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A new era of next-generation sequencing has changed our perception of the oral microbiome in health and disease, and
with this there is a growing understanding that the oral microbiome is a contributing factor to oral squamous cell carci-
noma (OSCC), a malignancy of the oral cavity. This study aimed to analyse the trends and relevant literature based on
the 16S rRNA oral microbiome in head and neck cancer using next-generation sequencing technologies, and to conduct
a meta-analysis of the studies with OSCC cases and healthy controls. A literature search using the databases Web of
Science and PubMed was conducted in a scoping-like review to collect information based on the study design, and
plots were generated using RStudio. We selected case–control studies using 16S rRNA oral microbiome sequencing
analysis in OSCC cases versus healthy controls for re-analysis. Statistical analyses were conducted using R. Out of 916
original articles, we filtered and selected 58 studies for review, and 11 studies for meta-analysis. Differences between
sampling type, DNA extraction methods, next-generation sequencing technology and region of the 16S rRNA were
identified. No significant differences in the a- and b-diversity between health and oral squamous cell carcinoma were
observed (p < 0.05). Random Forest classification marginally improved predictability of four studies (training set) when
split 80/20. We found an increase in Selenomonas, Leptotrichia and Prevotella species to be indicative of disease. A
number of technological advances have been accomplished to study oral microbial dysbiosis in oral squamous cell car-
cinoma. There is a clear need for standardization of study design and methodology to ensure 16S rRNA outputs are
comparable across the discipline in the hope of identifying ‘biomarker’ organisms for designing screening or diagnostic
tools.

Key words: Microbiome; 16S; sequencing; bioinformatics; oral cancer; oral squamous cell carcinoma.

Gordon Ramage, Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing,
College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ,
UK. e-mail: gordon.ramage@glasgow.ac.uk

†Authors contributed equally.

Every year, 150 000 lives are lost to head and neck
cancer which makes it the sixth most common can-
cer worldwide (1). Around 90% of head and neck
cancers are oral squamous cell carcinoma (OSCC)
that can affect oral tissues, lips, tongue, larynx and
pharynx (2, 3). Tobacco, alcohol consumption, poor
oral hygiene, and human papilloma virus (HPV) are
major risk factors for OSCC (4). Due to the high
rate of mortality and morbidity, there is an impera-
tive need for early diagnosis through active screening

of individuals at-risk (5, 6). While studies have
found that early screening of pre-malignant oral dis-
orders (PMODs) can prevent malignant transforma-
tion of oral tissues (6), there remains opportunities
for improving diagnostics. Notably, chronic inflam-
mation is implicated in disease development, a pro-
cess which can be mediated by oral microorganisms
(7–9), suggesting these could be potential diagnostic
biomarkers.

Advances in next-generation sequencing (NGS)
have paved the way to decoding the complex rela-
tionships of the microbiome, with over 700 speciesReceived 28 November 2022. Accepted 28 March 2023
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thought to reside in the oral cavity (5). There has
been a marked upward trend in oral microbiome
research over the past 10 years, and this is also true
in relation to oral cancer (10). Oral microbes can
induce carcinogenic changes leading to enrichment
of lipopolysaccharide (LPS) biosynthesis and epige-
netic modulation causing pro-inflammatory changes
in the local tumour microenvironment (5, 11).
These changes are often influenced by foreign carci-
nogenic substances induced through smoking and
tobacco by-products, which can be broken down by
microbial metabolites (12).

Studies have implicated the role of Fusobacter-
ium, Pseudomonas, Porphyromonas, Provotella,
Campylobacter, Rothia and Leptotrichia in the pro-
gression of OSCC (10, 11, 13). These bacteria are
often present in the surrounding tumour environ-
ment, however recent evidence has shown that a
few species, such as Fusobacterium nucleatum and
Porphyromonas. gingivalis can reside within the
tumour itself (14). These ‘intratumoural’ bacteria
play a key role in modulating immune-related
changes leading to a more aggressive, enhanced
tumour form (15, 16). Several studies have been
published utilizing amplicon sequencing of the oral
microbiome in OSCC, however, wide-scale vari-
ances in study design including sampling technique,
nucleic acid extraction methods, sequencing tech-
nique and region of 16S rRNA selected for analysis
vary dramatically between studies, ultimately hin-
dering the ability to compare findings (13, 14, 17).
However, it is now thought that specific members
of the oral microbial community promote genetic
instability, tumour proliferation and changes to
the host metabolism contributing to resistance to
therapy (18).

