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a b s t r a c t 

Modules in brain functional connectomes are essential to balancing segregation and integration of neuronal ac- 

tivity. Connectomes are the complete set of pairwise connections between brain regions. Non-invasive Electroen- 

cephalography (EEG) and Magnetoencephalography (MEG) have been used to identify modules in connectomes 

of phase-synchronization. However, their resolution is suboptimal because of spurious phase-synchronization due 

to EEG volume conduction or MEG field spread. Here, we used invasive, intracerebral recordings from stereo- 

electroencephalography (SEEG, N = 67), to identify modules in connectomes of phase-synchronization. To gener- 

ate SEEG-based group-level connectomes affected only minimally by volume conduction, we used submillimeter 

accurate localization of SEEG contacts and referenced electrode contacts in cortical gray matter to their closest 

contacts in white matter. Combining community detection methods with consensus clustering, we found that 

the connectomes of phase-synchronization were characterized by distinct and stable modules at multiple spatial 

scales, across frequencies from 3 to 320 Hz. These modules were highly similar within canonical frequency bands. 

Unlike the distributed brain systems identified with functional Magnetic Resonance Imaging (fMRI), modules up 

to the high-gamma frequency band comprised only anatomically contiguous regions. Notably, the identified mod- 

ules comprised cortical regions involved in shared repertoires of sensorimotor and cognitive functions including 

memory, language and attention. These results suggest that the identified modules represent functionally spe- 

cialised brain systems, which only partially overlap with the brain systems reported with fMRI. Hence, these 

modules might regulate the balance between functional segregation and functional integration through phase- 

synchronization. 
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. Introduction 

Structural and functional connectomes obtained from Magnetic Res-

nance Imaging (MRI) possess a modular organization ( Meunier et al.,

009 ; Power et al., 2011 ; Doucet et al., 2011 ). Connectomes are the

omplete set of connections between brain regions. Modules are sets

f strongly interconnected brain regions. Modules identified in resting-

tate fMRI comprise regions that have also been observed to be con-

urrently active during task processing and have been found to de-

ineate functional systems for executive, attentional, sensory, and mo-
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or processing ( Beckmann et al., 2005 ; Smith et al., 2009 ; Yeo et al.,

011 ; Cole et al., 2014 ). The anatomical structure of resting-state

odules in fMRI connectomes has been found to be reproducible

nd similarly observable with different approaches such as commu-

ity detection ( Valencia et al., 2009 ; Power et al., 2011 ) and cluster-

ng ( Benjaminsson et al., 2010 ; Yeo et al., 2011 ; Lee et al., 2012 ).

oreover, the balance between segregated information processing in

odules ( Wig, 2017 ) and integrated information processing via inter-

odular connections, is essential to brain functioning ( Tononi et al.,

994 ; Tononi et al., 1998 ; Deco et al., 2015 ). 
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The relationship of fMRI functional connectivity to underlying

lectrophysiological connectivity is complex and not attributable to

ny single form of neuronal activity or coupling ( Kucyi et al., 2018 ;

hafiei et al., 2022 ). Electrophysiological measurements of macro-scale

euronal activity with Magneto- (MEG) and Electroencephalography

EEG) reveal band-limited neuronal oscillations in multiple frequen-

ies, whose inter-regional coupling is observable as synchronization be-

ween oscillation phases and correlations between oscillation amplitude

nvelopes ( Palva et al., 2005 ; Fell & Axmacher, 2011 ; Brookes et al.,

011 ; Palva & Palva, 2012 ; Engel et al., 2013 ). Amplitude correlations

eflect, e.g. , co-modulation in neuronal excitability ( Vanhatalo et al.,

004 ; Schroeder & Lakatos, 2009 ; Engel et al., 2013 ) while phase-

ynchronization implies spike-time relationships of neuronal activity

nd may regulate inter-regional neuronal communication ( Fries, 2015 ;

astos et al., 2015 ). Large-scale networks of phase-synchronization are

roposed to support the coordination, regulation, and integration of

euronal processing in cognitive functions, both in frequencies up to

30 Hz ( Varela et al., 2001 ; Palva et al., 2005 ; Uhlhaas et al., 2010 ;

itzbichler et al., 2011 ; Palva & Palva, 2012 ), and in frequencies higher

han 130 Hz, i.e., high-frequency oscillations (HFO) ( Vaz et al., 2019 ;

rnulfo et al., 2020 ). 

