)

where gauge and flavour indices on Atree and γ(l) have been suppressed, and the sum is
over all legs of the tree amplitude, labelled as l. The full set of the collinear factors γ(f)
was calculated in [25, 28]. In our conventions they are collected in appendix D.

For example, in the case of the ed→ ed anomalous dimension matrix, we have

γcoll · c = [γ(d)]rvcpvqs + [γ(d)]vscprqv + [γ(e)]pvcvrqs + [γ(e)]vqcprvs , (3.44)
20N.B. The gauge factors have been factorised out of the amplitudes, since in this subsection we focus

on the kinematic part of γ. To compare with the definition of the soft factors in ref. [21] as products of
gauge generators, the overall gauge factors (described below in section 3.2) should be multiplied back into
the calculation.
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where

[γ(e)]pq =
(
NL

2 [Y †e Ye]pq − 3y2
eg

2
1δ
p
q

)
, (3.45)

[γ(d)]pq =
(
NL

2 [Y †d Yd]
p
q − 3g2

3 , C2(Nc)δpq − 3y2
dg

2
1δ
p
q

)
, (3.46)

and C2(3) = 4/3. Considering only the g3, g1 contributions we have

γcoll = −8g2
3 − 6y2

dg
2
1 − 6y2

eg
2
1 , (3.47)

yd and ye being the respective hypercharges of d and e.

3.2 Gauge factors

The gauge structure of the 1-loop amplitudes can be understood as the contraction of the
gauge structure of the tree amplitudes on either side of the cut. Since both the SMEFT
and the SM tree amplitudes that we consider can be constructed as products of currents
(see section 2.3), the gauge factors of the amplitudes only involve (products of) structures
with two indices, i.e. δ and the SU(N) generators λ. The SM 4-point amplitudes only
admit a few gauge structures (see appendix B.2). These are, for the gauge amplitudes:

U(1)Y : δab δcd , SU(2)L or SU(3)c : [λA]ab [λA]cd , (3.48)

where λ refer to the Pauli (Gell-Mann) matrices for the case of SU(2)L (SU(3)c). For the
Yukawa amplitudes, things are a little more complicated. Amplitudes with only two legs
charged under each gauge group are contracted trivially as:

ASM(e+e−Li−L+
j ) : δij , ASM(e+e−H iH†j ) : δij , (3.49)

ASM(u+au−bH iH†j ) : δab δij , (3.50)

where we now explicitly label SU(2)L indices with i, j and SU(3)c indices with a, b, and
show currents of LH fermions (Q,L) in red and currents of RH fermions (u, d, e) in blue.
The amplitude with RH down-type quarks and Higgses, ASM(d+ad−bH iH†j ), has the same
form as ASM(u+au−bH iH†j ). In Yukawa amplitudes in which all four legs are charged under
the same gauge group, we end up with more than one type of gauge structure between the
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currents:

ASM(u+au−b Q
ci−Q+

dj) :
δad

δcb

δij = 1
Nc

δab δcdδ
i
j + 1

2 [λA]ab [λA]cdδij , (3.51)

ASM(L−iL+
j H

kH†l ) :
δkj

δil

= 1
2
δij δkl + 1

2
[σI ]ij [σI ]kl , (3.52)

where Nc = 3. For the ASM(Q−iaQ+
jbH

kH†l ) amplitude, there are two different SU(2)L
structures. The piece proportional to YdY †d has the gauge structure δkj δilδab , which is iden-
tical to that in eq. (3.52), with the quark colour indices trivially contracted. The piece
proportional to YuY †u instead has the gauge structure εjlεikδba. The εmatrices can be related
back to the δs and σs via the Fierz relation

εjlε
ik = 1

2δ
i
jδ
k
l −

1
2[σI ]ij [σI ]kl , (3.53)

so overall we can write:

ASM(Q−iaQ+
jbH

kH†l ) :



1
2 δ

a
b δ
i
j δkl −

1
2 δ

a
b [σI ]ij [σI ]kl YuY

†
u piece,

1
2 δ

a
b δ
i
j δkl + 1

2 δ
a
b [σI ]ij [σI ]kl YdY

†
d piece.

(3.54)

The full range of contractions needed in the anomalous dimensions is then given in
table 2. In the first column, the structures on the left of ‘×’ come from the dimension 6
amplitude, while structures on the right come from the SM amplitude. Of course in a gen-
eral amplitude there can be more than one type of gauge index, and/or some legs may be
uncharged under a gauge group, in which case these relations can be straightforwardly gen-
eralised. For SMEFT operators with identical currents, it is convenient to (anti)symmetrise
the gauge indices (see section 3.2). We provide equivalent gauge contractions in terms of
these (anti)symmetrised structures in appendix F.

We note that zeroes will arise in the anomalous dimension matrix whenever a SU(N)
generator λ is traced over. This means that if one of the tree amplitudes in the cut diagram
has a λ matrix connecting the cut legs, the other tree amplitude must also connect the cut
legs with a λ matrix, or else the loop amplitude is zero:

[λA]ab δba = 0 . (3.55)

– 27 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
6

However, if one (or both) amplitude contains four particles all charged under the same
gauge group, there may be different options for the cut orientations. Even if one amplitude
is constructed with a λλ structure and the other has a δδ structure, in some cut directions
the λ matrix will not be traced over (or equivalently, will be contracted with another λ via
the Fierz relations (2.29)):

[λA]ab

δca

δbd

= [λA]cd × kinematics× flavour , (3.56)

δab

[λA]ca

[λA]bd

= 2N
2 − 1
N

δcd × kinematics× flavour , (3.57)

[λA]ab

[λA]ca

[λA]bd

= − 1
2N [λA]cd × kinematics× flavour . (3.58)

In the cases above, we nevertheless note that a λλ operator can still only be renormalised
by another λλ operator, as seen by the fact that the gauge structure on the right-hand side
is always the same as the structure in the leftmost current.

In fact, the only situation in which a λλ operator can mix into a δδ operator is if the
cut involves two currents in both the amplitudes on either side of the cut, and both are
constructed from currents with λ structures, i.e.:

[λA]ab

[λA]cd

[λB]be

[λB]fd

= 4N
2 − 1
N2

[λC ]ae

[λC ]fc

× kinematics× flavour ,

+ 2N
2 − 2
N

δae

δfc

× kinematics× flavour . (3.59)

As we will see in the next section, the rarity of this setup amongst the SMEFT amplitudes
leads to many zeroes in the anomalous dimension matrix between operators with different
gauge structures.

3.3 Flavour factors

The different topologies of loop diagrams introduce different flavour factors into the anoma-
lous dimension matrix.
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A6 ×ASM (gauge part) General SU(N) N = 2 N = 3

δab δ
e
f × δfe δcd = Nδab δ

c
d = 2δab δcd = 3δab δcd

[λA]ab [λA]ef × δfe δcd = 0 = 0 = 0

δab δ
e
f ×

1
4 [λA]fe [λA]cd = 0 = 0 = 0

[λA]ab [λA]ef × 1
4 [λB]fe [λB]cd = 1

2 [λC ]ab [λC ]cd = 1
2 [λC ]ab [λC ]cd = 1

2 [λC ]ab [λC ]cd

δab δ
e
f × δ

f
d δ

c
e = δab δ

c
d = δab δ

c
d = δab δ

c
d

δab δ
e
f ×

1
4 [λA]fd [λA]ce = N2−1

2N δab δ
c
d = 3

4δ
a
b δ
c
d = 4

3δ
a
b δ
c
d

[λA]ab [λA]ef × δ
f
d δ

c
e = [λB]ab [λB]cd = [λB]ab [λB]cd = [λB]ab [λB]cd

[λA]ab [λA]ef × 1
4 [λB]fd [λB]ce = − 1

2N [λC ]ab [λC ]cd = −1
4 [λC ]ab [λC ]cd = −1

6 [λC ]ab [λC ]cd

[λA]eb[λA]af × 1
4 [λB]fd [λB]ce = N2−1

N2 δab δ
c
d + N2−2

2N [λC ]ab [λC ]cd = 3
4δ
a
b δ
c
d + 1

2 [λC ]ab [λC ]cd = 8
9δ
a
b δ
c
d + 7

6 [λC ]ab [λC ]cd

[λA]eb[λA]fd × 1
4 [λB]cf [λB]ae = N2−1

N2 δab δ
c
d −

1
N [λC ]ab [λC ]cd = 3

4δ
a
b δ
c
d −

1
2 [λC ]ab [λC ]cd = 8

9δ
a
b δ
c
d −

1
3 [λC ]ab [λC ]cd

Table 2. Possible gauge contractions appearing in A6 ×ASM. The identities are valid for SU(N)
generators λA normalised such that Tr[λAλB ] = 2δAB , and which reduce to the Pauli (Gell-Mann)
matrices when N = 2 (3).

The SM gauge amplitudes are very simple in their flavour structure; any flavour indices
are simply contracted with a δ within each current:

δpq δrs . (3.60)

For the Yukawa amplitudes, the flavour structure depends on the external fields. The
different amplitudes have the form (where currents of LH fermions (Q,L) are shown in red
and currents of RH fermions (u, d, e) are shown in blue):

p +

q −

[Y †Y ]pq ,

p −

q +

[Y Y †]pq ,

p +

q −

r−

s+

Y p
s

[Y †]rq
. (3.61)

The different ways that the SM flavour tensors can be contracted with the SMEFT flavour
tensors then depends on the arrangement of the diagram. The only diagram which produces
true self-renormalisation (i.e. the flavour structure of the renormalised operator is identical
to the renormalising operator) is the gauge diagram

(cpvws) cpw

(δrv)

δwq

= (cprqs) cpq × kinematics× gauge , (3.62)
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where the Wilson coefficient is in the form (cprqs) cpq for (four) two fermion operators respec-
tively.

All other types of cut diagram will give rise to an operator with a different flavour
structure. For mixing between operators with equal numbers of fermions (4f → 4f and
2f → 2f), the other (flavour-changing) options are

(cvrws) cvw δwv δpq = (cvpvqδpq ) cvvδpq × kinematics× gauge , (3.63)

(cvrws) cvw
Y w
q

[Y †]pv
=
(
[Y †]pvcvrwsY w

q

)
[Y †]pvcvwY w

q × kinematics× gauge ,

(3.64)

(cvrws) cvw
Y p
v

[Y †]wq
=
(
Y p
v c

vr
ws[Y †]wq

)
Y p
v c

v
w[Y †]wq × kinematics× gauge ,

(3.65)

cpvws Y r
q[Y †]wv = [Y †]wv cpvwsY r

q × kinematics× gauge , (3.66)

cvq Mp
v

= Mp
v c
v
q × kinematics× gauge , (3.67)

where M ≡ Y †Y for operators with SU(2)L singlet fermions, or M ≡ Y Y † for operators
with SU(2)L doublet fermions. Wavefunction renormalisation diagrams will result in flavour
factors similar to those in eq. (3.62) and eq. (3.67), for gauge and Yukawa loops respectively.

Finally, mixing between operators with different numbers of fermions can occur via
cut diagrams involving a SM amplitude with one Higgs and one fermion current:

, . (3.68)
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In the first case, two indices on the Wilson coefficient are contracted with δ or M , for a
SM gauge or Yukawa amplitude respectively. In the second case, δ or M is introduced as
a new factor with free indices. The various flavour factors are collected in table 3.

To understand how Wilson coefficient components mix, when phrased in the irrep
basis (section 2.5), it is useful to decompose the gauge and Yukawa factors in the same
way. Since the weights of representations add in their tensor product, we can then deduce
the weights of the renormalized operator coefficients from those of the two amplitudes that
make up the loop diagram.

Gauge interactions only involve currents which are flavour singlets, so in spurionic
language, the gauge couplings are also singlets. By contrast, the Yukawa matrices must
famously be charged under appropriate flavour groups in order for the SM Lagrangian
to be formally invariant under the flavour SU(3)5 group. Specifically, with the Yukawas
defined via the Lagrangian of eq. (2.31), then Yu is charged as a 3Q × 3̄u, Yd as a 3Q × 3̄d,
and Ye as a 3L × 3̄e. If we are in a basis in which a given Yukawa matrix is diagonal,
Yf = diag(y1, y2, y3), then the {I, I3,Y}l,r charges of each of its three components are as
follows, where SU(3)l is the flavour group of the corresponding left handed field (l = Q,L),
and SU(3)r is the flavour group of the corresponding right handed field (r = u, d, e):

I3,l Yl I3,r Yr

y1
1
2

1
3 −1

2 −1
3

y2 −1
2

1
3

1
2 −1

3

y3 0 2
3 0 −2

3

(3.69)

The charges of the components of the diagonal daggered Yukawa, Y †f , are respectively equal
and opposite to these.

The SM Yukawa amplitudes relevant for running within the (4, 0) current-current
operators always contain a product of a Yukawa and its Hermitian conjugate,21 as seen in
eq. (3.61). These may or may not be contracted together, and the overall flavour factor
of the loop diagram is some tensor product of c, Y † and Y , where c is the flavour factor
of the SMEFT amplitude involved in the loop. From (3.69), it’s clear that any entry of
a diagonal Yukawa has charges such that I3,l = −I3,r and Yl = −Yr. This means that
running involving products of diagonal Yukawas will always preserve the sums of the left
and right handed charges, I3,l+r ≡ I3,l + I3,r and Yl+r ≡ Yl + Yr.

If we work under the approximation that the third generation Yukawa y3 is the only
non-negligible component of the Yukawa matrix, then any product of a diagonal Yukawa
and its Hermitian conjugate will have zero overall charge, since in the product the charges
of y3 will always be added to the equal and opposite charges of y†3. Therefore, under this
approximation, running will always preserve the left and right handed charges individually.

In the case where we cannot work in a basis in which all the non-negligible Yukawa
matrices are diagonal, then in general the running will not preserve any charges. This

21Given that we neglect OHud and OLedQ in the analysis.
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Diagram type Diagram Flavour factor
0f → 2f (3.68) δpq or Mp

q

2f → 0f (3.68) cvwδ
w
v or cvwMw

v

2f → 2f (3.62) and collinear gauge cpq

2f → 2f (3.63) cvwδ
w
v δ

q
p

2f → 2f (3.64) and (3.65) [Y †]pvcvwY w
q or Y p

v c
v
w[Y †]wq

2f → 2f (3.67) and collinear Yukawa Mw
q c

p
w + cvqM

p
v

2f → 4f (3.68) crsδ
p
q or crsMp

q

4f → 4f (3.62) and collinear gauge cprqs

4f → 4f (3.63) cvrwsδ
w
v δ

p
q

4f → 4f (3.64) and (3.65) [Y †]pvcvrwsY w
q or Y p

v c
vr
ws[Y †]wq

4f → 4f collinear Yukawa Mw
q c

pr
ws + cvrqsM

p
v +Mw

s c
pr
qw + cpvqsM

r
v

4f → 2f (3.68) cvrwsδ
w
v or cvrwsMw

v

Table 3. Flavour factors that appear in contributions to the anomalous dimension matrix.
Mq
p ≡ [Y †Y ]qp or [Y Y †]qp (depending on the operator). c is the Wilson coefficient of the dimen-

sion 6 operator in the loop diagram. Here we have not specified whether 4-fermion operators are
distinguishable, symmetric or antisymmetric: the corresponding Wilson coefficients can be (anti)-
symmetrised in an obvious way.

is the case for running with operators involving quark doublets if we do not neglect the
CKM or down-type Yukawas. Therefore in general, the SMEFT running will not preserve
charges under SU(3)Q. We will summarize all these flavour selection rules, under which
approximations they hold, and how this can lead to block-diagonalisation of the anomalous
dimension matrix, in section 5.1.