In a systematic review conducted in 2021, Mun
et al. (10) concluded that there is evidence for the
functional properties of the oral microbiome in
OSCC, and analysis of the oral microbiome with
meta-transcriptomics could further improve our
understanding. The study of the oral microbiome
remains a potential resource in diagnostic and thera-
peutic clinical intervention of OSCC. Although revo-
lutionary, NGS has its own set of limitations, hence
we hypothesised that a re-analysis of oral micro-
biome datasets could resolve gaps within the current
research. The aim of the study was to collect and
analyse publicly available datasets on 16S rRNA
sequencing of the oral microbiome in OSCC using a
reproducible, standardized pipeline for downloading,
processing, and interpreting the data (19). Addition-
ally, this study aims to profile the functional poten-
tial to identify and classify key organisms that may
act as predictors of disease within the OSCC
microbiome.

METHODS

Search criteria

We utilized an analysis pipeline recently developed by our
group, as illustrated in Fig. 1. A full methodology has
been included as supplementary material and significant
deviations have been briefly listed here (19). Studies were
collected by using keyword searches on PubMed and Web
of Science (Clarivate Analytics, Philadelphia, Pensylvania,
USA) to select for microbiome and NGS studies, per-
formed on the oral cavity, and specifically related to oral
squamous cell carcinoma (Table S1). These were filtered
to exclude any study published before 2012 to coincide
with the advancement of microbiome sequencing plat-
forms (20). Remaining studies were exported to the refer-
ence manager Endnote X9 (Clarivate Analytics,
Philadelphia, Pensylvania, USA).

Study inclusion and exclusion criteria

Studies were excluded if they were not oral microbiome
amplicon studies, had no data accession number, were not
mappable to individual samples, had no available meta-
data for individuals within the study. We also excluded
studies with data ‘available upon reasonable request’, in
vitro studies, metagenomic studies and transcriptomic
studies.

Shortlisting of studies and retention of key information
was carried out by CLRV. These then underwent a two-
step process for verification and inclusion by another
laboratory-based clinician (SS). Shortlisted articles were
then assigned a score from 1 to 5 based on data access
and cohort metadata inclusion as outlined previously (19).

Data retrieval and processing

Available data were downloaded from the European
Nucleotide Archive (ENA) database and processed as
described previously unless otherwise stated (19). In brief,
Quality Control protocols were carried out in Qiime2 (21).
Primers and barcodes were removed and reads trimmed if
below 100 bp. Paired end reads were merged and prefil-
tered using sortMeRNA against the Silva-bac-id90 data-
base (22) before being assigned to operational taxonomic
units (OTUs) by mapping to the human oral microbiome
database (HOMD) and GreenGenes.

Operational taxonomic units clustering was performed
in closed-reference mode using the Vsearch (https://github.
com/qiime2/q2-vsearch) package within the Qiime2 (v
2019.10). Phylogenetic trees were constructed for all repre-
sentative OTUs using the FastTree algorithm within
Qiime2 (23). OTU tables were exported and combined
with study metadata tables and imported into R for
manipulation and visualization.

Microbiome diversity and composition analyses

Diversity and compositional analyses were carried out as
previously described (19). Briefly, a- and b-diversity ana-
lyses were calculated using phyloseq. All samples within
the case–control studies were normalized to the geometric
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mean, significance was determined using a Welch’s t-test
and mean Log fold change was calculated for each of the
disease vs health samples.

The centred log-ratio (CLR) Euclidean distance matrix
was calculated using the make.CLR function within
MicrobeR with replacement of 0 counts using the

(A)

(B)

Fig. 1. Study design, collection of metadata and data processing. (A) Based on our inclusion criteria, a total of 916 studies
were screened and 58 studies were included in the review and 19 eligible studies with publicly available data were included
in the re-analysis. (B) Overview of study characteristics including countries, sex, sequencing technique, region of 16S
rRNA, sample type, DNA extraction method/kit, smoking and alcohol status of the healthy and diseased cohort. Illumina
MiSeq and V4 region of the 16S rRNA were most popular for sequencing. Saliva was the most common sampling method,
and the number of samples from males, non-smokers and alcoholics was higher.
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zCompositions function and then calculating the distance
matrix in base R. The Phylogenetic Isometric Log-Ratio
Transform (PhILR) from the phylogenetic trees, created
as described above, were visualized using the R package
PhiLR (24).

