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Abstract
We study averages involving the Jacobi quadratic symbol ( n

m ) in regions where the
product mn is bounded by a large parameter. We show that these averages exhibit
cancellation whenever the summation is restricted to square-free integers bounded
away from the axes.
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1 Introduction

General bilinear forms in the Jacobi symbol over rectangular regions have been a focus
of intensive study in recent decades (see Heath-Brown [9] and Friedlander–Iwaniec
[7]). They have been used in many problems, for example:

• Values of L-functions (Soundararajan [10]);
• 4-Ranks of class groups (Fouvry–Klüners [6]);
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• Manin’s conjecture (Browning–Heath-Brown [2]);
• Bateman–Horn’s conjecture on average (Baier–Zhao [1]).

Problems of current interest in arithmetic geometry, however, require a study of such
bilinear forms with height conditions of a geometric nature. In particular, versions
where the sums over rectangular regions are replaced by those over hyperbolic regions
appear when considering the local solubility of quadrics over surfaces parameterised
by P1 × P

1 (see the top paragraph of [3, pp. 3]). These sums are of the form
∑

n,m∈N

1≤nm≤T

anbm
( n

m

)
, (1.1)

where ( n
m ) is the Jacobi quadratic symbol and (an) and (bm) are arbitrary complex

sequences with |an|, |bm | ≤ 1. For general choices of complex sequences an and bm
these sums do not give much cancellation - for example, we will see later that

∑

n,m∈N

2�nm
1≤nm≤T

( n

m

)
� T ,

which gives only logarithmic saving over the hyperbolic region of area T (log T ). The
main contribution of this sumwill be seen to come from the points where either n orm
is a square. This contribution is explained by the fact that such points have relatively
large density in the hyperbolic region compared to their density in a rectangular one.
For this reason we turn to study sums over pairs (n,m) where n and m are odd and
square-free.

Notation.Throughout this paper
∑∗

will denote a sumover odd, square-free integers.
As usual, μ will denote the Möbius function.

In this case, however, there may still be a large contribution from points close to the
axes, particularly from the lines n = 1 andm = 1. Another example which gives very
small cancellation is the following: choosing an = ( n

11 ) and bm to be the characteristic
function for the condition m = 11, one sees that

∑∗

1<n,m≤T
1≤nm≤T

μ2(2nm)anbm
( n

m

)
=

∑

1<n≤T /11

μ2(22n) � T .

It is therefore clear that in order to obtain cancellation, we must impose the extra
condition that n,m > z for some parameter z = z(T ) which tends to infinity with T .
We will show that such restrictions will give appropriate cancellation.

Theorem 1.1 Let T , z ≥ 2 and let (an), (bm) be any complex sequences such that
|an|, |bm | ≤ 1. If there exists an ε > 0 such that z ≥ T 1/3−ε, then

∑∗

z<n,m≤T
nm≤T

anbm
( n

m

)
�ε

T 1+ε

z1/2
,
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General bilinear forms in the Jacobi symbol over hyperbolic…

where the implied constant depends at most on ε. If there exists an ε > 0 such that
z ≤ T 1/3−ε, then

∑∗

z<n,m≤T
nm≤T

anbm
( n

m

)
�ε

T (log T )3

z1/2
,

where the implied constant depends at most on ε.

Theorem 1.1 fails to give a saving over the trivial bound of T (log T ) if z � (log T )4.
This is satisfactory for most applications, however it is also possible to obtain cancel-
lation for any z which tends to infinity with T with the cost of a smaller exponent of
z.

Theorem 1.2 For all T , z ≥ 2 and all complex sequences (an), (bm) such that
|an|, |bm | ≤ 1 we have,

∑∗

z<n,m≤T
nm≤T

anbm
( n

m

)
� T (log T )

z1/4
,

where the implied constant is absolute.