4 Anatomy of the anomalous dimension matrix

In the previous section, we collected all the ingredients for calculating the one-loop anoma-
lous dimensions of the (4, 0) operators of the SMEFT. We can now take stock of these
ingredients, and the patterns that they impose on the anomalous dimension matrix, de-
termined by the helicity, gauge and flavour properties of the SM and SMEFT amplitudes.
There are a very limited set of helicity amplitudes at both dimension 4 and dimension 6,
demonstrated by the fact that they can all be written as products of the 3-component J
vector (2.12). Furthermore, gauge and flavour combines with helicity in ways prescribed by
the fields of the SM. For these reasons, we expect to see many repeated patterns throughout
the anomalous dimension matrix.
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γ contribution Table Cut topology Gauge action Flavour action

IR-finite gauge 5 δδ ↔ δδ, λλ↔ λλ singlets ↔ singlets

IR-finite Yukawa 6 δδ ↔ δδ, λλ↔ λλ mixes irreps

IR-divergent gauge 7 λλ↔ δδ blind

and collinear
IR-divergent Yukawa 8 collinear blind mixes irreps

Table 4. Different types of contributions to the anomalous dimensions, and how they act. δδ and
λλ refer to the gauge structure of the operator: δδ means that the operator is constructed out of two
currents which are singlets under a gauge group, while λλ means that the operator is constructed
out of two currents both of which are either SU(2)L triplets or SU(3)c octets.

4.1 Patterns and zeroes

We lay out the different contributions to the anomalous dimension matrix in tables 5, 6, 7,
and 8 where for simplicity here we only include in the tables operators without quarks.
All entries in this table agree with [1–3], appropriately transformed, and provide the first
check (of which we are aware) of the RGEs of this subset of quarkless two- and four-lepton
operators. The tables are separated into different types of contributions: IR-finite gauge
and Yukawa pieces (which are the only contributions to running between different opera-
tors) and IR-divergent gauge and Yukawa pieces (which contribute to self-renormalisation).
How each of these pieces behaves schematically in terms of the gauge and flavour proper-
ties of the operators is laid out in table 4. The full anomalous dimension is the sum of
these pieces.

Within the tables, the phase space factors (in green), gauge factors (in orange) and
flavour factors (in purple) have been separated out. The Higgs quartic terms, whose flavour
effects are trivial, are shown in table 12. Zeroes are represented in the tables either by
‘0’ or ‘5’.

For all the current-current operators, the relevant phase space factors can be found in
appendix E. The gauge factors can be found in tables 2, 13 and 14. The flavour factors
can be found in table 3.

4.1.1 ‘5’ entry

A ‘5’ entry signifies that there is no corresponding diagram that can be drawn at one-loop.
Reasons for this are as follows:

• One loop diagrams can never involve more than two legs of a SMEFT amplitude.
So, operators differing by more than two legs can never renormalise each other. E.g.,
four Higgs operators never renormalise four fermion operators, or vice versa.

– 33 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
6

• IR finite Yukawa diagrams leading to a non-zero entry in table 6 must always be
drawable via a cut diagram with a SM Yukawa amplitude on one side of the cut (i.e.
diagrams in eq. (3.61)). These SM amplitudes determine which one-loop diagrams
can be drawn, for example the fact that there is no SM Yukawa amplitude with
four external Higgs legs means that four-Higgs operators cannot self-renormalise in
this way. The same is true of operators with four left-handed (or four right-handed)
fermions.

• On the other hand, collinear Yukawa factors simply act as wavefunction renormalisa-
tion on the fields of an operator. So in this case, as seen in table 8, self-renormalisation
of any operator is possible. However this can never change the external field species,
or the gauge structure of the operator, so all but the diagonal entries of table 8 are
marked with a ‘5’.

• Finally, soft and collinear gauge pieces can only cause renormalisation between op-
erators with the same external states (but can change the gauge structure of the
operators). This explains the crossed entries in table 7.

4.1.2 ‘0’ entry

Zeroes represented by ‘0’ instead arise when a cut diagram can be drawn, but evaluates
to zero for other reasons. In the tables, these zeroes are always due to the gauge factors,
as explained in section 3.2. In tables 5 and 6, all ‘0’ entries are ultimately due to the
tracelessness of the Pauli σ matrices. For the same reason, many of the non-zero entries
are proportional only to g2

1 and do not have a g2
2 part. In table 7, the ‘0’ entries on the

diagonal can be understood as cancellations between the soft and collinear diagrams, or
equivalently as the non-renormalisation of number currents. The off-diagonal ‘0’ entries
are again due to the tracelessness of the Pauli matrices, or the exchange symmetry of the
(anti)symmetric gauge factors in the case of indistinguishable currents.

When dealing with indistinguishable currents, the power of treating operators in a
factorised basis of (anti)symmetric gauge and flavour tensors becomes apparent. In the
Warsaw basis, the flavour and gauge parts of the O(1)

QQ and O(3)
QQ operators appear to mix

under (naively flavour-blind) soft gauge diagrams; for example, CQQ(1)
1123 can be generated

by CQQ(3)
1321 . However, the running is entirely diagonal in terms of the (anti)symmetrised

OQQ++, OQQ+−, OQQ−+, and OQQ−− operators defined here. This is because the unper-
turbed (anti)symmetric flavour tensor will always preserve the corresponding symmetry of
the gauge piece.

4.1.3 Non-zero entry

As for the non-zero entries, it is clear that there are many repeated factors in the tables.
This is due to the same gauge and kinematic factors arising in many different diagrams. We
see in particular in table 5 that entries proportional to g2

2 are rather sparse, and only arise
between operators containing structures of the ‘σσ’ form. There is further structure to be
found in the flavour factors, which leads not only to zeros but even to block diagonalisation,
to be discussed in the next section.
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HD+ HD− HL(1) HL(3) He LL+ LL− Le ee

HD+ 2 · 3
2 · g

2
1HH

+ 2 · 1
8 · g

2
2

2
3 ·

1
2 · g

2
1HH

+ 2
3 · −

1
8 · g

2
2

4
3 · 2 · g2

1HLTr[c] 4
3 ·

1
2 · g

2
2Tr[c] 4

3 · 1 · g2
1HeTr[c] 5 5 5 5

HD− 2 · 3
2 · g

2
1HH

+ 2 · −3
8 · g

2
2

2
3 ·

1
2 · g

2
1HH

+ 2
3 ·

3
8 · g

2
2

4
3 · 2 · g2

1HLTr[c] 4
3 · −

3
2 · g

2
2Tr[c] 4

3 · 1 · g2
1HeTr[c] 5 5 5 5

HL(1) 2 · 3
2 · g

2
1HLδ

p
q

2
3 ·

1
2 · g

2
1HLδ

p
q

4
3 · 2 · g2

1LLTr[c]δpq
+ 2

3 · 2 · g2
1HHc

p
q

0 4
3 · 1 · g2

1LeTr[c]δpq 16
3 ·

3
2 · g

2
1HLc

(pv)
(qv)

16
3 ·

1
2 · g

2
1HLc

[pv]
[qv]

4
3 · 1 · g2

1Hec
pv
qv 5

HL(3) 2 · 1
8 · g

2
2δ
p
q

2
3 · −

1
8 · g

2
2δ
p
q 0 4

3 ·
1
2 · g

2
2Tr[c]δpq

+ 2
3 ·

1
2 · g

2
2c
p
q

0 16
3 ·

1
8 · g

2
2c

(pv)
(qv)

16
3 · −

1
8 · g

2
2c

[pv]
[qv] 0 5

He 2 · 3
2 · g

2
1Heδ

p
q

2
3 ·

1
2 · g

2
1Heδ

p
q

4
3 · 2 · g2

1LeTr[c]δpq 0 4
3 · 1 · g2

1eeTr[c]δpq
+ 2

3 · 2 · g2
1HHc

p
q

5 5 4
3 · 2 · g2

1HLc
vp
vq

16
3 · 1 · g2

1Hec
(pv)
(qv)

LL+ 5 5 2
3 · 2 · g2

1HL(δc) 2
3 ·

1
2 · g

2
2(δc) 5 16

3 ·
3
2 · g

2
1LLc

(v(p)
(v(q)δ

r)
s)

+ 16
3 ·

1
8 · g

2
2c

(v(p)
(v(q)δ

r)
s)

16
3 ·

1
2 · g

2
1LLc

[v(p]
[v(q]δ

r)
s)

+ 16
3 · −

1
8 · g

2
2c

[v(p]
[v(q]δ

r)
s)

4
3 · 1 · g2

1Leδ
(r
(sc

p)v
q)v 5

LL− 5 5 2
3 · 2 · g2

1HL[δc] 2
3 · −

3
2 · g

2
2[δc] 5 16

3 ·
3
2 · g

2
1LLc

(v[p)
(v[q)δ

r]
s]

+ 16
3 · −

3
8 · g

2
2c

(v[p)
(v[q)δ

r]
s]

16
3 ·

1
2 · g

2
1LLc

[v[p]
[v[q]δ

r]
s]

+ 16
3 ·

3
8 · g

2
2c

[v[p]
[v[q]δ

r]
s]

4
3 · 1 · g2

1Leδ
[r
[sc

p]v
q]v 5

Le 5 5 2
3 · 2 · g2

1Heδc 0 2
3 · 2 · g2

1HLδc
16
3 ·

3
2 · g

2
1Lec

(vp)
(vq)δ

r
s

16
3 ·

1
2 · g

2
1Lec

[vp]
[vq]δ

r
s

4
3 · 2 · g2

1LLc
vr
vsδ

p
q

+ 4
3 · 1 · g2

1eec
pv
qvδ

r
s

16
3 · 1 · g2

1Lec
(vr)
(vs)δ

p
q

ee 5 5 5 5 2
3 · 2 · g2

1He(δc) 5 5 4
3 · 2 · g2

1Lec
v(p
v(qδ

r)
s)

16
3 · 1 · g2

1eec
(v(p)
(v(q)δ

r)
s)

Table 5. IR finite gauge pieces of the (4, 0) block of the colourless SMEFT anomalous dimension
matrix. g2

1XY = g2
1yXyY includes the product of the hypercharges of the two species. Operators are

defined in table 11. Phase space factors, in green, can be found in appendix E.1 and are explained
in section 3.1.1. Gauge factors, in orange, can be found in tables 2, 13 and 14, and are explained
in section 3.2. The flavour factors, in purple, labelled by p, q, r, s indices, can be found in table 3,
and are explained in section 3.3.

HD+ HD− HL(1) HL(3) He LL+ LL− Le ee

HD+ 5 5 2 · 1 · −Tr[cMl] 2 · 1 · −Tr[cMl] 2 · 1 · Tr[cMe] 5 5 5 5

HD− 5 5 2 · 1 · −Tr[cMl] 2 · −3 · −Tr[cMl] 2 · 1 · Tr[cMe] 5 5 5 5

HL(1) 3 · 3
4 · −Ml 1 · 1

4 · −Ml

(
1 · 1

2 + 2 · 1
2

)
· (cMl +Mlc)

(
1 · 3

2 + 2 · 3
2

)
· (cMl +Mlc)

1 · 1 · −YecY †e 8 · 3
4 · −c

(pv)
(qw)[Ml]wv 8 · 1

4 · −c
[pv]
[qw][Ml]wv 2 · 1 · cpvqw[Me]wv 5

HL(3) 3 · 1
4 · −Ml 1 · −1

4 · −Ml

(
1 · 1

2 + 2 · 1
2

)
· (cMl +Mlc)

(
1 · 3

2 + 2 · −1
2

)
· (cMl +Mlc)

0 8 · 1
4 · −c

(pv)
(qw)[Ml]wv 8 · −1

4 · −c
[pv]
[qw][Ml]wv 0 5

He 3 · 3
2 ·Me 1 · 1

2 ·Me 1 · 2 · −Y †e cYe 0 (1 · 1 + 2 · 1)
· (cMe +Mec)

5 5 2 · 1 · −cvpwq[Ml]wv 8 · 1 · c(pv)
(qw)[Me]wv

LL+ 5 5 1 · 1 · −(cMl) 1 · 1 · −(cMl) 0 5 5 1 · 1 · −[Y †e ]w(s[Ye]
(r
v c

p)v
q)w 5

LL− 5 5 1 · 1 · −[cMl] 1 · −3 · −[cMl] 0 5 5 1 · 1 · −[Y †e ]w[s[Ye]
[r
v c

p]v
q]w 5

Le 5 5 1 · 2 · cMe 0 1 · 1 · −cMl 4 · 3
2

· −c(pv)
(qw)[Y

†
e ]rv[Ye]ws

4 · 1
2

· −c[pv]
[qw][Y

†
e ]rv[Ye]ws

−2 · 1 · −cvrqw[Y †e ]wv [Ye]ps
−2 · 1 · −cpwvs [Y †e ]rq[Ye]vw
−1 · 1 · −cvwqs [Y †e ]rv[Ye]pw
−1 · 1 · −cprvw[Y †e ]wq [Ye]vs

4 · 1
· −c(rv)

(sw)[Y
†
e ]wq [Ye]pv

ee 5 5 5 5 1 · 2 · (cMe) 5 5 1 · 2 · −cv(p
w(q[Ye]

w
s)[Y †e ]r)v 5

Table 6. IR finite Yukawa pieces of the (4, 0) block of the colourless SMEFT anomalous dimension
matrix. We define Ml = YeY

†
e ,Me = Y †e Ye,. Operators are defined in table 11. Phase space factors,

in green, can be found in appendix E.1 and are explained in section 3.1.1. Gauge factors, in orange,
can be found in tables 2, 13 and 14, and are explained in section 3.2. The flavour factors, in purple,
labelled by p, q, r, s indices, can be found in table 3, and are explained in section 3.3.
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HD+ HD− HL(1) HL(3) He LL+ LL− Le ee

HD+ (26 + 2 · −2 + 4 · −4)
· g2

1HHc

−6 · −1
4 · g

2
2c 5 5 5 5 5 5 5

HD− −18 · −3
4 · g

2
2c (14 + 2 · −8 + 4 · −4)

· g2
1HHc

5 5 5 5 5 5 5

HL(1) 5 5 0 0 5 5 5 5 5

HL(3) 5 5 0
(
8 · −1

4 + 6 · −1
4

+ 2 · −4 · −1
2

+ 2 · 4 · 1
2

+−8 · 3
4 +−6 · 3

4

)
· g2

2c
p
q

5 5 5 5 5

He 5 5 5 5 0 5 5 5 5

LL+ 5 5 5 5 5 (24 + 4 · −3)

· g2
1LLc

pr
qs +

(
24 · 1

2

+ 4 · −3 · 3
4

)
· g2

2c
pr
qs

0 5 5

LL− 5 5 5 5 5 0 (24 + 4 · −3) · g2
1LLc

pr
qs

+ 4 · −3 · 3
4 · g

2
2c
pr
qs

5 5

Le 5 5 5 5 5 5 5 2 · −6 · g2
1Lec

pr
qs 5

ee 5 5 5 5 5 5 5 5 (24 + 4 · −3) · g2
1eec

pr
qs

Table 7. Soft plus collinear gauge pieces. Operators are defined in table 11. Phase space factors, in
green, can be found in appendices E.2 and D and are explained in sections 3.1.2 and 3.1.3. Gauge
factors, in orange, can be found in tables 2, 13 and 14, and are explained in section 3.2. The
flavour factors, in purple, labelled by p, q, r, s indices, can be found in table 3, and are explained
in section 3.3. Bold numerical factors are combinatorial: they correspond to several equivalent
diagrams for the same process.