The function ape::PCoA was then used to ordinate the
distance matrixes into a 2D plot (25). Ggplot2 was used
for visualization and combining of plots within R. Permu-
tational multivariate analysis of variance was performed
and assessed for statistical significance using the ADONIS
function within the vegan package (https://github.com/
vegandevs/vegan) and performed individually on all dis-
tance matrix with 999 replications.

Random forest classifiers

As described previously, four high-impact case-controlled
studies were selected as training datasets for random forest
classifiers (19, 26). The data was randomly split into a
80:20 ratio to create a training and validation dataset.
Centre log-ratio normalized OTUs were used as predictor
variables for healthy/disease cases. CLR normalized fea-
tures from the PICRUSt derived KEGG orthology (KO)
feature abundances and PhiLR abundances were addition-
ally added.

Random forest models were built using the randomfor-
est package and receiver operator characteristic (ROC)
curves were built based on random forest models using
the pROC and ggROC packages (27, 28). Prediction and
performance metrics were extracted using the predict and
performance functions from ROCR (29). The most impor-
tant features were extracted from random forest models
by ranking MeanDecreaseGini scores and plotted using
ggplot2. Normalized OTUs from the PICRUSt derived
database were used to inform on the functionality of
microbiome datasets and the most important features of
this model were used to identify enriched metabolic path-
ways by matching to the KEGG database using the clus-
terProfiler package in R (30). Random forest models
based upon the random assignment 80:20 ratio for 80%
training and 20% validation were built iteratively for each
individual case-controlled study. The area under the curve
was produced using the predict and performance functions
for assessment of each study.

RESULTS

Data collection and review of publications

The initial search conducted on Web of Science
yielded 770 articles and was followed up with an addi-
tional search on PubMed produced another 146 stud-
ies. The study design, as summarized in Fig. 1A,
yielded a total of 58 studies relevant to the oral micro-
biome in OSCC and subsequently 19 were selected for
the meta-analysis of publicly available data. A
detailed summary of the study design parameters of
all 58 studies is included in Data S1. Out of the 19
studies, 11 case-controlled studies were included in the
re-analysis if that had sufficient reads >1000. The
study parameters, as well as key findings, of the
included 11 studies are summarized in Table 1.

We found nine studies that did not provide
accessible sequencing data and were graded 0 for
data access. Seventeen studies were graded 1 since
the data provided could not be mapped to individ-
ual health/disease samples. Eleven studies had pub-
licly available data with the healthy and diseased
cohort described within the published article but
not individually mappable to the sequencing data
and were given a score of 2. A total of 21 studies
had publicly available data, out of which five were
given a score of 3 based as metadata was both
available and mappable to sequencing data. Within
the original search criteria we allowed for the inclu-
sion of ITS or fungal amplicon based data and only
one dataset remained, which was insufficient for re-
analysis.

Sixteen studies were given a score of 4/5 if data
were available, mappable, and additional metadata
was provided (Data S1).

Overall, the metadata showed wide variances in
sampling site, sampling technique, DNA extraction
method, sequencing technique, region of 16S rRNA
selected for analysis as summarized in Fig. 1B. Out
of the total number of samples (n = 1197) included,
the most common sampling technique was saliva
(48%). Around 55% of the studies had selected the
V4 hypervariable region of the 16 rRNA with Illu-
mina MiSeq sequencer used for 95% of studies.
DNA extraction methods varied among the individ-
ual studies, however, 31% used QIAamp DNA
blood mini kit. We collected additional information
regarding the alcohol consumption and smoking
status among the studies (Fig. S1A,B), and other
relevant information such as tumour size, stage and
immune status of the enrolled OSCC subjects.
Around 4% of the samples were smokers, and 10%
were alcohol consumers.