Remark 1.3 These results show that the majority of the sum over the hyperbolic region
will contribute to an error term. Indeed, if z ≤ T 1/3−ε for some ε > 0, we may write

∑∗

1≤n,m≤T
1≤nm≤T

anbm
( n

m

)
=

∑∗

1≤n≤z
1≤m≤T /n

anbm
( n

m

)
+

∑∗

1≤m≤z
1≤n≤T /m

anbm
( n

m

)

+
∑∗

z<n,m≤T
1≤nm≤T

anbm
( n

m

)
−

∑∗

1≤n≤z
1≤m≤z

anbm
( n

m

)
.

Then the third sum on the right hand side may be bounded by T (log T )3

z1/2
using The-

orem 1.1 and the fourth sum may be bounded by z3/2 using a well known result of
Heath-Brown [9] (see equation (1.3) below). These error terms will be sufficiently
small whenever z = (log T )A for A > 6. Choosing z to be as such, we may deal with
the remaining two sums using familiar methods for averages of characters with small
modulus such as the tools used in the Siegel–Walfisz theorem. For example, see [7,
equation (24)].

Remark 1.4 It is impossible to improve the exponent of z in Theorem 1.2 to be > 1
in general: using a similar example to before, if we take any z ≤ T 1/4, p a prime
satisfying z < p ≤ 2z, an = ( np ) and bm the characteristic function for the condition
m = p, one finds that

∑∗

z<n,m≤T
1≤nm≤T

anbm
( n

m

)
=

∑

z<n≤T /p

μ2(2pn) = 2

3(1 + 1/p)ζ(2)

(
T

p
− z

)
+ O

(
T 1/2

p1/2

)
.
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This is � T
p � T

z since 2pz < 4z2 ≤ T . If this were O(
T (log T )

zα ), then zα−1 =
O(log T ), which may be contradicted by taking z = (log T )A for A > 0 suitably
large.

In order to prove Theorems 1.1 and 1.2 we will actually prove more general results.
In particular we will prove the following:

Theorem 1.5 Let T , z ≥ 2, c ≥ 0, and let (an), (bm) be any complex sequences such
that |an|, |bm | ≤ 1. If there exists an ε > 0 such that z ≥ T 1/3−ε then,

∑∗

z<n,m≤T
nm≤T

(nm)canbm
( n

m

)
�c,ε

T 1+c+ε

z1/2
,

where the implied constant depends at most on c and ε. If there exists an ε > 0 such
that z ≤ T 1/3−ε, then

∑∗

z<n,m≤T
nm≤T

(nm)canbm
( n

m

)
�c,ε

T 1+c(log T )3

z1/2
,

where the implied constant depends at most on c and ε.

Theorem 1.6 For all T , z ≥ 2, c ≥ 0, and all complex sequences (an), (bm) such that
|an|, |bm | ≤ 1. Then

∑∗

z<n,m≤T
nm≤T

(nm)canbm
( n

m

)
�c

T 1+c(log T )

z1/4
,

where the implied constant depends at most on c.

Theorems 1.1 and 1.2 will then follow from the cases where c = 0. The methods in [7,
9] do not interact well with the hyperbolic region as they exploit the linear structure
of the rectangular regions through the use of Hölder’s inequality. We will circumvent
this problem by applying the following version of Perron’s formula to eliminate the
hyperbolic height condition [8, Lemma 2.2]:

1

π

∫ R

−R
(nm)i t fτ (t)dt = 1(nm ≤ τ) + O(R−1|log(nm) − log(τ )|−1), (1.2)

where fτ (t) = sin(t log(τ ))
t and

1(μ ≤ τ) =
{
1 if μ ≤ τ

0 if μ > τ.
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General bilinear forms in the Jacobi symbol over hyperbolic…

This will allow us to apply existing results. In particular, we apply Corollary 4 and
Theorem 1 of [9]:

∑

m≤M
2�m

∑

n≤N

anbm
( n

m

)
�ε (MN )ε(MN 1/2 + M1/2N ), (1.3)

and, for I ⊆ [1, N ] ∩ N of size |I |,
∑∗

m≤M

∣∣∣
∑∗

n∈I
an

( n

m

)∣∣∣
2 �ε (MN )ε(max(M, N ))|I |, (1.4)

for any ε > 0. It will be also be necessary to make use of the following result:

∑∗

m≤M

∣∣∣
∑∗

n∈I
an

( n

m

)∣∣∣
2 � (M + N 2 log(N ))|I |. (1.5)

This inequality goes back to Elliot [5], but was proven by Heath-Brown [9, Equation
(6)]. If N ≤ M1/2 then this bound is superior to (1.4). In our proof, this will be
necessary when lopsided rectangles appear in our coverings of the hyperbolic region.
We cannot use (1.4) for such lopsided rectangles, since if z = (log T )A for some
A > 0, we will obtain bounds of the form � T 1+c+ε

(log T )A/2 , which just fails to give
Theorem 1.5.

To prove Theorem 1.5 we will use these results along with a diadic covering of
the hyperbolic regions. In order to obtain saving for arbitrary z in Theorem 1.6 it will
be necessary to cover parts of the hyperbolic region with rectangles of equal width
before applying Cauchy–Schwarz and (1.5) to each of these rectangles and summing
over the results.

Lastly, we prove asymptotics for the Jacobi sums over all odd integers within the
hyperbolic region, namely we have the following:

Theorem 1.7 For all T ≥ 2,

∑

1≤n,m≤T
2�nm
nm≤T

( n

m

)
=

(
6ζ(2)

7ζ(3)

)
T + O(T 3/4(log T ))

where ζ is the Riemann-zeta function.

This result is obtained using Dirichlet’s hyperbola method. A similar method will give

∑∗

1≤n,m≤T
nm≤T

( n

m

)
∼ c′T .

for some constant c′ > 0, proving that we may not obtain saving in the square-free
setting when we include points close to the axes.
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2 Proof of Theorem 1.5

Our strategy for this proof will be to cover the hyperbolic region in diadic rectangles
and apply (1.2)–(1.5). Set

S(T ) =
∑∗

z<n,m≤T
nm≤T

(nm)canbm
( n

m

)
.

If z > T 1/2 then the sum is 0, so that the bound is trivially true. If z = T 1/2 then the
sum has magnitude ≤ 1, so again the bound is trivial. We are now left with z < T 1/2.
Our first step is to split the sum over the hyperbolic region into 4 pieces. We write

S(T ) = S1(T ) + S2(T ) + S3(T ) − S4(T )

where

S1(T ) =
∑∗

z1<n,m≤T
nm≤T

(nm)canbm
( n

m

)
;

S2(T ) =
∑∗

z<n≤z1

∑∗

z<m≤ T
n

(nm)canbm
( n

m

)
;

S3(T ) =
∑∗

z<m≤z1

∑∗

z<n≤ T
m

(nm)canbm
( n

m

)
;

S4(T ) =
∑∗

z<n≤z1

∑∗

z<m≤z1

(nm)canbm
( n

m

)
.

where z1 = max(z, T 1/3

log T ). We now aim to bound each of these sums individually.

First note that if z > T 1/3

log T , S2(T ) = S3(T ) = S4(T ) = 0 and so we only need to

consider them whenever z ≤ T 1/3

log T . For S4(T ) we apply (1.3) with N = M = T 1/3

log T :

divide and multiply the sum by T c so that we have | nc

T c/2 an|, | mc

T c/2 bm | ≤ 1. Then (1.3)
with ε < 1/6 gives

S4(T ) �c

{
T 2/3+c if z ≤ T 1/3

log T ,

0 if z > T 1/3

log T .