In the light of such putative mechanistic roles for phase-

ynchronization in cognitive functions, a modular architecture and

nter-modular coupling in connectomes of phase-synchronization dur-

ng resting-state would establish a baseline to support correspond-

ng demands for functional segregation and integration during cogni-

ive operations ( Smith et al., 2009 ; Spadone et al., 2015 ). An MEG

tudy investigated modules in connectomes of phase-synchronization

nd amplitude correlation using source-reconstructed resting-state data

 Zhigalov et al., 2017 ). Both connectomes of amplitude correlation and

hase-synchronization comprised distinct modules in frontal regions,

ensorimotor regions and occipital regions, particularly in the alpha (8–

4 Hz) and beta (14–30 Hz) frequency bands. Another MEG study used

ource-reconstructed resting-state data to identify module-like struc-

ures in connectomes of inter-regional coherence ( Vidaurre et al., 2018 ),

 connectivity measure influenced by phase-synchronization. The con-

ectomes included module-like structures comprising frontal regions,

ensorimotor regions and occipital regions across delta/theta (1–8 Hz),

lpha (8–14 Hz) and beta (14–30 Hz) frequencies. However, the ac-

uracy of modules identified in MEG/EEG connectomes is compro-

ised by the intrinsic resolution limitations of these methods, including

rtificial and spurious false positive observations with bivariate con-

ectivity measures arising from source leakage ( Palva & Palva, 2012 ;

alva et al., 2018 ) as well as false negatives due to linear-mixing insensi-

ive measures that ignore also true near-zero-lag phase-synchronization

 Vinck et al., 2011 ; Brookes et al., 2012 ; Palva & Palva, 2012 ). On the

ther hand, low-resolution ( < 35 parcels /hemisphere) cortical parcel-

ations, which are needed when spurious connections are eliminated by

ultivariate leakage correction ( Colclough et al., 2015 ), may be too

oarse to identify fine-grained cortical network structures such as mod-

les. 

In this study, we pooled resting-state stereo-EEG (SEEG) record-

ngs data from a large cohort ( N = 67) to accurately estimate connec-

omes of phase-synchronization. In contrast to the centimetre-scale, in-

ight yielded by MEG, SEEG provides a millimeter range, meso ‑scale

easurement of human cortical local field potentials (LFPs) ( Parvizi &

astner, 2018 ; Zhigalov et al., 2015 ; Zhigalov et al., 2017 ). We used

ubmillimetre-accurate anatomical localization of SEEG electrode con-

acts to brain regions ( Narizzano et al., 2017 ; Arnulfo et al., 2015b )

nd referenced each gray-matter contact to its closest white-matter con-

act ( Arnulfo et al., 2015a ), which yielded polarity-correct measure-

ents of local cortical activity without the phase distortion potentially

rising with conventional bipolar referencing. This enabled the esti-

ation of a large proportion of connections in the connectome while

dequately controlling for volume conduction so that also near zero-

ag phase-synchronization was measurable ( Arnulfo et al., 2015a ). Fi-
2 
ally, we combined community detection with consensus clustering

 Williams et al., 2019 ) to identify modules in connectomes of phase-

ynchronization in a manner that is robust against unsampled connec-

ions. 

We found that connectomes of phase-synchronization exhibited

odular organization at multiple spatial scales, throughout the stud-

ed range of frequencies from 3 to 320 Hz. These modules were highly

imilar within canonical frequency bands and comprised anatomically

ontiguous regions up to the high-gamma frequency band (80–113 Hz).

inally, we used Neurosynth meta-analysis decoding ( Yarkoni et al.,

011 ) to reveal that the observed modules comprised cortical regions ex-

ibiting shared cognitive functions, suggesting that these modules cor-

espond to brain systems with specific functional roles. Hence, the mod-

les identified might serve the regulation of balance between segrega-

ion and integration of neuronal activity through phase-synchronization.

. Materials & methods 

.1. Analysis pipeline to identify modules in connectomes of 

hase-synchronization 

We combined pre-surgical SEEG recordings from epileptic patients

ith state-of-the-art methods, to identify modules in connectomes of

hase-synchronization. We recorded resting-state LFP data from each

atient using a common reference in white matter, distant from the

utative epileptogenic zone. We re-referenced the LFP activity of each

ray-matter SEEG contact to its closest white-matter contact, which we

ave demonstrated to preserve undistorted phase reconstruction while

inimizing volume conduction ( Arnulfo et al., 2015a ). We filtered the

ecorded LFP data using 18 narrow-band Finite Impulse Response (FIR)