Bacterial diversity analysis

The individual samples which had <1000 total
passed reads were removed and the data were plot-
ted to show the average total reads per sample, per
study. Alpha diversity indexes were implemented to
represent genus- or species-level diversity within the
individual samples which was statistically compared
between the cohort groups. The data were analysed
using the observed, Shannon, Simpson and Chao1
diversity indexes on all samples. Minor differences
were observed between the healthy and OSCC sam-
ples which was not statistically significant as seen in
Fig. 2. The overall alpha diversity was slightly
lower in the OSCC group which was also non-
significant. However, when looking at the alpha
diversity of smokers vs non-smokers, it was slightly
lower in the former group, however this was not
significant. In alcoholics vs non-alcoholics, it was
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lower in the alcoholic group which was statistically
significant as per Simpson index (p < 0.001;
Fig. S1).

Beta diversity is a metric used to derive differ-
ences on a sample-to-sample basis in which diver-
sity can be observed by clustering samples and
analysing their level of dissimilarity. The resulting
diversity is represented in a distance matrix from
which ordination plots are generated to view pat-
terns. Additionally permutational multivariate anal-
ysis of variance (PERMANVOVA) was tested via
ADONIS function (Table S2). Unifrac, Bray pro-
portion, PhiLR Euclidean and Euclidean distance
matrices were utilized for determining variation in
the microbiome between collated samples. Ordina-
tion plots based upon principle coordinate analysis
(PCOA) were drawn and colourised to show
healthy (blue) vs OSCC (pink) samples in Fig. 3A.
There was some clustering observed in the PhiLR
distance matrix, while statistically significant differ-
ences were observed (p < 0.001) across all diversity
matrices when comparing health and disease groups
via ADONIS testing. The PhiLR, weighted UniFrac
and Bray-Curtis data types had an R2 value of
0.024, 0.011 and 0.013 respectively. Individual stud-
ies clustered together (Fig. 3B), but become less
clustered in PhiLR Euclidean (R2 = 0.042) and
UniFrac proportion matrices (R2 = 0.046).

Additionally, we analysed the 16S rRNA
sequencing region and sampling methods chosen by
individual studies and observed clustering within
the V4 region and saliva (Fig. S2A,B). ADONIS
analysis determined these to be statistically signifi-
cant with a p < 0.001 (Table S2).

Predictability of OSCC diagnosis among the

metadata

The 11 studies were analysed to test the predictabil-
ity of OSCC samples using the receiver operating
characteristic curve (ROC) from random forest
classifiers. Four high-impact case-controlled studies,
determined by citation number and sample volume,
were selected as a training set (Fig. 4). The studies
were tested across genus, species, Kegg Orthology
(KO) assignment, OTUs and PhILR. We also
applied an 80/20 train-test split and calculated the
area under the curve (AUC) for the training test
set. The overall predictability slightly improved
upon applying the 80/20 split. We found that the
predictability of the KO group and the PhiLR
group in the training set had an approximate AUC
of 0.75. An AUC approaching 1 is a good measure
of predictability, and the true positive rate of our
health and OSCC samples in the training set was
higher than the complete case-controlled study set.T
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In the genus, species and OTU groups, the AUC
was around 0.5, and similar in both the complete
and training study set.

Predictive capacity of individual studies

The 11 individual studies were then subjected to
random forest classification to test whether they
could accurately predict OSCC or health. Overall,
the studies Wolf et al. (48), Kumpitsch et al. (47),
Zhang et al. (49) had an area under the curve
(AUC) over 0.75 (Fig. 5A). Except for Granato
et al. (50) which had an overall AUC of 1, Zhang
et al. (49) and Kumpitsch et al. (47) had an AUC
over 0.75 among genus, species, KO, OTUs and
PhiLR. Wolf et al. (48) showed an AUC less than
0.75 for genus, but over 0.75 for the other parame-
ters. These studies are the best predictors of health
and disease and furthermore the alpha diversity
denoted by the log2fold change was also calculated.
Four studies showed a significant increase in the
Simpson index, while one study showed an increase
across all four indexes (Fig. 5B). Two studies

showed a significant increase in Shannon and
observed indexes, while one study was upregulated
in Chao1 index. However, no significant difference
was observed among the other seven studies. This
was calculated using Welch’s t-test and a p-value
<0.05 was statistically significant. Overall, only 3 of
the 11 studies had good predictability, while Gran-
ato et al. (50) had an AUC of 1, which could be
due to overfitting of data. The overall alpha diver-
sity was also not consistently significantly up or
downregulated between the various studies, which
may mean that the probability of these studies
accurately predicting health and disease is quite
low.