We now turn to the remaining 3 sums. If z ≤ T 1/3

log T , then S2(T ) and S3(T )may be dealt
with using symmetric arguments as a consequence of reciprocity for Jacobi symbols,

( n
m ) = (−1)

(n−1)(m−1)
4 (mn ), and so we only need to deal with one: since n andm are odd

and square-free, we may split S3(T ) into 4 sums using the conditions n,m ≡ 1 or 3
(mod 4) and then reciprocity will give 4 sums in the same form as S2(T ). Thuswe only
need to consider S1(T ) and S2(T ). We aim to use Perron’s formula. For S3(T )we split
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General bilinear forms in the Jacobi symbol over hyperbolic…

(z1, T ] into diadic intervals to obtain � (log T )2 diadic regions (N , 2N ] × (M, 2M]
where N , M ∈ (z1, T ]. For S2(T ), split the intervals (z, z1] and (z, T ] into diadic
intervals to obtain � (log T )2 diadic regions (N , 2N ] × (M, 2M] where N ∈ (z, z1]
and M ∈ (z, T ]. This will give bounds of the form

S1(T ) � (log T )2 max
z1<N≤T
z1<M≤T
NM≤T

|S(T ; N , M)|;

S2(T ) � (log T )2 max
z<N≤z1
z<M≤T
NM≤T

|S(T ; N , M)|;

where in each case

S(T ; N , M) =
∑∗

N<n≤2N
M<m≤2M
nm≤T

(nm)canbm
( n

m

)
.

Next, we apply Perron’s formula to deal with the hyperbolic conditions. Let θ ∈
[−1/2, 1/2] be such that T + θ ∈ Z + 1

2 and take τ = T + θ in (1.2). Then (1.2)
becomes

1

π

∫ R

−R
(nm)i t fT+θ (t)dt = 1(nm ≤ T ) + O(R−1|log(nm) − log(T + θ)|−1)

for any R > 0 where fT+θ (t) = sin(t log(T+θ))
t . Noting that here (log(nm) − log(T +

θ)) � 1
T , we substitute this into S(T ; N , M) to obtain

S(T ; N , M) = 1

π

∫ R

−R
fT+θ (t)

∑∗

N<n≤2N
M<m≤2M

(nm)c+i t anbm
( n

m

)
dt + O

(
(NM)1+cT

R

)
.

Before we move forward, we deal with the (nm)c+i t term: write 1 = (4NM)c

(4NM)c
, then by

setting ãn = nc
(2N )c

an and b̃m = mc

(2M)c
bm we have

∑∗

N<n≤2N
M<m≤2M

(nm)c+i t anbm
( n

m

)
= (4NM)c

∑∗

N<n≤2N
M<m≤2M

nit ãnm
it b̃m

( n

m

)

where |nit ãn|, |mit b̃m | ≤ 1. By applying (1.3) and substituting into S(T ; N , M) we
get

S(T ; N , M) �ε 4c(MN )c
∫ R

−R
| fT+θ (t)|dt(MN )ε

(
MN 1/2 + M1/2N

)
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+ (NM)1+cT

R
. (2.1)

By instead applying Cauchy–Schwarz and (1.5) we obtain

S(T ; N , M) �ε 4c(MN )c
∫ R

−R
| fT+θ (t)|dt

(
MN 1/2 + M1/2N 3/2(log N )1/2

)

+ (NM)1+cT

R
. (2.2)

We will apply (2.1) to the diadic regions in S1(T ) to obtain

S1(T ) �c,ε T c(log T )2
∫ R

−R
| fT+θ (t)|dt max

z1<N≤T
z1<M≤T
NM≤T

(MN )ε
(
MN 1/2 + M1/2N

)

+ T 2+c(log T )2

R

�c,ε T c(log T )2
∫ R

−R
| fT+θ (t)|dt

(
T 1+ε

z1/21

)
+ T 2+c(log T )2

R
.