HD+ HD− HL(1) HL(3) He LL+ LL− Le ee

HD+ 4 · 1 ·Nc

· Tr[Mu +Md]c
+ 4 · 1 · 1
· Tr[Me]c

5 5 5 5 5 5 5 5

HD− 5 4 · 1 ·Nc

· Tr[Mu +Md]c
+ 4 · 1 · 1
· Tr[Me]c

5 5 5 5 5 5 5

HL(1) 5 5 2 · 1 ·Nc

· Tr[Mu +Md]cpq
+ 2 · 1 · 1
· Tr[Me]cpq
+ 1

2 · 1 · (Mlc+ cMl)

5 5 5 5 5 5

HL(3) 5 5 5 2 · 1 ·Nc

· Tr[Mu +Md]cpq
+ 2 · 1 · 1
· Tr[Me]cpq
+ 1

2 · 1 · (Mlc+ cMl)

5 5 5 5 5

He 5 5 5 5 2 · 1 ·Nc

· Tr[Mu +Md]cpq
+ ·1 · 1
· Tr[Me]cpq
+ 1

2 · 2 · (Mec+ cMe)

5 5 5 5

LL+ 5 5 5 5 5 2 · 1
2 · 2

· (cprv(s[Ml]vq) + c
w(r
qs [Ml]p)w )

5 5 5

LL− 5 5 5 5 5 5 2 · 1
2 · 2

· (cprv[s[Ml]vq] + c
w[r
qs [Ml]p]w)

5 5

Le 5 5 5 5 5 5 5 1
2 · 1 · ([Ml]vqcprvs + [Ml]pwcwrqs )
+ 1

2 · 2 · ([Me]vscprqv + [Me]rwcpwqs )
5

ee 5 5 5 5 5 5 5 5 2 · 1
2 · 2

· (cprv(s[Me]vq) + c
w(r
qs [Me]p)w )

Table 8. Collinear Yukawa pieces. Mr=u/d/e = Y †r Yr,Ml = YeY
†
e . Operators are defined in

table 11. Phase space factors, given in green, can be found in appendix D and are explained in
sections 3.1.3. Gauge factors, given in orange, can be found in tables 2, 13 and 14, and are explained
in section 3.2. The flavour factors, in purple, labelled by p, q, r, s indices, can be found in table 3,
and are explained in section 3.3. Bold numerical factors are combinatorial: they correspond to
several equivalent diagrams, e.g. two or four external legs which can be renormalised in the same
way by wavefunction renormalisation.
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4.2 The very flavourful anomalous dimension matrix

The strong coupling g3 is the largest parameter in the anomalous dimension matrix. This
might lead one to guess that focussing only on g3-induced running would give a good
approximation. However, g3 appears very sparsely in the anomalous dimension matrix, a
fact which can be easily understood via the gauge factors laid out in section 3.2.

The SM amplitude that gives g3 factors in the anomalous dimensions of the (4, 0)
operators is of the form

δpq [λA]ab δrs [λA]cd , (4.1)

where a, b are colour indices and p, q are flavour indices. In order to produce a g3 con-
tribution to operator mixing, both operators involved in the mixing must be constructed
from colour-octet currents (i.e. have a λλ structure), and at least one of the currents must
furthermore be a flavour singlet. Otherwise, in either colour or flavour space we get a zero
by eq. (3.55). The only operators that can mix in this way are the appropriate flavour com-
ponents of {O(8)

Qu, O
(8)
Qd, O

(8)
ud , Ouu, Odd, O

(1,3)
QQ }. Importantly, these gauge mediated diagrams

are flavourful, as they treat flavour universal and non-universal pieces differently.
This gauge diagram can also mediate self-renormalisation of particular operators, which

is truly flavourless. This occurs when both currents of the SM amplitude are involved in
the cut. By looking at eq. (3.57), it would seem that colour-singlet currents (from δδ-type
operators) could be renormalised in this way. However, since this is renormalisation of a
number current, this diagram in fact cancels against the wavefunction renormalisation of
the two cut legs, and the overall result is zero. Again, we find that only λλ-type operators
can be self-renormalised by strong interactions, via the diagram in eq. (3.58).

Finally, there is the situation shown in eq. (3.59), which can allow not only self-
renormalisation of a 4-quark λλ-type operator, but also allows it to mix into the equivalent
δδ-type operator, e.g. O(8)

ud into O(1)
ud . The flavour structure of the gauge diagram ensures

that the flavour indices are completely unchanged between the two operators.
Overall, it is clear that g3 can only appear in the anomalous dimensions of 4-quark

operators, and even then only in specific flavour directions. Operators with distinguishable
quark currents and a δδ colour structure can only be run into, by operators with identical
flavour structures but with λλ colour structure. Operators with only one quark current
are not renormalized by strong interactions.

Similar arguments follow for g2; we can see in table 5 that it only appears in the
anomalous dimensions of operators with a σσ structure, or operators with identical SU(2)L-
charged currents which contain some σσ parts in their (anti)symmetrised forms.

By contrast, Yukawa interactions have a less restrictive structure, in terms of both
gauge and flavour, allowing them to enter into the anomalous dimensions of a wider range
of operators. Many of the entries of the Yukawa matrices are small, of course, but the top
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Yukawa yt is of the same order of magnitude as g3, as seen by the comparisons:

αt(mZ) ≈ 0.08, αs(mZ) ≈ 0.12,
αt(10TeV) ≈ 0.05, αs(10TeV) ≈ 0.07, (4.2)

where αt = y2
t /(4π). The top Yukawa can enter into the anomalous dimension of any

operator containing Q3, u3 and/or H. The operator does not have to be flavour-conserving.
Moreover, the fact that two different types of gauge structures appear in each of eqs. (3.52),
(3.54) and (3.51) means that there are fewer possibilities of zeroes arising.

In summary, we see that in the running of the SMEFT, the top Yukawa plays a much
more widespread role than the strong (or weak) interactions. This makes the anomalous
dimension matrix an inherently flavourful object, that cannot be understood without tack-
ling its flavour-breaking nature. In the next section, we will show how the flavour structure
of the SM interactions can be used to vastly simplify the problem, and to block-diagonalise
the matrix.

5 Flavour selection rules and block-diagonalisation

As discussed in section 2.1, some zeroes in the SMEFT anomalous dimension matrix can be
derived simply from the helicity structure of the amplitudes [19]. These helicity arguments,
by definition, cannot predict any structure within the large (4, 0) operator block that we
focus on. But having set up and understood the gauge and flavour parts of the amplitudes
and the anomalous dimensions, we are now in a position to ask if there are any additional
selection rules or preserved quantum numbers that can be extracted from these pieces.

On the gauge side, the tracelessness of the Gell-Mann and Pauli matrices ensures that
zeroes arise in the mixing of operators with different gauge structures, i.e. between δδ-
type operators and λλ-type operators, as discussed in section 4.1. For example, of the
ψψ̄φ2D type operators, the triplet current operators O(3)

HL and O(3)
HQ are renormalised by

only the triplet combination of the four-Higgs operators (H†i←→D µσIH)2 ∝ OH�, while
the singlet-current operators OHe,OHd,OHu,O(1)

HL,O
(1)
HQ are renormalised by the singlet-

current combination (H†i←→D µH)2. This was previously pointed out in ref. [25]. However,
some operators with different gauge structures but with the same field content can mix,
via the diagram in eq. (3.59) (i.e. the four-Higgs operators can mix into each other), so this
δδ vs. λλ gauge structure property is not preserved overall by the SMEFT RG. It therefore
cannot be used to block-diagonalise the anomalous dimension matrix.

On the other hand, the full flavour SU(3)5 symmetry group and all its associated quan-
tum numbers (see section 2.5) are preserved by gauge running, but not by Yukawa running.
However, as we can gather from the arguments of section 3.3, not all the flavour quantum
numbers are broken, and if we neglect small entries of the Yukawa matrices, many are
conserved. This allows us to identify and categorise blocks of the full anomalous dimension
matrix which — to a high degree of approximation — do not renormalise each other.
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Figure 4. Scale representation of the block diagonalisation of the anomalous dimension matrix
of the (4, 0) operators that occurs under various approximations of the SM interactions, as listed
in table 9. (Here, the “Gauge +yt, yb, yτ” scenario is assuming the full (non-unit) CKM, i.e. it
corresponds to the penultimate row in table 9.)

5.1 Flavour non-renormalisation theorems

Let us consider the flavour quantum numbers of section 2.5 that are preserved by renormal-
isation when we progressively turn on the interactions of the Standard Model residing in
the anomalous dimension matrix. In each case the quantum numbers which are preserved
under running are determined by the flavour symmetry of the Standard Model interactions
under the simplifying assumptions. Sometimes additional quantum numbers are acciden-
tally conserved within the (4, 0) block, as explained in section 3.3. Note that we do not
impose any restrictions or symmetry assumptions on the form of the SMEFT Wilson co-
efficients themselves. The summary of how these conserved quantum numbers allow the
anomalous dimension matrix to be decomposed into blocks which are closed under RG is
given in table 9. We consider a number of different approximations on the SM interactions,
listed in the row headings, ranging from the assumption that only the gauge couplings are
important, to the case where no interactions are neglected and the full Yukawa matrices
are used. It can be seen at a glance, from the block sizes in the fourth column, that
depending on the approximations made, the total 1460 parameters of the (4, 0) operators
are immediately diagonalised into much smaller blocks. The resulting matrices are shown
pictorially in figure 4. If light fermion Yukawas are neglected (an excellent approximation),
a large fraction of the parameters end up in 1 × 1 or 2 × 2 blocks, trivially diagonalising
much of the otherwise unwieldy anomalous dimension matrix. In the following, we explain
how this block diagonalisation comes about.

5.1.1 Explanation of the conserved quantum numbers

Here we explain in more detail how the running, under various approximations of the SM
interactions, preserves different flavour quantum numbers, as given in the second column
of table 9. Recall that the magnetic quantum numbers I3 and Y, measure the degree of
off-diagonality of a Wilson coefficient.

• Gauge only. If we only turn on the gauge interactions, SU(3)5 flavour symmetry is
exactly conserved by the SM. This implies that all the quantum numbers,

{dirrep, I, I3,Y}F , ∀F ∈ {Q, u, d, L, e} , (5.1)

are conserved.
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SM Conserved quantum Block quantum numbers Block # of Example
approx. numbers (unspecified numbers distinguish same size blocks) size blocks phenomenology

Gauge only {d, I, I3,Y}{Q,u,d,L,e}

d{Q,u,d,L,e} = 1 34× 34 1 A1

dQ = 8, d{u,d,L,e} = 1 13× 13 8 A2, A3

du = 8, d{Q,d,L,e} = 1 9× 9 8 A2, A3

dd = 8, d{Q,u,L,e} = 1 9× 9 8 A3

dL = 8, d{Q,u,d,e} = 1 9× 9 8 B1, C1

de = 8, d{Q,u,d,L} = 1 6× 6 8 B1, C1

other 2× 2 256 A4, B2, C2, B3, C3, D1
other 1× 1 546 A4, B2, C2, B3, C3, D1

Gauge +yt
{I, I3,Y}{Q,u},
{d, I, I3,Y}{d,L,e}

I{Q,u} = 0, d{d,L,e} = 1 61× 61 1 A1, A2

IQ ∈
{

1
2 , 1
}
, {I3,Y}Q ≤ 1, Iu = 0, d{d,L,e} = 1 17× 17 7 A3

I{Q,u} = 0, dd = 8, d{L,e} = 1 13× 13 8 A3

Iu ∈
{

1
2 , 1
}
, {I3,Y}u ≤ 1, IQ = 0, d{d,L,e} = 1 12× 12 7 A3

I{Q,u} = 0, dL = 8, d{d,e} = 1 12× 12 8 B1, B2, C1, C2

I{Q,u} = 0, de = 8, d{d,L} = 1 8× 8 8 B1, B2, C1, C2

other 2× 2 217 B3, C2, C3, A4, D1
other 1× 1 498 B3, C2, C3, A4, D1

Gauge
+yt, yb, yτ
(V = 1)

{I, I3,Y}{Q,u,d,L,e}

I{Q,u,d,L,e} = 0 100× 100 1 A1, A2, B1, B2

IQ ∈
{

1
2 , 1
}
, {I3,Y}Q ≤ 1, I{u,d,L,e} = 0 22× 22 7 A3, B3

Iu ∈
{

1
2 , 1
}
, {I3,Y}u ≤ 1, I{Q,d,L,e} = 0 16× 16 7 A3, B3

Id ∈
{

1
2 , 1
}
, {I3,Y}d ≤ 1, I{Q,u,L,e} = 0 16× 16 7 A3, B3

IL ∈
{

1
2 , 1
}
, {I3,Y}L ≤ 1, I{Q,u,d,e} = 0 15× 15 7 C1, C2

Ie ∈
{

1
2 , 1
}
, {I3,Y}e ≤ 1, I{Q,u,d,L} = 0 11× 11 7 C1, C2

other 2× 2 196 C3, A4, D1
other 1× 1 408 C3, A4, D1

Gauge
+yt, yb, yτ
(full V )

{I, I3,Y}{u,d,L,e}

I{u,d,L,e} = 0 292× 292 1 A1–A4, B1–B3

Iu ∈
{

1
2 , 1
}
, {I3,Y}u ≤ 1, I{d,L,e} = 0 30× 30 7 A2, A3, B2, B3

Id ∈
{

1
2 , 1
}
, {I3,Y}d ≤ 1, I{u,L,e} = 0 30× 30 7 A2, A3, B2, B3

IL ∈
{

1
2 , 1
}
, {I3,Y}L ≤ 1, I{u,d,e} = 0 29× 29 7 B1–B3, C1–C3

Ie ∈
{

1
2 , 1
}
, {I3,Y}e ≤ 1, I{u,d,L} = 0 18× 18 7 B1–B3, C1–C3

other 2× 2 49 A4, D1
other 1× 1 321 A4, D1

All I3,L+e, YL+e

I3,L+e = 0, YL+e = 0 932× 932 1 A1–A4, B1–B4

|I3,L+e| ∈
{

1
2 , 1
}
, |YL+e| ≤ 1 81× 81 6 C1, C2, C3

I2
3,L+e + 3

4Y
2
L+e = 3 4× 4 6 D1

I2
3,L+e + 3

4Y
2
L+e = 4 3× 3 6 D1

Table 9. The flavour quantum numbers of the blocks of the anomalous dimension matrix under
different approximations of the SM interactions. The I, I3,Y quantum numbers are given in the
basis where the Yu and Ye Yukawa matrices are diagonal. We recall that a block multiplicity of 7
implies there is one block with the charges of each component of an octet apart from the isospin
singlet piece.
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• Gauge +yt. Now if we also turn on only the top Yukawa, which is by far the
largest parameter in the Yukawa matrices, then the symmetry of the up-type Yukawa
interaction in the SM,

LY ⊃ Q̄p[Yu]qpuqH̃ (5.2)

is now broken to SU(2)Q× SU(2)u×U(1)Q+u. Overall any interaction involving this
Yukawa matrix must therefore preserve IQ, Iu, I3,Q, I3,u, YQ + Yu. However, for
running within the (4, 0) block, the flavour factors always involve either two or zero
factors of Yu, never just one, and so by the arguments of section 3.3, the running also
preserves YQ and Yu independently.22 Since the flavour groups for the other fermion
species are unbroken, this approximation also conserves {dirrep, I, I3,Y}F , ∀F ∈{d, L, e}.