Distribution of organisms across health and disease

From the random forest classifier based upon our
case-controlled studies the variable importance was
determined for the individual features from the
model built from species-level OTUs and KEGG
orthology level features (Fig. 6). The Gini coeffi-
cient was utilized to rank each variable into

Fig. 2. Boxplots of Alpha diversity indexes reflect bacterial abundance and evenness. Chao1, Observed, Shannon and
Simpson diversity indexes are shown for each comparison. Higher values in the Chao, Observed and Shannon indexes indi-
cate a higher diversity in the microbiota. The higher the value of the Simpson Index the lower the overall diversity of the
microbiota. Boxplots depict the median and upper and lower quartiles of the samples grouped by healthy or OSCC dis-
eased individuals.
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importance, this metric indicates the level each vari-
able contributed to creating a strong classification
tree. From the HOMD identified species we see
that there a varying number of genus within our
important features. Our top three species from the
HOMD database with a corresponding higher level
of abundance in disease according to the mean
decrease in Gini were unclassified Selemonas sp.
HMT 126, unclassified Leptotrichia sp. HMT 223
and Prevotella denticola. The three species Acido-
vorax caeni, unclassified Actinomyces sp. HMT 175
and unclassified Stomatabaculum sp. HMT 373
were the most important features with a higher
abundance in health compared to disease. LogFC
were low when comparing our two groups with no
features exhibiting larger that 1.5 LogFC. Similarly,
our models were not able to accurately classify
between health and disease using bacterial features
between health and disease. This resulted in low
values from our mean decrease in Gini as none of
our variables were accurate predictors between
health and OSCC. A similar finding was observed
when using Kegg orthologies derived from our

PICRUSt analysis. Many of the important vari-
ables only exhibited a low mean decrease in Gini,
and additionally the corresponding fold changes
were small between our two groups of health and
disease. Important features were grouped into path-
ways to elucidate any discriminating pathways
based upon our highest scoring variables of interest
(Fig. 7). We observed some significant clustering of
metabolic pathways related to the two component
system, nitrogen metabolism and starch and sucrose
metabolism, with overrepresentation of metabolites
in our disease cohort illustrated by a negative fold
change in metabolic potential.

DISCUSSION

Oral squamous cell carcinoma is an increasingly
important area of oral health, so improving our
diagnostic capabilities is essential. Focusing micro-
biologically is one critical line of travel. The pur-
pose of our meta-analysis was to review and
analyse the current trends in study design and

Fig. 3. Principal Coordinate Analysis of OSCC Samples by Disease or Study Identifier. Observed differences in beta diver-
sity when comparing sample data from individual microbiome studies (top) or comparing health vs disease (Bottom). Sam-
ple data taken from individual studies shows clear clustering together while distance metrics in health vs disease map an
overall poor correlation between identifiable features.
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processing of oral microbiome 16S rRNA datasets
based on healthy and OSCC patient studies pub-
lished so far. Overall, the study design seems to be
lacking in rationale, with widespread variances in
selection of the 16S hypervariable region for
sequencing, DNA extraction methods and sampling
method for OSCC lesions. Such differences can
impact the overall microbiome under study, thus
causing a misinterpretation of the oral microbial
community, as evidenced by previous systematic
reviews (10, 13). A key aim of this study was to
identify potential biomarker organisms in OSCC,
which could help map early development of the dis-
ease as an aid to diagnosis, as evidenced by previ-
ous studies conducted with the gut (31).