For S2(T ) however, we may assume z ≤ T 1/3

log T so that the diadic rectangles either have

the lopsided condition N (log N )1/2 ≤ M1/2 ≤ T 1/2

z1/2
or have M1/2 ≤ N (log N )1/2 �

T 1/3

(log T )1/2
. Thus we may use (2.2) to obtain

S2(T ) �c T
c(log T )2

∫ R

−R
| fT+θ (t)|dt max

z<N≤ T 1/3
log T

z<M≤T
NM≤T

(MN 1/2 + M1/2N 3/2(log N )1/2)

+ T 2+c(log T )2

R

�c T
c(log T )2

∫ R

−R
| fT+θ (t)|dt

(
T 1/2

(
T 1/2

z1/2
+ T 1/3

(log T )1/2

))
+ T 2+c(log T )2

R

�c T
c(log T )2

∫ R

−R
| fT+θ (t)|dt

(
T

z1/2

)
+ T 2+c(log T )2

R
,

if z ≤ T 1/3

log T and S2(T ) = 0 otherwise. Choosing R = T 2(log T )2 the integral becomes
bounded by (log T ) therefore giving

S1(T ) �c,ε
T 1+c+ε(log T )3

z1/21

,
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and

S2(T ) �c

{
T 1+c(log T )3

z1/2
if z ≤ T 1/3

log T ,

0 if z > T 1/3

log T .

Finally, recalling that S2(T ) and S3(T ) are symmetrically equivalent and that z1 =
max(z, T 1/3

log T ), we may put all of these bounds together to obtain

S(T ) �c,ε

⎧
⎨

⎩

T 1+c(log T )3

z1/2
+ T 5/6+c+ε(log T )7/2 + T 2/3+c if z ≤ T 1/3

log T ,

T 1+c+ε(log T )3

z1/2
if z > T 1/3

log T ,

for any ε > 0. Now suppose there exists an ε > 0 such that z ≥ T 1/3−ε. Then if
z > T 1/3

log T we use the second case of the above bound with ε/2 to obtain:

S(T ) �c,ε
T 1+c+ε/2(log T )3

z1/2
�c,ε

T 1+c+ε

z1/2
.

If T 1/3−ε ≤ z ≤ T 1/3

log T then consider the first bound with ε/2. Then,

S(T ) �c,ε
T 1+c(log T )3

z1/2
+ T 5/6+c+ε/2(log T )7/2 + T 2/3+c �c,ε

T 1+c+ε

z1/2
.

Lastly, if there exists an ε > 0 such that z ≤ T 1/3−ε, then consider the bound for
z ≤ T 1/3

log T with ε/2. In this case the first term dominates since

T 1+c(log T )3

z1/2
≥ T 5/6+c+ε(log T )3 � T 5/6+c+ε/2(log T )7/2,

which implies the result.

3 Proof of Theorem 1.6

The key idea of this proof is to cover parts of the hyperbolic region with rectangles
of equal width and apply Theorem 1.5 along with Cauchy–Schwarz and (1.5) to the
sums over each of these rectangle and then sum over the results. The following lemma
encodes the covering we will use:

Lemma 3.1 Fix c ≥ 0 and 0 < δ ≤ 1/2. Then for any T ≥ 2 and any 2 ≤ z < T δ we
have,

∑∗

z<n≤T δ

∑∗

z<m≤ T
n

(nm)canbm
( n

m

)
=

∑

k∈H

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm
( n

m

)
+ O

(
T 1+c

z1/2

)
,
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where

H =
{
k ∈ N : z1/2 ≤ k ≤ T δ

z1/2
− 1

}
;

Ik =
{
n ∈ N : z1/2k < n ≤ z1/2(k + 1)

}
;

Jk =
{
m ∈ N : z < m ≤ T

z1/2(k + 1)

}
.

Remark 3.2 By partitioning the interval over n into intervals of equal length we are
then able to make use of the fact that, close to the hyperbolic curve, the gradient
d(x/n)
dn = − x

n2
, decreases rapidly in magnitude. This observation will lead to the

regions leftover from the covering boxes having small volume.

Proof we begin by partitioning the interval (0, T δ] into T δ

z1/2
intervals of equal length

z1/2, say (kz1/2, (k + 1)z1/2] for integers 0 ≤ k ≤ T δ

z1/2
− 1, and intersecting this

partition with (z, T δ]. Then notice that

⋃

k∈H
Ik ⊆ (z, T δ] ∩ N,

where the leftover part of this partition, L ′, satisfies

L ′ = ((z, T δ] ∩ N) \
⋃

k∈H
Ik ⊆ ((z, z + z1/2] ∪ (T δ − z1/2, T δ]) ∩ N.