• Gauge +yt, yb, yτ (V = 1). If the CKM is approximated to the unit matrix,
then the case of taking all three third generation Yukawas non-zero simply follows
the arguments above, but now for all fermion species. So while the dimensionality
dirrep is broken for all species, each of {I, I3,Y}F , ∀F ∈ {Q, u, d, L, e} are separately
conserved.

• Gauge +yt, yb, yτ (full V ). With the full CKM, all Q charges are broken, but the
d, u, L and e conserved charges are as before, i.e., {I, I3,Y}F , ∀F ∈ {u, d, L, e}. This
can be seen by the fact that the running into, out of, or among operators with Q

charges can be proportional both to products of Y (†)
u and to products of Y (†)

d , which
are not simultaneously diagonalisable, and hence can ultimately break all Q charges.
On the other hand, operators with u charges are connected to each other and to
other operators only by products of Y (†)

u , so the situation for these is exactly as in
the V = 1 case above. The same is true for operators with d, L and/or e charges.

• All. If we do not neglect any of the SM Yukawa couplings at all, then all flavour
charges are broken, except two combinations of the lepton charges, YL+e ≡ YL + Ye
and I3,L+e ≡ I3,L + I3,e. This follows from the fact that the sum of left- and right-
handed charges are always conserved by diagonal Yukawas, as argued in section 3.3.
Another way of seeing that these charges must be conserved is noticing that they
are linear combinations of the individual lepton numbers Ne, Nµ and Nτ , which are
accidentally conserved by the SM (remember that overall lepton number has been
factored out at the beginning of our analysis, so only two charges remain). Explicitly,
from eq. (2.40),

I3,L+e = 1
2 (Ne −Nµ) , YL+e = 1

3 (Ne +Nµ − 2Nτ ) . (5.3)

5.1.2 Explanation of the blocks, their sizes and implications

Having identified the flavour charges preserved by running under different approximations
to the SM interactions, we now turn to understanding which coefficients can renormalise

22In general, running to/from CHud is an exception to this, since it involves a factor of YuY †d . Here we
exclude CHud from our analysis, but in any case this drops out if Yd is approximated to zero.
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each other. The sizes and multiplicities of the blocks found in this way are given in columns
4 and 5 of table 9. These numbers can be derived by simply counting parameters with the
appropriate conserved charges, and we have checked them against the anomalous dimension
matrix using DSixTools [4, 5]. By applying our flavour decomposition, we check both that
the given charges are conserved under running, and also that all other charges in our flavour
decomposition are broken.

• Gauge only. The largest block of the anomalous dimension matrix of the (4, 0)
operators is that which contains all the flavour singlets: a 34 × 34 block. Then
there are many smaller blocks which contain each of the eight components of an
octet irrep. For example, there are eight 6×6 blocks: each block contains an 8e octet
component of each of the six coefficients {CHe, Ced, Ceu, CQe, CLe, Cee} (where in each
case, the coefficient is a singlet under all other flavour groups). Similar arguments
hold for the octet components of the other flavour groups, with the differing block
sizes determined by the number of Wilson coefficients which contain such an octet.
Finally, we have hundreds of 2×2 and 1×1 blocks, containing coefficients with other
charges. If there are two coefficients with the same flavour charges but different gauge
structures, for example a component of both C(1)

ud and C(8)
ud , then those which do not

fall into any of the previous blocks will sit in 2×2 blocks. These mix via IR-divergent
gauge diagrams (see table 4). Finally, flavour components for which there is only one
possible gauge structure (and also for QQ operators, see section 4.1.2), and which
have different charges than those of the larger blocks, will sit in 1×1 blocks, and can
only renormalise themselves.

• Gauge +yt. Here, the largest block now contains also all coefficients with I{Q,u} = 0
and which are singlets under all the other flavour groups ({d, L, e}). This expands its
size to 61 × 61 coefficients. The multiplicity of two of the smaller blocks is reduced
from 8 to 7, since the I = 0 (c8,6) components of the 8Q and 8u octets are now
contained within the largest block (if a singlet under other groups). Additionally,
the sizes of the blocks are larger than in the gauge-only case due to the relaxed
requirements on the Q, u charges. Finally, there are still a large number of 2× 2 and
1× 1 blocks, which have charges not contained in any of the larger blocks.

• Gauge +yt, yb, yτ (V = 1). The largest block now contains all coefficients with
I{Q,u,d,L,e} = 0. This expands its size to 100 × 100 coefficients. The multiplicity of
five of the smaller blocks are reduced from 8 to 7, since the c8,6 component of any
octet 8F is now contained within the largest block. Again, there are a large number
of 2×2 and 1×1 blocks, which have charges not contained in any of the larger blocks.

• Gauge +yt, yb, yτ (full V ). The largest block now contains almost 300 coefficients
since it contains all coefficients with I{u,d,L,e} = 0 and with any Q charges. There are
now no blocks that can be defined by their Q charges. The number of 2 × 2 blocks
hence has decreased significantly compared to the cases with more approximations,
since many coefficients with more than one gauge structure also have Q charges (e.g.
C

(1,3)
QQ , C(1,8)

Qu ), which are now included in larger groups.
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• All. If we do not neglect any of the Yukawa or gauge couplings, then there are
far fewer blocks than in the other cases, and in particular there are no longer any
1 × 1 blocks. However, the matrix still does block diagonalise, into 19 blocks in
total. By far the largest block is the one for which both I3,L+e (≡ I3,L + I3,e) and
YL+e (≡ YL + Ye) are zero. The next largest blocks, of size 81× 81 each, consist of
coefficients whose total I3,L+e and YL+e values lie on the vertices of the hexagon in
the middle diagram of figure 3 (or equivalently the smaller hexagon on the rightmost
diagram of the same figure). Next we have six 4 × 4 blocks, these are coefficients
whose I3,L+e and YL+e values correspond to the six components at the midpoints of
the larger hexagon in the rightmost diagram of figure 3. The 4× 4 size of each block
can be counted as: one component of the 27e multiplet of Cee, one component of the
27L multiplet of CLL, and two components of the 8e×8L multiplet of CLe (there are
two different ways to add the individual {I3,Y}L,e charges to get each (I3,L+e,YL+e)
coordinate). Finally, there are six 3×3 blocks, these are coefficients whose I3,L+e and
YL+e values correspond to the six components at the vertices of the larger hexagon in
the rightmost diagram of figure 3. The 3×3 size of each block can be counted as: one
component of the 27e multiplet of Cee, one component of the 27L multiplet of CLL,
and one component of the 8e × 8L multiplet of CLe (for each of these (I3,L+e,YL+e)
coordinates, there is only one way to add the individual {I3,Y}L,e charges).

In the final column of table 9, the letters and numbers refer to the example phenomenology
as outlined in table 1. This is to give an indication of the types of phenomenology that can
be linked by RG. For example, if the Yukawa couplings of the first two generations and
the off-diagonals of the CKM are neglected, then the A4-type coefficients are disconnected
under RG, lying in either 1 × 1 or 2 × 2 blocks. This means that coefficients responsible
for meson mixing are individually closed under renormalisation, at least to zeroth order in
light Yukawas or small CKM elements.

An example of the innards of a block is given in table 10, which shows the part of
the largest 100× 100 block in the “gauge +yt, yb, yτ (V = 1)” approximation which mixes
operators without quarks. We observe that there are many more yτ entries than gauge
entries, behaviour which is mirrored by yt in the parts of the block (not shown) that mix
quark operators, as justified in section 4.2. Moreover, the block is a dense matrix: most of
the operators mix. This demonstrates the power of the flavour decomposition in removing
most of the zeroes from the full anomalous dimension matrix.

5.2 Beyond the (4, 0) operators

We now comment on to what extent this block-diagonalisation remains true when the
other operators of the SMEFT, ignored so far, are included in the analysis. As shown
in refs. [18, 19], and summarised in section 2.1, there exist zeroes in the entries of the
anomalous dimension matrix between the (4, 0) operators that we study, and operators
with a different helicity structure (such as H6, dipole operators). Crucially, at one loop
there is no running into the (4, 0) class from operators of a different total helicity, with the
exception of entries proportional to products of two different Yukawas. For example, C(1)

ud
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g2
1 HD+ HD− HL1(1,1) HL1(8,6) HL3(1,1) HL3(8,6) He(1,1) He(8,6) LL+(1,1) LL+(8,6) LL+(27,18) LL−(1,1) LL−(8,6) Le(1,1,1,1) Le(8,6,1,1) Le(1,1,8,6) Le(8,6,8,6) ee(1,1) ee(8,6) ee(27,18)

HD+ 9
4

1
12 − 2√

3 0 0 0 − 2√
3 0 5 5 5 5 5 5 5 5 5 5 5 5

HD− 3
4 −53

12 − 2√
3 0 0 0 − 2√

3 0 5 5 5 5 5 5 5 5 5 5 5 5

HL1(1,1) −3
√

3
4 − 1

4
√

3
7
3 0 0 0 2 0 −2

√
2 0 0 2

3 0 − 2√
3 0 0 0 5 5 5

HL1(8,6) 0 0 0 1
3 0 0 0 0 0 −

√
5 0 0 −1

3 0 − 2√
3 0 0 5 5 5

HL3(1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5

HL3(8,6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5

He(1,1) −3
√

3
2 − 1

2
√

3 4 0 0 0 13
3 0 5 5 5 5 5 − 2√

3 0 0 0 −8
√

2
3 0 0

He(8,6) 0 0 0 0 0 0 0 1
3 5 5 5 5 5 0 0 − 2√

3 0 0 −4
√

5
3 0

LL+(1,1) 5 5 −
√

2
3 0 0 0 5 5 7 0 0 −2

√
2

3 0 2
√

2
3 0 0 0 5 5 5

LL+(8,6) 5 5 0 −
√

5
6 0 0 5 5 0 11

2 0 0
√

5
6 0

√
5
3 0 0 5 5 5

LL+(27,18) 5 5 0 0 0 0 5 5 0 0 3 0 0 0 0 0 0 5 5 5

LL−(1,1) 5 5 1
3 0 0 0 5 5 −2

√
2 0 0 11

3 0 − 2√
3 0 0 0 5 5 5

LL−(8,6) 5 5 0 −1
6 0 0 5 5 0

√
5

2 0 0 19
6 0 1√

3 0 0 5 5 5

Le(1,1,1,1) 5 5 − 2√
3 0 0 0 − 1√

3 0 4
√

6 0 0 − 4√
3 0 0 0 0 0 8

√
2
3 0 0

Le(8,6,1,1) 5 5 0 − 2√
3 0 0 0 0 0 2

√
15 0 0 2√

3 0 −2 0 0 0 0 0

Le(1,1,8,6) 5 5 0 0 0 0 0 − 1√
3 0 0 0 0 0 0 0 −4 0 0 4

√
5
3 0

Le(8,6,8,6) 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0

ee(1,1) 5 5 5 5 5 5 −2
√

2
3 0 5 5 5 5 5 4

√
2
3 0 0 0 68

3 0 0

ee(8,6) 5 5 5 5 5 5 0 −
√

5
3 5 5 5 5 5 0 0 2

√
5
3 0 0 56

3 0

ee(27,18) 5 5 5 5 5 5 0 0 5 5 5 5 5 0 0 0 0 0 0 12

g2
2 HD+ HD− HL1(1,1) HL1(8,6) HL3(1,1) HL3(8,6) He(1,1) He(8,6) LL+(1,1) LL+(8,6) LL+(27,18) LL−(1,1) LL−(8,6) Le(1,1,1,1) Le(8,6,1,1) Le(1,1,8,6) Le(8,6,8,6) ee(1,1) ee(8,6) ee(27,18)