The data for the 19 studies finalized for the re-
analyses were successfully downloaded and pro-
cessed, however we only included 11 case-controlled
studies of health vs OSCC and filtered all other
samples including those with low median reads.
The study characteristics included in our data col-
lection included countries, sex, region of 16S
rRNA, sample type, DNA extraction method/kit,
sequencing technique, smoking and alcohol status
of the healthy and diseased cohort. The selection of
DNA extraction kit is crucial for production of
good quality genomic DNA (gDNA). When
extracting DNA from oral samples, mechanical cell
lysis can improve the overall bacterial yield from

saliva (32). One study observed that enzymatic
digestion increases the amount of DNA, particu-
larly with phenol-chloroform extraction (33). Our
results have shown that QIAGEN� kits have
gained popularity, and it was found to yield a
higher bacterial diversity, however, it may under-
estimate the oral microbiome (34). Several studies
have found that each kit has its own flaws, and bias
can be introduced at any point during processing
(35). Therefore, the method of DNA extraction
should be considered carefully in conjunction with
the hypervariable region selected for analysis and
should ideally be standardized for oral microbiome
studies. NGS technologies have shorter read
lengths, therefore, it is crucial to select the appro-
priate region of the 16 s rRNA for widespread and
diverse bacterial detection (36–38).

Genetic and molecular research is largely shifting
to digital databases, with decreased manual han-
dling of raw data (39). Studies have also discovered
that despite discovering new and unknown species,
it is not always possible for taxonomists to provide
species names or phylogenetic mapping (40, 41).
This could be one of the reasons why our meta-
analysis showed many unclassified species of micro-
organisms. Few studies have explored the possibil-
ity of direct shotgun sequencing of the whole oral
microbial community (metagenome) to reduce some
of the bias associated with cloning and PCR (42,

Fig. 4. Receiver operator curves from Random Forest based upon feature tables summarized to OTU, Genus, Species,
PhiLR and KO (KEGG Orthology). Sample differentiation determined by area over curve compared for each functional
group, where a value closer to 1.00 represents a clear ability to predict OSCC status. Data was trained using 4 case-
controlled studies compared to all remaining studies (top) and an 80/20 split of all available sample data to training data-
set (bottom).
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Fig. 5. Comparisons of the microbiome in case-controlled studies. (A) Area under the curve was calculated for the perfor-
mance of the random forest classifier in each of the case-controlled studies between the OSCC and Health groups. Random
forest classification was performed on feature tables at OTU, genus, and species level. Additionally, it was performed on
Kegg Orthology derived from PICRUST and phylogenetic transformed data (PhILR). (B) For each study, the diversity
indexes Chao1, Shannon and Simpson were calculated and are represented as a Log2 fold change between disease and
health. Welch’s t-test was performed, and points are coloured when the significance = p < 0.05.

Fig. 6. Species of interest from random forest model. Features were selected by mean decrease in accuracy of the Gini
coefficient (MeanDecreaseGini) that distinguish between health (green) and disease (Red). The differential abundance
between health and disease is also represented as a log fold change and shown for the top 30 features.
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43). Although 95% of the studies in our meta-
analysis had used Illumina MiSeq which is a next-
generation sequencing (NGS) technology with
wide-scale applications, PacBio (Third generation
sequencing/TGS) demonstrated much better results.
It had longer sequence reads, higher species rich-
ness and can identify organisms at a more
advanced taxonomic and phylogenetic range (40).
However, NGS is dependable, with lower cost when
performed in-house; due to its high sensitivity and
specificity, the need for additional reference tests or
orthogonal validation assays is avoided (44). There-
fore, it is overall cost-effective, and a valuable tool,
which with a few modifications can significantly
improve the future of personalized management of
oral cancer.

Although we utilized a standardized pipeline, we
failed to find any significant differences in the over-
all bacterial diversity between health and OSCC.
The alpha diversity was lower in the OSCC group,
though the difference was small and not statistically
significant. The alpha diversity of individual studies
was upregulated in 4 studies: Granato et al. (50),
Zhang et al. (49), Lee et al. (51), and Wolf et al.
(48). Our results showed that the V4 region fol-
lowed by the V3–V4 region was selected most.
Studies have shown through Chao1 and ACE index
that the V2-V3 region has higher richness and
genetic differences when compared to other regions
(36). In our meta-analysis, the V4 region was the
most frequently used, yielded the most tightly clus-
tered results, and clustered distinctly from other

regions in the beta diversity analysis. Due to the
majority of studies choosing to use the V4 region,
future studies should investigate whether the species
coverage is high and if this region is a good predic-
tor for microbiome studies. However, we did not
observe any specific improvement in classification
based upon the V4 compared to other regions.
Indeed, work such as that by Johnson et al. (45)
has highlighted the potential in producing accurate,
high-resolution taxonomic classification of organ-
isms via full-length 16S sequencing (45).