Fix a k. Then for an n ∈ Ik , the summation index m ranges from z to T
n where

T
(k+1)z1/2

≤ T
n < T

kz1/2
. To create our rectangles we split all ranges over m into a

range z < m ≤ T
(k+1)z1/2

, giving us the intervals Jk , and T
(k+1)z1/2

< m ≤ T
n . Notice

that for n ∈ Ik , ( T
(k+1)z1/2

, T
n ] ∩ N ⊆ J ′

k = {m ∈ N : T
z1/2(k+1)

< m ≤ T
z1/2k

}.
Combining the ranges, for each k we have a rectangle Ik × Jk and a small section
Lk = {(n,m) ∈ N : n ∈ Ik,

T
(k+1)z1/2

< m ≤ T
n } close to the hyperbolic curve which

is contained in the small rectangle Ik × J ′
k . We also have the leftover regions coming

from n ∈ L ′, L = {(n,m) ∈ N
2 : n ∈ L ′, z < m ≤ T

n }. Then we have:

{(n,m) ∈ N
2 : nm ≤ T , n ≤ T δ, n,m > z} =

⋃

k∈H
(Ik × Jk) ∪

⋃

k∈H
Lk ∪ L.

See Fig. 1 for an illustration of these sets.
It follows that

∑∗

z<n≤T δ

∑∗

z<m≤ T
n

(nm)canbm
( n

m

)
=

∑

k∈H

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm
( n

m

)
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Fig. 1 Lemma 3.1 Illustration

+
∑

k∈H

∑∗

(n,m)∈Lk

(nm)canbm
( n

m

)

+
∑∗

(n,m)∈L
(nm)canbm

( n

m

)
.

We conclude by bounding the second and third sums trivially. For the second we use
the triangle inequality and then expand the sum to Ik × J ′

k :

∑

k∈H

∑∗

(n,m)∈Lk

(nm)canbm
( n

m

)
�

∑

k∈H

∑∗

n∈Ik

∑∗

m∈J ′
k

T c.

Note that |Ik × J ′
k | ≤ T

k(k+1) . Summing this over k > z1/2 gives

∑

k∈H

∑∗

(n,m)∈Lk

(nm)canbm
( n

m

)
� T 1+c

z1/2
.

For the leftovers we use the triangle inequality again and expand the double sum to the
region ((z, z + z1/2] × (z, T

z ] ∪ (T δ − z1/2, T δ] × (z, T
T δ−z1/2

]) ∩N
2. The number of

integer pairs in this region is � T
z1/2

+ T 1−δ/2 � T
z1/2

using the assumption z < T δ .
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Thus we obtain the bound

∑∗

(n,m)∈L
(nm)canbm

( n

m

)
� T 1+c

z1/2
.

Overall, this gives the expression

∑∗

z<n≤T δ

∑∗

z<m≤ T
n

(nm)canbm
( n

m

)
=

∑

k∈H

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm
( n

m

)
+ O

(
T 1+c

z1/2

)
.

��
We now complete our proof of Theorem 1.6. This Theorem follows directly from

Theorem 1.5 whenever z ≥ (log T )24: in these cases, (log T )2

z1/12
= O(1), so we obtain

∑∗

z<n,m≤T
nm≤T

(nm)canbm
( n

m

)
�c

T 1+c(log T )

z1/4
.