HD+ 1
4

17
12 0 0 2√

3 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5

HD− 51
4

1
4 0 0 −2

√
3 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5

HL1(1,1) 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 5 5 5

HL1(8,6) 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 5 5 5

HL3(1,1)
√

3
4 − 1

4
√

3 0 0 −11
3 0 5 5 2

√
2

3 0 0 2
3 0 0 0 0 0 5 5 5

HL3(8,6) 0 0 0 0 0 −17
3 5 5 0

√
5

3 0 0 −1
3 0 0 0 0 5 5 5

He(1,1) 0 0 0 0 0 0 0 0 5 5 5 5 5 0 0 0 0 0 0 0

He(8,6) 0 0 0 0 0 0 0 0 5 5 5 5 5 0 0 0 0 0 0 0

LL+(1,1) 5 5 0 0
√

2
3 0 0 0 13

3 0 0 2
√

2
3 0 0 0 0 0 5 5 5

LL+(8,6) 5 5 0 0 0
√

5
6 0 0 0 23

6 0 0 −
√

5
6 0 0 0 0 5 5 5

LL+(27,18) 5 5 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 5 5 5

LL−(1,1) 5 5 0 0 1 0 0 0 2
√

2 0 0 −7 0 0 0 0 0 5 5 5

LL−(8,6) 5 5 0 0 0 −1
2 0 0 0 −

√
5

2 0 0 −17
2 0 0 0 0 5 5 5

Le(1,1,1,1) 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Le(8,6,1,1) 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Le(1,1,8,6) 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Le(8,6,8,6) 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ee(1,1) 5 5 5 5 5 5 0 0 5 5 5 5 5 0 0 0 0 0 0 0

ee(8,6) 5 5 5 5 5 5 0 0 5 5 5 5 5 0 0 0 0 0 0 0

ee(27,18) 5 5 5 5 5 5 0 0 5 5 5 5 5 0 0 0 0 0 0 0

y2
τ HD+ HD− HL1(1,1) HL1(8,6) HL3(1,1) HL3(8,6) He(1,1) He(8,6) LL+(1,1) LL+(8,6) LL+(27,18) LL−(1,1) LL−(8,6) Le(1,1,1,1) Le(8,6,1,1) Le(1,1,8,6) Le(8,6,8,6) ee(1,1) ee(8,6) ee(27,18)

HD+ 4 0 − 2√
3 −2

√
2
3 − 2√

3 −2
√

2
3

2√
3 2

√
2
3 5 5 5 5 5 5 5 5 5 5 5 5

HD− 0 4 − 2√
3 −2

√
2
3 2

√
3 2

√
6 2√

3 2
√

2
3 5 5 5 5 5 5 5 5 5 5 5 5

HL1(1,1) −3
√

3
4 − 1

4
√

3
10
3

4
√

2
3 3 3

√
2 −1

3 −
√

2
3 −2

√
2 −

√
10 0 2

3 −
√

2
3

2√
3 0 2

√
2
3 0 5 5 5

HL1(8,6) −3
2

√
3
2 − 1

2
√

6
4
√

2
3

14
3 3

√
2 6 −

√
2

3 −2
3 −1 − 7√

5 − 9√
5 −

√
2

3
1
3 0 2√

3 0 2
√

2
3 5 5 5

HL3(1,1) −
√

3
4

1
4
√

3 1
√

2 8
3

2
√

2
3 0 0 −2

√
2

3 −
√

10
3 0 −2

3

√
2

3 0 0 0 0 5 5 5

HL3(8,6) −
√

3
2

2
1

2
√

6

√
2 2 2

√
2

3
10
3 0 0 −1

3 − 7
3
√

5 − 3√
5

√
2

3 −1
3 0 0 0 0 5 5 5

He(1,1)
3
√

3
2

1
2
√

3 −2
3 −2

√
2

3 0 0 14
3

8
√

2
3 5 5 5 5 5 − 2√

3 −2
√

2
3 0 0 8

√
2

3
4
√

10
3 0

He(8,6) 3
√

3
2

1√
6 −2

√
2

3 −4
3 0 0 8

√
2

3
22
3 5 5 5 5 5 0 0 − 2√

3 −2
√

2
3

4
3

28
3
√

5
12√

5

LL+(1,1) 5 5 −
√

2
3 −1

6 −
√

2
3 −1

6 5 5 2
3

√
5

3 0 0 0 −
√

2
3

3 − 1
6
√

3 − 2
3
√

3 − 1
3
√

6 5 5 5

LL+(8,6) 5 5 −
√

5
2

3 − 7
6
√

5 −
√

5
2

3 − 7
6
√

5 5 5
√

5
3

17
15

3
5 0 0 −

√
5
6

3 − 7
6
√

15 −
√

5
3

3 − 7
3
√

30 5 5 5

LL+(27,18) 5 5 0 − 3
2
√

5 0 − 3
2
√

5 5 5 0 3
5

6
5 0 0 0 −

√
3
5

2 0 −
√

3
10 5 5 5

LL−(1,1) 5 5 1
3 − 1

3
√

2 −1 1√
2 5 5 0 0 0 2

3 −
√

2
3

1
3
√

3 − 1
3
√

6

√
2
3

3 − 1
3
√

3 5 5 5

LL−(8,6) 5 5 − 1
3
√

2
1
6

1√
2 −1

2 5 5 0 0 0 −
√

2
3

1
3 − 1

3
√

6
1

6
√

3 − 1
3
√

3
1

3
√

6 5 5 5

Le(1,1,1,1) 5 5 2√
3 0 0 0 − 1√

3 0 −2
√

2
3 −

√
10
3 0 2

3
√

3 −
√

2
3

3
5
3

√
2 4

√
2

3
4
3 −4

3

√
2
3 −2

3

√
10
3 0

Le(8,6,1,1) 5 5 0 2√
3 0 0 −

√
2
3 0 − 1√

3 − 7√
15 −3

√
3
5 −

√
2
3

3
1

3
√

3

√
2 8

3
4
3 2

√
2 − 8

3
√

3 −4
3

√
5
3 0

Le(1,1,8,6) 5 5 2
√

2
3 0 0 0 0 − 1√

3 − 4√
3 −2

√
5
3 0 2

√
2
3

3 − 2
3
√

3
4
√

2
3

4
3 3 5

√
2

3 − 2
3
√

3 − 14
3
√

15 −2
√

3
5

Le(8,6,8,6) 5 5 0 2
√

2
3 0 0 0 −

√
2
3 −

√
2
3 −7

√
2
15 −3

√
6
5 − 2

3
√

3

√
2
3

3
4
3 2

√
2 5

√
2

3
14
3 −2

3

√
2
3 −14

3

√
2
15 −2

√
6
5

ee(1,1) 5 5 5 5 5 5 2
√

2
3

1
3 5 5 5 5 5 −2

3

√
2
3 − 4

3
√

3 − 1
3
√

3 −
√

2
3

3
4
3

2
√

5
3 0

ee(8,6) 5 5 5 5 5 5
√

10
3

7
3
√

5 5 5 5 5 5 −
√

10
3

3 −2
3

√
5
3 − 7

3
√

15 −7
3

√
2
15

2
√

5
3

34
15

6
5

ee(27,18) 5 5 5 5 5 5 0 3√
5 5 5 5 5 5 0 0 −

√
3
5 −

√
6
5 0 6

5
12
5

Table 10. The gauge and Yukawa pieces of the running among the quarkless current-current
operators, when electron and muon Yukawas are neglected. Shown are the 20 operators with
flavour charges YL = Ye = I3,L = I3,e = IL = Ie = 0, which are conserved by the running in
the no-light-Yukawa approximation, as discussed in section 5.1. Top: the entries proportional to
g2

1 (with g2
1 factored out), which result from the flavour decomposition of the sum of the IR finite

and divergent pieces in tables 5 and 7. Middle: similarly for g2
2 . Bottom: the entries proportional

to tau Yukawa y2
τ (with y2

τ factored out), which result from the flavour decomposition of the sum
of the IR finite and divergent pieces in tables 6 and 8. ‘5’ indicates the absence of a diagram for a
process.
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can be renormalised by C(1)
QuQd, but only by an amount proportional to YuYd. All of these

contributions are zero in the case that all Yukawas except yt are neglected.
But even under a yt-only approximation of the Yukawa interactions, there is still some

running out of the (4, 0) coefficients. This will mean that the extra coefficients that they
run into, and those that these in turn are connected to by running, will ultimately need to
be included in the blocks. However, the fact that there is no feeding back into the (4, 0)
coefficients means that the blocks we have identified in table 9 cannot merge, and their (4, 0)
contents cannot change, they can only gain new members from outside the (4, 0) category.
This justifies our initial assertion that focusing on the (4, 0) operators is a significant first
step towards the full (block-)diagonalisation of the anomalous dimension matrix.

If we do not neglect yb (and/or yτ ), things become more complicated, and a fuller
flavour decomposition analysis encompassing also the ψ̄ψXH, (L̄R)(L̄R) and (L̄R)(R̄L)
operators must be performed, as well as the OHud and OLedQ operators that we excluded
from the analysis.23 We leave this for future work.

6 Phenomenology and applications

As indicated schematically in the final column of table 9, an obvious application of block-
diagonalisation of the anomalous dimension matrix is the ability to see at-a-glance which
types of SMEFT phenomenology can or cannot be linked by RG, and how strongly (i.e.
dependent on which SM parameters). An illustration of this, for the well-studied case of
lepton flavour non-universality in B decays, is given in section 6.1 below.

Since the blocks are labelled in terms of Clebsch-Gordan coefficients of the SM flavour
group, it is also easy to identify the appropriate subsystems when specific symmetry-based
flavour structures [16, 17] are imposed on the SMEFT from the UV. This could be used as
a starting point for a more in-depth study of the behaviour of flavour assumptions under
RG flow.

Building these blocks is of course also a significant step towards complete diagonali-
sation of the SMEFT anomalous dimension matrix. In a basis where the matrix is diago-
nal, it is straightforward to identify IR-enhanced directions which could be theoretically-
motivated targets for searches. In particular, due to the large size of the anomalous di-
mension matrix, it is likely that the magnitude of a few of its eigenvalues will be very
large as compared to the average value of its entries (in a non-diagonal basis),24 and the
corresponding eigenoperators can therefore provide a natural starting point for further
investigation.

Moreover, by understanding the anomalous dimension matrix in on-shell language, we
can more directly make connections with other on-shell features of SMEFT operators at

23It still applies that operators with more than 4 fields, such as ψ̄ψH3, can only be run into.
24This intuition that the numerical spread of eigenvalues should increase with the size of the matrix can

be justified in simple cases through Wigner’s semicircle law [59] or the Circular law ([60] and references
therein).
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dimension 6, e.g. dispersion relations and sum rules [61–64]. This could lead to a clearer
overview of the interplay of RG flow with these theoretical constraints.25

6.1 Case study: lepton flavour non-universality in B decays

Measurements of semileptonic and rare B decays at B factories and LHCb, especially the
ratios RD(∗) and RK(∗) [67–76], seem to hint at lepton flavour non-universal new physics.

It is possible to fit both sets of anomalies by a contribution to a single linear combi-
nation of operators, in a basis which has some small misalignment with the mass basis of
both the quarks and the leptons [77, 78]:

LNP = C

Λ2

(
(Q̄′3γµQ′3)(L̄′3γµL′3) + (Q̄′3γµσIQ′3)(L̄′3γµσIL′3)

)
. (6.1)

The primed fields are transformed to the mass basis by unitary transformations:

uL = Vuu
′
L, dL = Vdd

′
L, eL = Vee

′
L (6.2)

where V †uVd = VCKM. Then the experimental values of R(∗)
K and R

(∗)
D can be reproduced

by appropriate values of the seven parameters C
Λ2 , λf33, λ

f
32 and λf22, where λ

f
ij ≡ V ∗f3iVf3j

is a Hermitian matrix, and λf33 � λf32 � λf22 [78].
However, this simple model is in trouble with bounds on lepton flavour universality in τ

and Z decays [78, 79]. The model must be amended by adding some amount of an explicitly
quark flavour violating Wilson coefficient connecting the second and third generations [80],
which can also contribute to R(∗)

K and R(∗)
D , but does not create (significant) radiative effects

in these other LFUV observables.
We can now get a simple understanding of this situation, by expanding the Wilson

coefficients into flavour irreps, as in section 3.3. The ‘pure mixing’ scenario in eq. (6.1), in
the primed basis, is decomposed as

C = c33
33 = 1

3

c1, 1︸︷︷︸
L′

,1, 1︸︷︷︸
Q′

+
√

2c8, 6︸︷︷︸
L′

,1, 1︸︷︷︸
Q′

+
√

2c1, 1︸︷︷︸
L′

,8, 6︸︷︷︸
Q′

+ 2c8, 6︸︷︷︸
L′

,8, 6︸︷︷︸
Q′

 . (6.3)

Of course, we actually need the decomposition in the mass basis of the unprimed fields,
and specifically, for comparison with table 9, we need to be in the up-basis. Since the
relations between the primed and unprimed fields are just unitary rotations, they preserve
the SU(3)f irrep structure, and in any basis the overall octet piece and the total singlet
piece should remain the same. Moreover, if we make the approximation of only keeping
O(1) pieces ∝ λf33, then the third generation of the primed and unprimed bases are the
same, so we have simply

C = c33
33 = 1

3λ
d
33λ

e
33

c1, 1︸︷︷︸
L

,1, 1︸︷︷︸
Q

+
√

2c8, 6︸︷︷︸
L

,1, 1︸︷︷︸
Q

+
√

2c1, 1︸︷︷︸
L

,8, 6︸︷︷︸
Q

+ 2c8, 6︸︷︷︸
L

,8, 6︸︷︷︸
Q

 . (6.4)

25See [65, 66] for studies of the scale dependence of constraints from dispersion relations in general and
at dimension eight in SMEFT.
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Now we can look at how this coefficient runs by looking at table 9. If we neglect
all SM interactions except for the gauge interactions and yt, then the piece of the irrep
decomposition with I{Q,u} = 0 and in an octet component of lepton flavour falls within a
12× 12 block. In eq. (6.4), this is the piece

C ⊃
√

2
3 λd33λ

e
33

c8, 6︸︷︷︸
L

,1, 1︸︷︷︸
Q

+
√

2c8, 6︸︷︷︸
L

,8, 6︸︷︷︸
Q

 . (6.5)

The 12 coefficients in the block that can mix under RG are the (c8,6)L lepton octet com-
ponent of each of26

C
(1)
LQ (×2), C

(3)
LQ(×2), CLu (×2), CLd, CLL (×2), CLe, C

(1)
HL, C

(3)
HL. (6.6)

Identifying this block hence tells us immediately which observables may have important
radiative effects from the operator in eq. (6.1). The coefficients in this block induce LFUV in
Z couplings (C(1)

HL, C
(3)
HL), LFUV in W couplings (C(3)

HL) and leptonic τ decays (CLL, CLe).
These observables have been found to put important constraints on the model [78, 79].

On the other hand, instead of relying on the quark flavour changing effects induced by
basis- and CKM-rotation from eq. (6.1), both sets of anomalies can also be fit by NP with
explicit quark flavour violation ∝ c?3

?2. This Wilson coefficient has IQ 6= 0 and does not
contribute to the 12×12 block discussed above (or at most only by an amount proportional
to small off-diagonal CKM elements). But there is a large contribution to coefficients within
octet components of both quarks and leptons c8, 6︸︷︷︸

L

,8, 7︸︷︷︸
Q

, which fall within a 2×2 block in the

gauge +yt scenario. Here, the only sizeable running is between the SU(2)L-triplet (C(3)
LQ)

and SU(2)L-singlet (C(1)
LQ) coefficients with the same flavour structure, hence constraints

from electroweak and leptonic processes can be evaded. The C
(3)
LQ − C

(1)
LQ mixing is a

consequence of IR divergent gauge diagrams, and since these are flavour-blind, it cannot
be avoided under any flavour assumption. This effect is nevertheless important, because it
means that the C(1)

LQ = C
(3)
LQ condition, as seen in the Lagrangian (6.1), and which is chosen

to eliminate effects in b→ sνν, is not radiatively stable, and running must be included in
order to derive robust constraints and predictions for b→ sνν processes.