The results of our re-analysis of publicly avail-
able data returned interesting results. Random
Forest analysis to generate ROC curves improved
when the data was randomly split 80/20. These
randomly selected variables are classified by creat-
ing decision trees, comparing the predicted values
to the actual values. This can help determine the
true positive/false negative values and the AUC is
then measured to distinguish between the classes
(46). The AUC was higher upon the 80/20 split,
which shows a higher true positive rate of the ran-
domly split data. Three of the 11 studies had an
AUC over 0.75 (47–49). A significantly increased
log2fold change was also observed in 4 studies
(48–51).

The beta diversity analysis showed scarce cluster-
ing between health and OSCC, which signifies that
there was little to no difference between the micro-
biome of health and disease, which is consistent
with the original results of the studies included in
our meta-analysis. We have shown, however, that

Fig. 7. Network of important features from random forest classifier. Kegg orthology term network constructed from
PICRUST identified terms classified into networks by over representation analysis. Individual nodes represent upregulated
features identified in the model with their relative fold change between health and disease. A positive fold change (red) rep-
resents a higher abundance in disease and a negative (blue) fold change represents a higher abundance in disease.
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ADONIS analysis of PhiLR and UniFrac beta
diversity matrices produced statistically significant
differences between the health and OSCC groups in
individual studies. This may be indicative that pool-
ing of samples from different studies for the meta-
analysis might have altered the overall results.

As evidenced by our results, saliva samples have
gained popularity over the last few years. The beta
diversity analysis also showed clustering of saliva
samples, which was distinctly separate from the
biopsy and swab samples. Some studies have found
that tissue biopsies have a high concentration of
F. nucleatum localized in both pre-cancerous and
cancerous tissues (52, 53). Gopinath et al. per-
formed an extensive study in 2021 on the different
sampling types in oral cancer vs healthy tissues and
found increased levels of Prevotella, Campylobacter,
Capnocytophaga, Solobacteria, Peptostreptococcus
and Catonella genera in oral cancer patients. They
found significant differences in bacterial composi-
tion between tumour biopsies and swabs (14).
These differences could be attributed to presence of
biofilms or co-aggregation of bacterial pathogens
on the diseased oral mucosa. Our meta-analysis
showed an increase toward selection of saliva for
microbiome sequencing, owing to the ease of saliva
collection, storage and non-invasiveness. However,
our top three species in the diseased group were
Selemonas sp. HMT 126, unclassified Leptotrichia
sp. HMT 223 and Prevotella denticola. A few stud-
ies in the meta-analysis had found similar results,
with Prevotella sp. being the most significant over-
all. Since these studies have found that saliva is a
partial indicator of the cancer tissue microbiome,
more research is needed to consider it as a conven-
tional method of sampling in OSCC (14).

Studies have also found that tobacco consumption
in the form of chewing and smoking could alter the
oral microbiome, leading to tumour progression.
These parameters are extremely important and need
to be included during patient data collection, which
seemed to be lacking among most studies (13). Five of
11 studies had included information about smokers
and alcoholics, however, it was only 4% and 10% of
the overall sample size included in our meta-analysis.
Our results showed a slightly higher alpha diversity in
smokers in Chao1 and observed index, though this
was not statistically significant. Upon further analy-
sis, we found significant differences between alco-
holics and non-alcoholics. Alcoholics may have an
altered microbiome due to an overproduction of acet-
aldehyde. High levels of acetaldehyde producing bac-
teria like Actinomyces, Rothia, Streptococcus and
Prevotella have been isolated from the oral cavity of
chronic alcoholics (13). Indeed, studies, such as those
conducted by Mizumoto et al., in 2017 highlight the