We are left with the case where z < (log T )24, for which we aim to apply (1.5)
and Lemma 3.1. However, in order for (1.5) to be effective, we cannot allow N =
max(Ik) to exceed M1/2 = (max(Jk))1/2 in any of our covering rectangles, as then the
N 2(log N ) term in (1.5) would dominate the M term, and may lead to bounds which
are too large for our purposes. To avoid this we split the hyperbolic region as before:

∑∗

z<n,m≤T
nm≤T

(nm)canbm
( n

m

)
= R1(T ) + R2(T ) + R3(T ) − R4(T )

where

R1(T ) =
∑∗

T 1/4<n,m≤T
nm≤T

(nm)canbm
( n

m

)
;

R2(T ) =
∑∗

z<n≤T 1/4

∑∗

z<m≤ T
n

(nm)canbm
( n

m

)
;

R3(T ) =
∑∗

z<m≤T 1/4

∑∗

z<n≤ T
m

(nm)canbm
( n

m

)
;

R4(T ) =
∑∗

z<n≤T 1/4

∑∗

z<m≤T 1/4

(nm)canbm
( n

m

)
.

This splitting allows us to apply Lemma 3.1 to R2(T ) (and R3(T )) and obtain integer
intervals Ik whose maximums do not get too large, therefore allowing us to apply (1.5)
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effectively. First, we bound R1(T ) and R4(T ). For R1(T ) we use Theorem 1.5 with
z1 = T 1/4:

R1(T ) �c
T 1+c(log T )3

z1/31

= T 11/12+c(log T )3.

Next, we use (1.3) with N = M = T 1/4 to deal with R4(T ). Multiplying by 1 = T c

T c

and setting ãn = nc

T c/2 an , b̃m = mc

T c/2 bm , we have |̃an|, |̃bm | ≤ 1. Then applying (1.3)
gives

R4(T ) �ε T 3/8+c+ε,

which is sufficient by choosing ε < 13/24, as it may then be absorbed into the bound
for R1(T ).

We are left with R2(T ) and R3(T ). Note that these sums are symmetrically equiv-
alent using the same argument as that of S2(T ) and S3(T ) in Sect. 2. Thus we only
need to deal with R2(T ). For this we use the covering Lemma 3.1 with δ = 1/4:

R2(T ) =
∑

k∈H

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm
( n

m

)
+ O

(
T 1+c

z1/2

)
,

where

H =
{
k ∈ N : z1/2 ≤ k ≤ T 1/4

z1/2
− 1

}
;

Ik =
{
n ∈ N : z1/2k < n ≤ z1/2(k + 1)

}
;

Jk =
{
m ∈ N : z < m ≤ T

z1/2(k + 1)

}
.

To deal with this sum, we will consider the sum over n and m for a fixed k. First deal
with the power term:

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm
( n

m

)
= T c

∑∗

m∈Jk

∑∗

n∈Ik

nc

zc/2(k + 1)c
mczc/2(k + 1)c

T c
anbm

( n

m

)
.

Now n
z1/2(k+1)

, mz1/2(k+1)
T ≤ 1, so that we may define the sequences ãn = nc

zc/2(k+1)c
an

in addition to b̃m = mczc/2(k+1)c

T c bm which satisfy the condition |̃an|, |̃bm | ≤ 1. Finally
we apply the Cauchy–Schwarz inequality and (1.5) with M = max(Jk) ≤ T

z1/2(k+1)
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and N = max(Ik) ≤ z1/2(k + 1):

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm
( n

m

)
= T c

∑∗

m∈Jk

∑∗

n∈Ik
ãnb̃m

( n

m

)

� T c|Jk |1/2
( ∑∗

m∈Jk

∣∣∣
∑∗

n∈Ik
ãn

( n

m

)∣∣∣
2)1/2

� T c
( T

z1/2(k + 1)

)1/2( T

z1/2(k + 1)

)1/2|Ik |1/2

� T 1+c

z1/4(k + 1)

where we used the fact that k2z(log(kz1/2)) � T 1/2(log T ), while T
z1/2(k+1)

≥ T 3/4

to simplify the application of (1.5). Summing this bound over the given k introduces
a logarithmic term, and so

R2(T ), R3(T ) � T 1+c(log T )

z1/4
.