One final note is that any lepton flavour non-universal operator coefficients will de-
compose into singlet pieces (c1,1) and octet pieces (c8,6 and c8,4) under the lepton flavour
group. These pieces each fall into different blocks, and the running of the singlet piece will
depend on many more operator coefficients than that of the octet pieces. So the degree of
lepton flavour non-universality will change with scale.

These facts about the running of the important operators for the flavour anomalies
are already well known in the literature. But the flavour irrep basis and the resulting

26The reason that there are two parameters for each of C(1)
LQ, C

(3)
LQ and CLu are that for each choice of

lepton charges, there are two quark components with I{Q,u} = 0: c1,1 and c8,6 (cf. figure 3). Meanwhile,
the two parameters for CLL correspond to the symmetric and antisymmetric combinations.
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block-diagonalisation makes it very straightforward to identify the limited number of other
operator coefficients that can be produced by running from the different possible flavour
structures.

7 Conclusions

The story of the LHC’s future will be written in EFTs. Understanding the ways in which
heavy new physics can show up at low energies, and the general connections between
phenomenology at different scales, is a crucial goal to make the most of its unprecedented
volumes of data. In this context, the anomalous dimension matrix of the SMEFT is a
powerful object, which is worth decoding fully. Its rich flavour structure cannot be ignored,
making this effort both interesting and challenging.

In this article, we have calculated the anomalous dimension matrix of the operators of
the dimension six SMEFT with four fields and zero total helicity (a large class of operators
comprising ψ2ψ̄2, ψψ̄φ2D and φ4D2) using generalised unitarity. The amplitude-based
approach has allowed us to understand the origin of each entry of the anomalous dimension
matrix in terms of its gauge, flavour and kinematic factors individually, as well as in terms
of the IR properties of the diagrams responsible. We have thus identified sources of many
repeated patterns and zeroes in the matrix as due to the gauge and flavour tensors present
in SM four-point amplitudes. A notable aspect of the SMEFT anomalous dimension matrix
is the scarcity of entries dependent on the strong coupling g3. This contributes to making
the SMEFT RG flow particularly flavourful, since it is left heavily dependent on yt. In our
analysis the reasons behind this are clarified, in terms of the gauge structure of SM and
SMEFT tree amplitudes.

We have shown that by performing a fully general Clebsch-Gordan decomposition
on the flavour space of the Wilson coefficients, the anomalous dimension matrix is block
diagonalised. The extent of the block diagonalisation depends on which, if any, of the SM
couplings are neglected. Under the common and well justified approximation of neglecting
all but the gauge interactions and the top Yukawa, this block diagonalisation reduces the
largest block in the (4, 0) operators to 61 × 61 entries, as well as diagonalising a large
fraction of the matrix into 1× 1 or 2× 2 blocks.

This block diagonalisation not only enables at-a-glance understanding of the loop level
phenomenology of individual operators, but is also a step towards full diagonalisation of
the anomalous dimension matrix. With a diagonal anomalous dimension matrix, the most
IR-relevant operator directions, natural targets for BSM searches, can be automatically
identified. Furthermore, the flavour decomposition we employ, based as it is on the flavour
groups of the SM, should generalise easily in the effective field theory below the electroweak
scale (known as WET or LEFT) [81, 82]. Here, the remnant flavour symmetry is exactly
conserved by the RG. Future work within this effective theory will therefore allow extension
of the block diagonalisation down to mesonic scales.

Although this article has focussed only on the zero helicity, four field operators of the
SMEFT, this is a substantial starting point for two reasons. Firstly, the coefficients of these
operators comprise the majority (1460) of the parameters at dimension six, and an even
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greater majority of those generated at tree level by weakly-coupled UV completions. And
second, the corresponding block of the anomalous dimension matrix is somewhat discon-
nected from the other operators: nothing runs into it, apart from by amounts proportional
to small Yukawas. This means in particular that the block diagonalisation we find will still
hold in the full matrix, up to small admixtures of other operators. Nevertheless, future
work to incorporate also the rest of the operator classes into the framework will be im-
portant, especially in the case of the dipole (ψ̄ψXH) and Yukawa-like (ψ̄ψH3) operators,
which can impact flavour phenomenology.
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A Spinor conventions

We use the spinor conventions of [83] in mostly minus metric ηµν = diag(+1,−1,−1,−1)
and ε12 = −ε21 = ε21 = −ε12 = 1. All momenta are ingoing and massless. Undotted and
dotted indices are contracted as

〈pq〉 ≡ 〈p|α|q〉α, [pq] ≡ [p|α̇ |q]
α̇ . (A.1)

In terms of the Pauli sigma matrices and identity, we have σµ
αβ̇

= (1, ~σ) and σ̄µ,α̇β = (1,−~σ).
For a general four momentum pµ = (p0, p1, p2, p3), the spinors can be written as

|p〉α = 1√
p0 + p3

−p1 + ip2

p0 + p3

 , |p]α̇ = 1√
p0 + p3

 p0 + p3

p1 + ip2

 ,
[p|α̇ = (|p〉α)† = 1√

p0 + p3

(
−p1 − ip2 p0 + p3

)
,

〈p|α = (|p]α̇)† = 1√
p0 + p3

(
p0 + p3 p1 − ip2

)
. (A.2)

We also use the short-hand notation for the Lorentz invariant spinor contractions:

〈ij〉 ≡ εαβλαi λ
β
j , [ij] ≡ εαβλ̃αi λ̃

β
j , (A.3)

which satisfy the spinor relations

〈ij〉 = −〈ji〉, 〈ij〉 = −〈ji〉, 〈ij〉 [ji] = 2pi · pj = sij , 〈i|σµ |j] = [j| σ̄µ|i〉. (A.4)
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The Schouten identities are given by

〈12〉〈34〉+ 〈13〉〈42〉+ 〈14〉〈23〉 = 0, [12] [34] + [13] [42] + [14] [23] = 0, (A.5)

and the Fierz relations are given by

〈1|σµ |2] 〈3|σµ |4] = 2〈13〉 [42] , [1| σ̄µ|2〉 [3| σ̄µ|4〉 = 2 [13] 〈42〉,
[1| σ̄µ|2〉 [3| σ̄µ|4〉 = 2 [13] 〈42〉, 〈1|σµ |2] [3| σ̄µ|4〉 = −2〈14〉 [23] . (A.6)

When using formulae for amplitude cuts, and all amplitudes are defined with ingoing
momenta, it’s necessary to use spinors with negative four-momenta −p on one side of the
cut, which are related to their positive counterparts by:

|−p〉α = i|p〉α, |−p]α̇ = i |p]α̇ , 〈−p|α = i〈p|α, [−p|α̇ = i [p|α̇ . (A.7)

Hence we have

|p〉 [−p| = ip · σ, |p] 〈−p| = ip · σ̄,
∑
λ=±

εµλ(p)εν−λ(−p) = gµν . (A.8)

In order to get the correct propagator in the uncut diagram, we need include a factor (i)nψ
(where nψ is the number of fermion in the cut) in the master formula showed in eq. (3.9).
This is consistent with the convention that the particles with negative momentum are in
the right side of the cut.

B Standard Model amplitudes

B.1 3-point

The kinematic parts of the 3-point amplitudes are fixed only by the little group and locality.
In the case of Yukawa interactions, we have that A(ψ+ψ+H(†)) = [12] or A(ψ−ψ−H(†)) =
〈12〉. Dressing the amplitudes with their flavour and gauge indices leads to

ASM(Q+
piau

+qbH†j ) = [Yu]qp [12] εijδba, ASM(Q+
piad

+qbHj) = [Yd]qp [12] δji δba, (B.1)

ASM(Q−piau−qbH
j) = [Y †u ]pq 〈12〉 εijδab , ASM(Q−piau−qbH

†
j ) = [Y †d ]pq 〈12〉 δijδab , (B.2)

and

ASM(L+
pie

+qHj) = [Ye]qp [12] δji , ASM(L−pie−q H
†
j ) = [Y †e ]pq 〈12〉 δij , (B.3)

for quarks and leptons, where p, q are flavour indices, i, j are SU(2)L indices, and a, b

are SU(3)c indices. For gauge interactions, the relevant amplitudes are A(ψ+ψ−V −) =
〈23〉2/〈12〉, A(ψ+ψ−V +) = [13]2/[12] and A(HH†V −) = 〈13〉〈23〉/〈12〉. Adding the
colour/flavor indices leads to (where yx is the hypercharge of field x)

ASM(e+pe−q B
+) =

√
2g1ye

[13]2

[12] δ
p
q , ASM(e+pe−q B

−) = −
√

2g1ye
〈23〉2

〈12〉 δ
p
q , (B.4)

ASM(L−piL+
qjB

+) = −
√

2g1yL
[23]2

[12] δ
i
jδ
p
q , ASM(L−piL+

qjB
−) =

√
2g1yL

〈13〉2

〈12〉 δ
i
jδ
p
q , (B.5)

ASM(HiH†jB
+) = −

√
2g1yH

[13] [23]
[12] δij , ASM(HiH†jB

−) = −
√

2g1yH
〈13〉〈23〉
〈12〉 δij , (B.6)

and mutatis mutandis for the W and G interactions.
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B.2 4-point

The 4-point amplitudes can be obtained by gluing 3-point amplitudes together and re-
quiring locality and unitarity of the full amplitude. Parity conjugate amplitudes can be
obtained replacing angle ↔ square-brackets. Including the gauge and flavour indices we
can write

ASM(u+pau−qbH
iH†j ) = [Y †uYu]pqδijδab

[31]
[32]

= J1(12)J2(34)
u

· δijδab · −[Y †uYu]pq , (B.7)

ASM(d+pad−qbH
iH†j ) = −[Y †d Yd]

p
qδ
i
jδ
b
a

〈23〉
〈13〉

= J1(12)J2(34)
t

· δijδab · [Y
†
d Yd]

p
q (B.8)

ASM(u+pad−qbH
†
iH
†
j ) = [Y †d Yu]pqεijδba

(
[31]
[32] + 〈23〉

〈13〉

)
= J1(12)J2(34)

(
1
t

+ 1
u

)
· εijδab · −[Y †d Yu]pq , (B.9)

ASM(e+pe−q H
iH†j ) = −[Y †e Ye]pqδij

〈23〉
〈13〉

= J1(12)J2(34)
t

· δij · [Y †e Ye]pq , (B.10)

ASM(L−piL+
qjH

kH†l ) = [YeY †e ]pqδkj δil
〈31〉
〈32〉

= J3(12)J2(34)
u

· δkj δil · −[YeY †e ]pq , (B.11)

ASM(Q−piaQ+
qjbH

kH†l ) = [YdY †d ]pqδkj δilδab
〈31〉
〈32〉 − [YuY †u ]pqεjlεikδab

[23]
[13] (B.12)

= J3(12)J2(34)
u

· δilδkj δab · −[YdY †d ]pq + J3(12)J2(34)
t

· εikεjlδab · [YuY †u ]pq ,

and

ASM(L−piL+
qje

+re−s ) = [Ye]rq[Y †e ]psδij
[32]
[41]

= J3(12)J1(34)
u

· δij · −[Ye]rq[Y †e ]ps , (B.13)

ASM(Q−piaQ+
qjbu

+rcu−sd) = [Yu]rq[Y †u ]psδijδadδcb
[32]
[14]

= J3(12)J1(34)
u

· δijδab δcd · −[Yu]ji [Y †u ]kl , (B.14)

ASM(Q−piaQ+
qjbd

+rcd−sd) = [Yd]rq[Y
†
d ]psδijδadδcb

[32]
[14]

= J3(12)J1(34)
u

δijδ
a
b δ
c
d · −[Yd]ji [Y

†
d ]kl . (B.15)
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The ε matrices of SU(2)L can be related back to δ and λ by the Fierz relation

εijε
kl = δki δ

l
j − δkj δli = 1

2δ
k
i δ
l
j −

1
2[σI ]ki [σI ]lj . (B.16)

For the gauge amplitudes we proceed analogously. We have, for distinct fermion species ψ
and χ, schematically

ASM
(
ψ+ψ̄−χ+χ̄−

)
= 2 [13] 〈42〉

s

∑
gauge groups

g2T ⊗ T , (B.17)

ASM
(
ψ+ψ̄−χ−χ̄+

)
= 2 [14] 〈32〉

s

∑
gauge groups

g2T ⊗ T , (B.18)

ASM
(
ψ−ψ̄+χ−χ̄+

)
= 2〈13〉 [42]

s

∑
gauge groups

g2T ⊗ T . (B.19)

with respective examples (where y below is a hypercharge generator),

ASM
(
d+pad−qbu

+rcu−sd

)
= 2 [13] 〈42〉

s
δpqδ

r
s

(
g2

1yuydδ
a
b δ
c
d + g2

3
1
2(λA)ab

1
2(λA)cd

)
, (B.20)

ASM
(
d+pad−qbL

−riL+
sj

)
= 2 [14] 〈32〉

s
δpqδ

r
s

(
g2

1ydyLδ
a
b δ
i
j

)
, (B.21)

ASM
(
Q−piaQ+

qjbL
−rkL+

sl

)
= 2〈13〉 [42]

s
δpqδ

r
sδ
a
b

(
g2

1yQyLδ
i
jδ
k
l + g2

2
1
2(σI)ij

1
2(σI)kl

)
. (B.22)

For identical fermion currents we need to add the crossed diagram, e.g.,

ASM
(
Q−piaQ+

qjbQ
−rkcQ+

sld

)
(B.23)

= 2〈13〉 [42]
s

δpqδ
r
s

(
g2

1yQyQδ
a
b δ
c
dδ
i
jδ
k
l + g2

2δ
a
b δ
c
d

1
2(σI)ij

1
2(σI)kl + g2

3
1
2(λA)ab

1
2(λA)cdδijδkl

)
− crossing {1, a, i, p} ↔ {3, c, k, r} .

For Higgs-fermion gauge pieces we have schematically (for right handed and left handed
fermion particles respectively)

ASM
(
HH†ψ+ψ̄−

)
= 2〈41〉 [13]

s

∑
gauge groups

g2T ⊗ T , (B.24)

ASM
(
HH†ψ−ψ̄+

)
= 2 [41] 〈13〉

s

∑
gauge groups

g2T ⊗ T , (B.25)

e.g.