relationship between acetaldehyde and tumour muta-
genesis (54). This would imply that selection for these
acetaldehyde producing bacteria could induce further
mutations and progression of the tumour. This is fur-
ther reinforced by our identification of Prevotella as a
top-three organism present in disease samples during
our meta-analysis. Notably, the majority of studies
did not consider the yeastCandida albicans, an impor-
tant determinant of oral cancer (55). From our litera-
ture screening we also identified one ITS focused
paper with available data. We found significantly
more 16S rRNAmicrobiome studies within the litera-
ture search, with the majority of studies focusing on
the bacterial involvement in OSCC. Therefore, future
studies should examine the mycobiome as well as the
microbiome in any microbiological investigative stud-
ies. Although not included in our search criteria it is
noteworthy that there are additional considerations
other than the microbiome and mycobiome, includ-
ing the phageome, virome and meta-transcriptome
with the oral environment (56).

Microbiome sequencing utilizing 16S rRNA
amplicon also have limitation compared to the
more holistic metagenomic shotgun sequencing.
Due to limitations of integration methods within
our standardized protocol for analysing micro-
biome data we were unable to include these data
types within our study design. However, at the time
of writing the majority of studies utilizing the shot-
gun approach were minimal in comparison to those
that used 16S microbiome. Within this study we
highlight that although this is the predominant
form of profiling the oral microenvironment in
OSCC there are other technological developments
to be considered. Metagenomics by shotgun has
been applied to profile other medically relevant
conditions within the human body, including the
gut and vaginal microbial communities and other
inflammatory oral diseases (57–59). Due to its cost
effectiveness, speed of preparation and comparative
ease of analysis, amplicon sequencing remains the
most popular platform for microbial profiling.
Within time, and increase of processing simplicity,
it may become preferable to utilize shotgun
sequencing. However, for 16S amplicon sequencing
to become a useful clinical tool the need for stan-
dardization is imminently desirable.

CONCLUSION

Despite these advancements, the future of oral
microbiome research in OSCC is highly dependent
on study design characterization. Several systematic
reviews conducted over the past few years have
concluded that oral microbiome studies must widely
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focus on a standard study design, collect essential
and adequate metadata, and follow proper pipelines
for analyses of the data (10, 13). We have deter-
mined that it may be difficult to rely upon micro-
biome studies for this purpose, due to a lack of
specificity, and wide variation between individual
study design and outcomes. A consensus in
approach is a basic requirement before these studies
can be collectively useful. However, in understand-
ing the essential marriage of microbiome and clini-
cal metadata when conducting these analyses, we
can also postulate that a targeted multi-omic
approach to sample analysis may provide a more
promising outcome for early diagnosis of OSCC
(60). The oral microbiome had great potential in
classification of diseases, including diagnosis and
prevention. Future studies could include a more
clear and standardized technique for analysis, utiliz-
ing the vast number of technological advances in
the databases available as a predictive tool in
OSCC by applying our knowledge of the micro-
biome into useful clinical applications.
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SUPPORTING INFORMATION

Additional supporting information may be found
online in the Supporting Information section at the
end of the article.

Fig. S1. Additional analysis of alpha diversity
examining alcohol and smoking status in health

and disease. Chao1, Observed, Shannon and Simp-
son diversity indexes are shown for each compari-
son. (A) Significantly lower median values
(p < 0.001) for non-alcoholic samples in Chao1,
Observed, Shannon and Simpson indexes reveal
lower microbial diversity when compared with all
other samples. (B) Lower median values (non-sig-
nificant) for smokers’ samples in Observed and
Shannon indexes reveal lower microbial diversity
when compared with all other samples.
Fig. S2. Principal Coordinate Analysis of OSCC
samples depicting beta diversity of microbial popu-
lation. (A) Amplified 16 s rRNA region sequenced
and (B) Different sampling methods used by indi-
vidual studies. Overall, clustering of samples based
on sequence region is most prominently identifiable
when observed using Euclidian, Bray-Curtis and
Unifrac similarity metrics. When comparing health
and disease, sample clustering is only marginally
distinguishable using Euclidian metrics.

Table S1. Search terms used on Web of Science
and PubMed for literature search (2012-2021).

Table S2. Table displaying results from ADONIS
testing for the entire dataset.

Data S1. Meta-data table of clinical studies and
study specific information.
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