Combining all the bounds we get:

∑∗

z<n,m≤T
nm≤T

(nm)canbm
( n

m

)
�c

T 1+c(log T )

z1/4
+ T 11/12+c(log T )3 �c

T 1+c(log T )

z1/4

(since z < (log T )24) as required.

4 Proof of Theorem 1.7

To begin we once more cut the hyperbolic region into regions depending on the sizes
of each variable. We write

∑

1≤n,m≤T
2�nm
nm≤T

( n

m

)
= N1(T ) + N2(T ) − N3(T ),

where

N1(T ) =
∑

1≤n≤T 1/2

2�n

∑

1≤m≤T /n
2�m

( n

m

)
;
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N2(T ) =
∑

1≤m≤T 1/2

2�m

∑

1≤n≤T /m
2�n

( n

m

)
;

N3(T ) =
∑

1≤n≤T 1/2

2�n

∑

1≤m≤T 1/2

2�m

( n

m

)
.

Let us first deal with N1(T ). We begin by separating the square values of n:

N1(T ) =
∑

1≤n≤T 1/2

2�n
n=�

∑

1≤m≤T /n
2�m

( n

m

)
+

∑

1≤n≤T 1/2

2�n
n �=�

∑

1≤m≤T /n
2�m

( n

m

)
.

To deal with the second of these sums we use the Pólya–Vinogradov inequality for the
sumoverm, and then sumover 1 ≤ n ≤ T 1/2. Thus the second sum is O(T 3/4(log T )).
For the first sum, we note that since n is a square the Jacobi symbol is the trivial
character modulo n. Thus

( n

m

)
=

{
1 if gcd(n,m) = 1,

0 if gcd(n,m) > 1.

It is well-known that for a fixed odd n, the number of odd 1 ≤ m ≤ T
n co-prime to n

is given by

T

2n
· ϕ(n)

n
+ O(nε)

for any ε > 0. Summing this error over the square values of n less than T 1/2 we will
obtain an error of size O(T 1/4+ε), which is satisfactory. For the main term we use the
change of variables n = k2:

∑

1≤n≤T 1/2

2�n
n=�

T

2n
· ϕ(n)

n
= T

2

∑

1≤k≤T 1/4

2�k

ϕ(k2)

k4
=

⎛

⎜⎜⎝
∞∑

k=1
2�k

ϕ(k2)

k4

⎞

⎟⎟⎠
T

2
+ O(T 3/4).

Noting that N2(T ) may be dealt with using the same methods we obtain

N1(T ) + N2(T ) =

⎛

⎜⎜⎝
∞∑

k=1
2�k

ϕ(k2)

k4

⎞

⎟⎟⎠ T + O(T 3/4(log T )).
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Using Theorem 1 of [4] with X = Y = T 1/2 we obtain, N3(T ) � T 3/4. Thus we
have

∑

1≤n,m≤T
2�nm
nm≤T

( n

m

)
=

⎛

⎜⎜⎝
∞∑

k=1
2�k

ϕ(k2)

k4

⎞

⎟⎟⎠ T + O(T 3/4(log T )).

Lastly we evaluate the constant. To do this, let g(n) = 1odd(n)1�(n)ϕ(n) where 1odd
and 1� are the indicator functions for odd numbers and squares respectively. We will
consider the Dirichlet series and Euler product of this multiplicative function:

∞∑

k=1

g(n)

ns
=

∏

p

(
1 +

∞∑

m=1

g(p)

pms

)

=
∏

p �=2

(
1 +

∞∑

m=1

ϕ(p2m)

p2ms

)

=
∏

p �=2

(
1 + (p − 1)

p

∞∑

m=1

1

p2m(s−1)

)

=
∏

p �=2

(
1 − 1/p(2s−1)

1 − 1/p(2s−2)

)

= 1 − 2(2−2s)

1 − 2(1−2s)

ζ(2s − 2)

ζ(2s − 1)
,

where ζ is the Riemann-zeta function. By taking s = 2 we obtain the equality

∞∑

k=1
2�k

ϕ(k2)

k4
= 6ζ(2)

7ζ(3)

as required.
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