ASM
(
H iH†j e

+pe−q

)
= 2〈41〉 [13]

s

(
g2

1yHyeδ
i
jδ
p
q

)
. (B.26)

For the four Higgs gauge amplitude

ASM
(
H iH†jH

kH†l

)
= t− u

s

(
g2

1y
2
Hδ

i
jδ
k
l + g2

2
1
4(σI)ij(σI)kl

)
+ t− s

u

(
g2

1y
2
Hδ

i
lδ
k
j + g2

2
1
4(σI)il(σI)kj

)
. (B.27)
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For the four Higgs quartic amplitude

ASM
(
H iH†jH

kH†l

)
= −2λ · δ(i

(jδ
k)
l) , (B.28)

where δ(i
(jδ

k)
l) ≡

1
2

(
δijδ

k
l + δkj δ

i
l

)
.

C Dimension-6 SMEFT amplitudes

The SMEFT Lagrangian is defined schematically as27

L = −1
4

∑
F=B,W,G

FF +
∑

f=Q,u,d,L,e
if̄ /Df + |DH|2 − V (H) (C.1)

+
(
−[Yu]qpεijQ̄piH†juq − [Yd]qpδ

j
i Q̄

piHjdq − [Ye]qpδ
j
i L̄

piHjeq + h.c.
)

+
∑

ciOi,

where DµQ = ∂µQ − ig3G
A
µT

AQ − ig2W
I
µτ

IQ − ig1Bµ
1
6Q and TA = 1

2λ
A, τ I = 1

2σ
I are

the SU(3) and SU(2) generators respectively. We bypass the Lagrangian and operators
and write directly the amplitudes at order 1/Λ2. For convenience, we display the relation
between the on-shell amplitudes and for the (4, 0) set of operators Oi in the Warsaw basis,
i.e. four fields and total helicity zero, in table 11. We define symmetric and antisymmetric
combinations of gauge tensors:

(δδ) ≡ δ(a
(b δ

c)
d) ≡

1
2 (δab δcd + δadδ

c
b) , [δδ] ≡ δ[a

[b δ
c]
d] ≡

1
2 (δab δcd − δadδcb) , (C.2)

and similarly for the coefficients carrying the flavour indices:

(c) ≡ c(pr)
(qs) = 1

4
(
cprqs + cprsq + crpqs + crpsq

)
, [c] ≡ c[pr]

[qs] = 1
4
(
cprqs − cprsq − crpqs + crpsq

)
. (C.3)

D Collinear anomalous dimensions

We collect here collinear anomalous dimensions for the SM fields [1–3, 25, 28]:

γ(H) =
(
1 ·Nc · Tr[YuY †u + YdY

†
d ] + 1 · 1 · Tr[YeY †e ]−4 · 1 · g2

1HH−4 · C2(2) · g2
2

)
, (D.1)

[γ(L)]pq =
(1

2 · 1 · [YeY
†
e ]pq−3 · C2(2) · g2

2δ
p
q−3 · 1 · g2

1LLδ
p
q

)
, (D.2)

[γ(e)]pq =
(1

2 ·NL · [Y †e Ye]pq−3 · 1 · g2
1eeδ

p
q

)
, (D.3)

[γ(Q)]pq =
(1

2 · 1 · [YuY
†
u + YdY

†
d ]pq−3 · C2(Nc) · g2

3δ
p
q−3 · C2(2) · g2

2δ
p
q−3 · 1 · g2

1QQδ
p
q

)
,

(D.4)
27Note that fields with downstairs indices annihilate incoming particles with upstairs indices, e.g.,

H)j|Hi〉 ∝ δij .
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Operator Amplitude

φ4D2

cOHD+ = 3c (OHD + 1
2OH�) AHD+

(
H iH†j H

kH†l

)
= 6t · (δδ) · c

cOHD− = c (OHD − 1
2OH�) AHD−

(
H iH†j H

kH†l

)
= 2(s− u) · [δδ] · c

ψψ̄φ2D

cpq [OHL(1)]qp AHL(1)
(
H iH†j L

−pk L+
ql

)
= 2 [41] 〈13〉 · δijδkl · cpq

cpq [OHL(3)]qp AHL(3)
(
H iH†j L

−pk L+
ql

)
= 2 [41] 〈13〉 · [σI ]ij [σI ]kl · cpq

cpq [OHQ(1)]qp AHQ(1)
(
H iH†j Q

−pakQ+
qbl

)
= 2 [41] 〈13〉 · δab δijδkl · cpq

cpq [OHQ(3)]qp AHQ(3)
(
H iH†j Q

−pakQ+
qbl

)
= 2 [41] 〈13〉 · δab [σI ]ij [σI ]kl · cpq

cpq [OHe]qp AHe
(
H iH†j e

+p e−q

)
= 2〈41〉 [13] · δij · cpq

cpq [OHu]qp AHu
(
H iH†j u

+pa u−qb

)
= 2〈41〉 [13] · δab δij · cpq

cpq [OHd]qp AHd
(
H iH†j d

+pa d−qb

)
= 2〈41〉 [13] · δab δij · cpq

cpq [OHud ]qp AHud
(
H iHj d+pa u−qb

)
= 2〈41〉 [13] · δab εij · cpq

cpq [O†Hud ]qp AHud†
(
H†i H

†
j u

+pa d−qb

)
= 2〈41〉 [13] · δab εij · −cpq

ψ2ψ̄2

(c) [OLL](qs)(pr) ALL+
(
L−pi L+

qj L
−rk L+

sl

)
= 8〈13〉 [42] · (δδ) · (c)

[c] [OLL][qs][pr] ALL−
(
L−pi L+

qj L
−rk L+

sl

)
= 8〈13〉 [42] · [δδ] · [c]

(c)
(
[OQQ+] = 3

4 [OQQ(1)] + 1
4 [OQQ(3)]

)(qs)

(pr)
AQQ++

(
Q−piaQ+

qjbQ
−rkcQ+

sld

)
= 8〈13〉 [42] · (δδ) (δδ) · (c)

[c]
(
[OQQ+] = 3

4 [OQQ(1)] + 1
4 [OQQ(3)]

)[qs]

[pr]
AQQ+−

(
Q−piaQ+

qjbQ
−rkcQ+

sld

)
= 8〈13〉 [42] · [δδ] (δδ) · [c]

(c)
(
[OQQ−] = 1

4 [OQQ(1)]− 1
4 [OQQ(3)]

)(qs)

(pr)
AQQ−+

(
Q−piaQ+

qjbQ
−rkcQ+

sld

)
= 8〈13〉 [42] · [δδ] [δδ] · (c)

[c]
(
[OQQ−] = 1

4 [OQQ(1)]− 1
4 [OQQ(3)]

)[qs]

[pr]
AQQ−−

(
Q−piaQ+

qjbQ
−rkcQ+

sld

)
= 8〈13〉 [42] · (δδ) [δδ] · [c]

cprqs [OLQ(1)]qspr ALQ(1)
(
L−pi L+

qj Q
−rkaQ+

slb

)
= 2〈13〉 [42] · δab δijδkl · cprqs

cprqs [OLQ(3)]qspr ALQ(3)
(
L−pi L+

qj Q
−rkaQ+

slb

)
= 2〈13〉 [42] · δab [σI ]ij [σI ]kl · cprqs

cprqs [OLe]qspr ALe
(
L−pi L+

qj e
+r e−s

)
= 2〈14〉 [32] · δij · cprqs

cprqs [OLu]qspr ALu
(
L−pi L+

qj u
+ra u−sb

)
= 2〈14〉 [32] · δab δij · cprqs

cprqs [OLd]qspr ALd
(
L−pi L+

qj d
+ra d−sb

)
= 2〈14〉 [32] · δab δij · cprqs

cprqs [OQe]qspr AQe
(
Q−piaQ+

qjb e
+r e−s

)
= 2〈14〉 [32] · δab δij · cprqs

cprqs [OQu(1)]qspr AQu(1)
(
Q−piaQ+

qjb u
+rc u−sd

)
= 2〈14〉 [32] · δab δcd δij · cprqs

cprqs [OQu(8)]qspr AQu(8)
(
Q−piaQ+

qjb u
+rc u−sd

)
= 2〈14〉 [32] · 1

4 [λA]ab [λA]cd δij · cprqs

cprqs [OQd(1)]qspr AQd(1)
(
Q−piaQ+

qjb d
+rc d−sd

)
= 2〈14〉 [32] · δab δcd δij · cprqs

cprqs [OQd(8)]qspr AQd(8)
(
Q−piaQ+

qjb d
+rc d−sd

)
= 2〈14〉 [32] · 1

4 [λA]ab [λA]cd δij · cprqs

(c) [Oee](qs)(pr) Aee
(
e+p e−q e

+r e−s

)
= 8 [13] 〈42〉 · (c)

(c) [Ouu](qs)(pr) Auu+
(
u+pa u−qb u

+rc u−sd

)
= 8 [13] 〈42〉 · (δδ) · (c)

[c] [Ouu][qs][pr] Auu−
(
u+pa u−qb u

+rc u−sd

)
= 8 [13] 〈42〉 · [δδ] · [c]

(c) [Odd](qs)(pr) Add+
(
d+pa d−qb d

+rc d−sd

)
= 8 [13] 〈42〉 · (δδ) · (c)

[c] [Odd][qs][pr] Add−
(
d+pa d−qb d

+rc d−sd

)
= 8 [13] 〈42〉 · [δδ] · [c]

cprqs [Oeu]qspr Aeu
(
e+p e−q u

+ra u−sb

)
= 2 [13] 〈42〉 · δab · cprqs

cprqs [Oed]qspr Aed
(
e+p e−q d

+ra d−sb

)
= 2 [13] 〈42〉 · δab · cprqs

cprqs [Oud(1)]qspr Aud(1)
(
u+pa u−qb d

+rc d−sd

)
= 2 [13] 〈42〉 · δab δcd · cprqs

cprqs [Oud(8)]qspr Aud(8)
(
u+pa u−qb d

+rc d−sd

)
= 2 [13] 〈42〉 · 1

4 [λA]ab [λA]cd · cprqs

Table 11. Correspondence between (4, 0) dimension 6 operators in the Warsaw basis and on-shell
amplitudes. We represent in green the kinematic factors, in orange the gauge factors and in purple
the flavour factors. The symbols (δδ), (c) and [δδ], [c] stand for symmetric and antisymmetric
indices combinations, respectively.
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[γ(d)]pq =
(1

2 ·NL · [Y †d Yd]
p
q−3 · C2(Nc) · g2

3δ
p
q−3 · 1 · g2

1ddδ
p
q

)
, (D.5)

[γ(u)]pq =
(1

2 ·NL · [Y †uYu]pq−3 · C2(Nc) · g2
3δ
p
q−3 · 1 · g2

1uuδ
p
q

)
, (D.6)

where NL = 2, Nc = 3, and C2(N) = N2−1
2N .28

E Phase space factors

Individual currents are denoted as follows:

, = Any current

1

2

= Higgs current

1

2

= Fermion current (E.1)

where 1, 3 always label particles and 2, 4 always label antiparticles and we use the conven-
tion of all incoming particles. The cut is an integral over two body phase space defined as:

= −2(i)nψ
∫ dΠ2

2ρ · 4πA6 ×ASM , (E.2)

nψ is the number of fermion lines cut and ρ = 0(1) if the particles being cut are (in)distin-
guishable. The subtracted cut removes the contribution of the divergent triangle diagram:

sub

= −2(i)nψ
∫ dΠ2

2ρ · 4π

A6 ×ASM − k
1
s34

1
s2
θ
2

 , (E.3)

where the coefficient k is such to make the overall integral finite.

E.1 IR finite

• s-channel gauge:

= 4
3 (E.4)

28Note that the terms (2.15) of [25] are the coefficients of 1
ε
poles in the collinear pieces, which need to

be multiplied by −2 to get the anomalous dimension.
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= 2
3 (E.5)

( ) = 2 (E.6)

[ ] = 2
3 (E.7)

[ ] = 16
3 (E.8)

where the coloured dotted lines can be a Higgs or a fermion current, and the brackets
denote (anti)symmetrisation in the case of indistinguishable currents.

• t/u-channel Yukawa (single current cut):

or = 1× (E.9)

or = 2× (E.10)

( ) or = 3× (E.11)

[ ] or = 1× (E.12)
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[ ] or = 8× (E.13)

[ ] or = 4× (E.14)

• t/u-channel Yukawa (double current cut):

= −1 (E.15)

= −2 (E.16)

= 2 (E.17)

= 1 (E.18)

E.2 IR divergent (soft)

Here, the “cut” includes subtracting off the IR divergent piece due to triangle diagrams.

sub

= 6 (E.19)

sub

= 8 (E.20)
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[ ]

sub

= 24 [ ] (E.21)

[ ]

sub

= 14 [ ] (E.22)

( )

sub

= 26 ( ) (E.23)

Notice that the diagrams shown in (E.21), (E.22) and (E.23) are equivalent to the double-
current cut diagrams in (E.29), (E.35) and (E.31), respectively. This is due to the inbuilt
symmetry to exchange two legs in the l.h.s. operator.

In the following, ‘+’ on a Higgs leg denotes the Higgs particle, whereas ‘−’ denotes the
daggered Higgs anti-particle.

±

±

sub

= 0 (E.24)

±

∓

sub

= (−6) (E.25)

±

±

sub

= (−4) (E.26)

±

∓

sub

= 4 (E.27)
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±

±

[
]

sub

= 0

[
]

(E.28)

±

∓

[
]

sub

= 24

[
]

(E.29)

±

±

(
)

sub

= (−2)

(
)

(E.30)

±

∓

(
)

sub

= 26

(
)

(E.31)

±

±

(
)

sub

= 0

[
]

(E.32)

±

∓

(
)

sub

= (−18)

[
]

(E.33)

±

±

[
]

sub

= (−8)

[
]

(E.34)

±

∓

[
]

sub

= 14

[
]

(E.35)
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HD+ HD−

HD+ (2 · −1 · 1 +−2 · 5
4) · −2λc 2 · 1

4 · −2λc

HD− 6 · 3
4 · −2λc −6 · 3

4 · −2λc

Table 12. Phase space factors, given in green, can be found in appendix E.3 and are explained in
section 3.1.1. Gauge factors, given in orange, can be found in tables 2, 13 and 14, and are explained
in section 3.2.

±

±
[

]

sub

= 0

(
)

(E.36)

±

∓

[
]

sub

= (−6)

(
)

(E.37)

E.3 Higgs quartic factors

For completeness, in table 12 we list the terms of the anomalous dimension matrix which
are dependent on the Higgs quartic coupling λ. Diagrammatically, the phase space pieces
are as follows:

= 0 (E.38)

±

±

(
)

= (−1)

(
)

(E.39)

±

±

[
]

= 0

[
]

(E.40)

∓

±

(
)

= (−2)

(
)

(E.41)

– 60 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
6

∓

±

(
)

= 6

[
]

(E.42)

∓

±

[
]

= 2

(
)

(E.43)

∓

±

[
]

= (−6)

[
]

(E.44)

F (Anti)-symmetrised gauge contractions

Here we provide tables of gauge contractions, similar to table 2 in section 3.2, but phrased
in terms of the (anti)symmetrised tensor combinations (δ δ) and [δ δ]. These give the
gauge factors relevant for anomalous dimensions involving operators with indistinguishable
currents. Table 13 has the same contractions as table 2, but the results are expressed in
(anti)symmetrised form. These are relevant for anomalous dimensions from the running
of distinguishable operators into operators with indistinguishable currents. Table 14 has
contractions of (anti)symmetrised tensors with SM tensors, and the results are given in
terms of non-symmetrised tensors. These are relevant for anomalous dimensions from the
running of operators with indistinguishable currents into operators with distinguishable
currents. In addition, table 14 has contractions of (anti)symmetrised tensors with SM
tensors, and the results are given in terms of (anti)symmetrised tensors. These are relevant
for anomalous dimensions from the running of operators with indistinguishable currents
into operators with indistinguishable currents.

G Clebsch-Gordan decomposition of Wilson coefficients

We use the conventions of [54, 55] developed for the SU(3) of light flavours u, d, s, to
decompose the Wilson coefficients in terms of irreps of their SU(3) flavour symmetry.

G.1 cpq

The 3⊗3 of cpq decomposes into the 1⊕8 of c1,1 and c8,1, . . . , c8,8. The Wilson coefficients
are given in terms of the Clebsch-Gordan decompositions as:

c1
1 = c1,1√

3
− c8,4√

2
− c8,6√

6
, c1

2 = c8,3, c1
3 = c8,1, (G.1)

c2
2 = c1,1√

3
+ c8,4√

2
− c8,6√

6
, c2

3 = c8,2, c3
3 = c1,1√

3
+
√

2
3c8,6.
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A6 ×ASM (gauge part) General SU(N) N = 2 N = 3

δab δ
e
f × δfe δcd = N(δ δ) +N [δ δ] = 2(δ δ) + 2[δ δ] = 3(δ δ) + 3[δ δ]

[λA]ab [λA]ef × δfe δcd = 0 = 0 = 0

δab δ
e
f ×

1
4 [λA]fe [λA]cd = 0 = 0 = 0

[λA]ab [λA]ef × 1
4 [λB]fe [λB]cd =

(
N−1
N

)
(δ δ)−

(
N+1
N

)
[δ δ] = 1

2(δ δ)− 3
2 [δ δ] = 2

3(δ δ)− 4
3 [δ δ]

δab δ
e
f × δ

f
d δ

c
e = (δ δ) + [δ δ] = (δ δ) + [δ δ] = (δ δ) + [δ δ]

δab δ
e
f ×

1
4 [λA]fd [λA]ce = N2−1

2N ((δ δ) + [δ δ]) = 3
4 ((δ δ) + [δ δ]) = 4

3 ((δ δ) + [δ δ])

[λA]ab [λA]ef × δ
f
d δ

c
e = 2

(
N−1
N

)
(δ δ)− 2

(
N+1
N

)
[δ δ] = (δ δ)− 3[δ δ] = 4

3(δ δ)− 8
3 [δ δ]

[λA]ab [λA]ef × 1
4 [λB]fd [λB]ce = −

(
N−1
N2

)
(δ δ) +

(
N+1
N2

)
[δ δ] = −1

4(δ δ) + 3
4 [δ δ] = −2

9(δ δ) + 4
9 [δ δ]

[λA]eb[λA]af × 1
4 [λB]fd [λB]ce = N3−2N+1

N2 (δ δ)− N3−2N−1
N2 [δ δ] = 5

4(δ δ)− 3
4 [δ δ] = 22

9 (δ δ)− 20
9 [δ δ]

[λA]eb[λA]fd × 1
4 [λB]cf [λB]ae = (N−1)2

N2 (δ δ) + (N+1)2

N2 [δ δ] = 1
4(δ δ) + 9

4 [δ δ] = 4
9(δ δ) + 16

9 [δ δ]

Table 13. Possible gauge contractions appearing in A6 × ASM, starting from non-symmetrised
structures and expressing the result in terms of (anti)symmetrised structures. The identities are
valid for SU(N) generators λA normalised such that Tr[λAλB ] = 2δAB , and which reduce to the
Pauli (Gell-Mann) matrices when N = 2(3).

A6 ×ASM (gauge part) General SU(N) N = 2 N = 3

δ
(a
(b δ

e)
f) × δ

f
e δ

c
d

= 1
2(N + 1)δab δcd

= 1
2(N + 1)(δδ) + 1

2(N + 1)[δδ]
= 3

2δ
a
b δ
c
d

= 3
2(δδ) + 3

2 [δδ]
= 2δab δcd
= 2(δδ) + 2[δδ]

δ
(a
(b δ

e)
f) ×

1
4 [λA]fe [λA]cd

= 1
8 [λB]ab [λB]cd

=
(

1
4
N−1
N

)
(δ δ)−

(
1
4
N+1
N

)
[δ δ]

= 1
8 [λB]ab [λB]cd

= 1
8(δ δ)− 3

8 [δ δ]
= 1

8 [λB]ab [λB]cd
= 1

6(δδ)− 1
3 [δδ]

δ
[a
[b δ

e]
f ] × δ

f
e δ

c
d

= 1
2(N − 1)δab δcd

= 1
2(N − 1)(δ δ) + 1

2(N − 1)[δ δ]
= 1

2δ
a
b δ
c
d

= 1
2(δ δ) + 1

2 [δ δ]
= δab δ

c
d

= (δ δ) + [δ δ]

δ
[a
[b δ

e]
f ] ×

1
4 [λA]fe [λA]cd

= −1
8 [λB]ab [λB]cd

= −
(

1
4
N−1
N

)
(δ δ) +

(
1
4
N+1
N

)
[δ δ]

= −1
8 [λB]ab [λB]cd

= 1
8(δ δ) + 3

8 [δ δ]
= −1

8 [λB]ab [λB]cd
= 1

6(δ δ) + 1
3 [δ δ]

δ
(a
(b δ

e)
f) × δ

f
d δ

c
e

= N+1
2N δab δ

c
d + 1

4 [λA]ab [λA]cd
= (δ δ)

= 3
4δ
a
b δ
c
d + 1

4 [λA]ab [λA]cd
= (δ δ)

= 2
3δ
a
b δ
c
d + 1

4 [λA]ab [λA]cd
= (δ δ)

δ
[a
[b δ

e]
f ] × δ

f
d δ

c
e

= N−1
2N δab δ

c
d −

1
4 [λA]ab [λA]cd

= [δ δ]
= 1

4δ
a
b δ
c
d −

1
4 [λA]ab [λA]cd

= [δ δ]
= 1

3δ
a
b δ
c
d −

1
4 [λA]ab [λA]cd

= [δ δ]

δ
(a
(b δ

e)
f) ×

1
4 [λA]fd [λA]ce

= (N−1)(N+1)2

4N2 δab δ
c
d −

1
8N [λB]ab [λB]cd

= N2+N−2
4N (δ δ) + N+1

4 [δ δ]
= 9

16δ
a
b δ
c
d −

1
16 [λB]ab [λB]cd

= 1
2(δ δ) + 3

4 [δ δ]
= 8

9δ
a
b δ
c
d −

1
24 [λB]ab [λB]cd

= 5
6(δ δ) + [δ δ]

δ
[a
[b δ

e]
f ] ×

1
4 [λA]fd [λA]ce

= (N+1)(N−1)2

4N2 δab δ
c
d + 1

8N [λB]ab [λB]cd
= N−1

4 (δ δ) + N2−N−2
4N [δ δ]

= 3
16δ

a
b δ
c
d + 1

16 [λB]ab [λB]cd
= 1

4(δ δ)
= 4

9δ
a
b δ
c
d + 1

24 [λB]ab [λB]cd
= 1

2(δ δ) + 1
3 [δ δ]

Table 14. Possible gauge contractions appearing in A6 × ASM, starting from (anti)symmetrised
structures in A6 and expressing the result in terms of non-symmetrised structures and, equivalently,
completely in terms of (anti)symmetrised structures for A6. The identities are valid for SU(N)
generators λA normalised such that Tr[λAλB ] = 2δAB , and which reduce to the Pauli (Gell-Mann)
matrices when N = 2(3).
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And vice versa as:

(c8,8)∗ = −c8,1 = −c1
3, (c8,7)∗ = c8,2 = c2

3, (c8,5)∗ = −c8,3 = −c1
2, (G.2)

c8,4 =
√

1
2
(
c2

2 − c1
1

)
, c8,6 =

√
1
6
(
−c1

1 − c2
2 + 2c3

3

)
, c1,1 =

√
1
3
(
c1

1 + c2
2 + c3

3

)
.

Recall that (cpq)∗ = cqp.

G.2 c
(pr)
(qs)

The (3 ⊗ 3)sym ⊗ (3 ⊗ 3)sym = 6 ⊗ 6 of c(pr)
(qs) decomposes into the 1 ⊕ 8 ⊕ 27 of c1,1

and c8,1, . . . , c8,8 and c27,1, . . . , c27,27. The Wilson coefficients are given in terms of the
Clebsch-Gordan decompositions as:

c11
11 = c1,1√

6
+ c27,12√

6
+ c27,16√

10
+ c27,18√

30
−
√

2
5c8,4 −

√
2
15c8,6, (G.3)

c11
12 = −1

2c27,11 −
c27,15

2
√

5
+ c8,3√

5
, c11

13 = −c27,5√
6
−
√

2
15c27,8 + c8,1√

5
,

c12
12 = c1,1

2
√

6
− c27,12√

6
+ c27,18

2
√

30
− c8,6√

30
, c12

13 = −c27,6√
6
− c27,9√

30
+ c8,2

2
√

5
,

c13
13 = c1,1

2
√

6
− c27,16√

10
− 1

2

√
3
10c27,18 −

c8,4

2
√

10
+ c8,6

2
√

30
, c11

22 = c27,10, c11
23 = c27,4√

2
,

c12
22 = 1

2c27,11 −
c27,15

2
√

5
+ c8,3√

5
, c12

23 = c27,5√
6
− c27,8√

30
+ c8,1

2
√

5
, c13

23 = c27,15√
5

+ c8,3

2
√

5
,

c11
33 = c27,1, c12

33 = c27,2√
2
, c13

33 =
√

3
10c27,8 + c8,1√

5
, c22

13 = −c27,7√
2
,

c22
22 = c1,1√

6
+ c27,12√

6
− c27,16√

10
+ c27,18√

30
+
√

2
5c8,4 −

√
2
15c8,6,

c22
23 = c27,6√

6
−
√

2
15c27,9 + c8,2√

5
, c23

23 = c1,1

2
√

6
+ c27,16√

10
− 1

2

√
3
10c27,18 + c8,4

2
√

10
+ c8,6

2
√

30
,

c22
33 = c27,3, c23

33 =
√

3
10c27,9 + c8,2√

5
, c33

33 = c1,1√
6

+
√

3
10c27,18 + 2

√
2
15c8,6.

And vice versa as:

(c27,27)∗ = c27,1 = c11
33, (c27,26)∗ = −c27,2 = −

√
2c(12)

33 , (c27,25)∗ = c27,3 = c22
33, (G.4)

(c27,22)∗ = c27,4 =
√

2c11
(23), (c27,21)∗ = −c27,5 = −

√
2
3

(
2c(12)

(23)− c
11
(13)

)
,

(c27,20)∗ = c27,6 = −
√

2
3

(
2c(12)

(13)− c
22
(23)

)
, (c27,19)∗ = −c27,7 =

√
2c22

(13),

(c27,24)∗ = −c27,8 = −
√

2
15

(
3c(13)

33 − 2c11
(13)− 2c(12)

(23)

)
,
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(c27,23)∗ = c27,9 =
√

2
15

(
3c(23)

33 − 2c22
(23)− 2c(12)

(13)

)
, (c27,14)∗ = c27,10 = c11

22

(c27,13)∗ = −c27,11 = −c(12)
22 + c11

(12), c27,12 = 1√
6

(
c11

11− 4c(12)
(12) + c22

22

)
,

(c27,17)∗ = −c27,15 = −
√

1
5

(
4c(13)

(23)− c
11
(12)− c

(12)
22

)
, c27,16 =

√
1
10

(
c11

11− 4c(13)
(13)− c

22
22 + 4c(23)

(23)

)
,

c27,18 =
√

1
30

(
c11

11 + 2c(12)
(12) + c22

22− 6c(13)
(13)− 6c(23)

(23) + 3c33
33

)
,

(c8,8)∗ = −c8,1 = −
√

4
5

(
c11

(13) + c
(12)
(23) + c

(13)
33

)
, (c8,7)∗ = c8,2 =

√
4
5

(
c

(12)
(13) + c22

(23) + c
(23)
33

)
,

(c8,5)∗ = −c8,3 = −
√

4
5

(
c11

(12) + c
(12)
22 + c

(13)
(23)

)
, c8,4 =

√
2
5

(
−c11

11− c
(13)
(13) + c22

22 + c
(23)
(23)

)
,

c8,6 =
√

2
15

(
−c11

11− 2c(12)
(12) + c

(13)
(13)− c

22
22 + c

(23)
(23) + 2c33

33

)
,

c1,1 =
√

1
6
(
c11

11 + 2c12
12 + 2c13

13 + c22
22 + 2c23

23 + c33
33
)
.

Recall that (cprqs)∗ = cqspr.

G.3 c
[pr]
[qs]

The (3 ⊗ 3)antisym ⊗ (3 ⊗ 3)antisym = 3 ⊗ 3 of c[pr]
[qs] decomposes into the 1 ⊕ 8 of c1,1 and

c8,1, . . . , c8,8. The Wilson coefficients are given in terms of the Clebsch-Gordan decompo-
sitions as:

c12
12 = − c1,1

2
√

3
− c8,6√

6
c12

13 = 1
2c8,2, c13

13 = − c1,1

2
√

3
− c8,4

2
√

2
+ c8,6

2
√

6
, (G.5)

c12
23 = −1

2c8,1, c13
23 = 1

2c8,3, c23
23 = − c1,1

2
√

3
+ c8,4

2
√

2
+ c8,6

2
√

6
.

And vice versa as:

(c8,8)∗ = −c8,1 = 2c[12]
[23], (c8,7)∗ = c8,2 = 2c[12]

[13], (c8,5)∗ = −c8,3 = −2c[13]
[23],

(G.6)

c8,4 =
√

2
(
−c[13]

[13] + c
[23]
[23]

)
, c8,6 =

√
2
3

(
−2c[12]

[12] + c
[13]
[13] + c

[23]
[23]

)
,

c1,1 = −
√

4
3

(
c

[12]
[12] + c

[13]
[13] + c

[23]
[23]

)
.
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