lters ( Fig. 1 A) from 2.5 Hz up to 350 Hz with line-noise suppressed

sing band-stop filters at 50 Hz and harmonics. Next, we estimated the

trength of phase-synchronization between every pair of SEEG contacts,

or each frequency, using Phase Locking Value ( Fig. 1 B). We assigned

ach SEEG contact to a brain region, by first identifying the position of

ach contact from a post-implant CT volume, and using co-registered

re-implant MRI scans to assign each contact to one of 148 regions

n the Destrieux brain atlas ( Destrieux et al., 2010 ) with FreeSurfer

 http://freesurfer.net/ ). We identified the position of each SEEG con-

act by using planned entry and termination points of SEEG shafts to

nitialize the shaft axis, and used constraints of inter-contact distance

nd axis deviation to locate each SEEG contact along the shaft axis

 Arnulfo et al., 2015b ). We then estimated group-level connectomes by

veraging for each region-pair, the corresponding contact-contact PLVs

cross subjects ( Fig. 1 C). We analyzed the left and right hemispheres

eparately ( Fig. 1 D) and identified modules with Louvain community

etection ( Blondel et al., 2008 ) combined with consensus clustering

 Williams et al., 2019 ) ( Fig. 1 E). Finally, we visualised the identified

odules on anatomical brain surfaces ( Fig. 1 F). 

.2. Data acquisition 

We recorded SEEG data from 67 participants affected by drug-

esistant focal epilepsy and undergoing pre-surgical clinical assessment.

or each participant, we inserted 17 ± 3 (mean ± SD) SEEG shafts into

he brain, with anatomical positions varying by surgical requirements.

ach shaft had between 8 and 15 platinum-iridium contacts, each con-

act being 2 mm long and 0.8 mm thick, with inter-contact distance of

.5 mm (DIXI medical, Besancon, France). We acquired 10 min eyes-

losed resting-state activity from each participant, via a 192-channel

EEG amplifier system (Nihon Kohden Neurofax-110) at a sampling fre-

uency of 1 kHz. We obtained written informed consent from partici-

ants prior to recordings. We obtained ethics approval for the study from

iguarda “Ca’ Granda ” Hospital, Milan, and we performed the study ac-

ording to WMA Declaration of Helsinki – Ethical Principles for Medical

esearch Involving Human Subjects. 

http://freesurfer.net/
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Fig. 1. Modules in connectomes of phase-synchronization estimated by pooling data across subjects. A. Band-pass filtered data (center frequency = 14 Hz) for ex- 

ample group of subjects. B. Subject-level matrices of phase-synchronization between SEEG contacts, for example group of subjects. C. Group-level matrix of phase- 

synchronization between brain regions. Matrix ordered to show left- (bottom left), right- (top right) and inter-hemispheric connections (top left and bottom right) 

respectively. Non-estimable connections are gray. D. Group-level matrix of phase-synchronization between right-hemispheric regions. E. Sorted group-level matrix 

of phase-synchronization between right-hemispheric regions, sorting based on results of community detection to identify modules. F. Color-coded modules for lateral 

(top) and medial (bottom) views of right-hemispheric inflated cortical surface. 
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.3. Pre-processing 

We performed re-referencing, filtering and artefact removal of the

EEG data, before estimating the connectome of phase-synchronization.

e originally recorded data from all contacts with a monopolar ref-

rencing scheme. We subsequently re-referenced activity from each

ray-matter contact to the nearest white matter contact as identi-

ed by GMPI (gray matter proximity index). We have previously

emonstrated the utility of this referencing scheme in studying phase-

ynchronization, since phase relationships between contacts are well

reserved ( Arnulfo et al., 2015a ). We only analysed activity from gray-

atter contacts after re-referencing. We filtered activity from each gray-

atter contact using FIR filters (equiripples 1% of maximal band-pass

ipples) into 18 frequency bands, with center frequencies ( 𝐹 𝑐 ) rang-

ng from 3 to 320 Hz (excluding 50 Hz line-noise and harmonics). We

sed log-spaced center frequencies of 3, 4, 5, 7, 10, 14, 20, 28, 40,

7, 80, 113, 135, 160, 190, 226, 269 and 320 Hz. We used a rel-

tive bandwidth approach for filter banks such that pass band ( 𝑊 𝑝 )

nd stop band ( 𝑊 𝑠 ) were defined 0.5 × 𝐹 𝑐 and 2 × 𝐹 𝑐 , respectively

or low and high-pass filters, producing log-increasing spectral window

idths. The choice of log-spaced center frequencies followed the exper-

mentally observed center frequencies of brain oscillations ( Penttonen

 Buzsáki, 2003 ). The log-increasing window widths afforded fine spec-

ral resolution at lower frequencies, avoiding confounding instanta-

eous phases of multiple frequency components at lower frequencies

 Lopes da Silva, 2013 ). Simultaneously, this choice also provided fine
3 
emporal resolution at higher frequencies, enabling accurately estimat-

ng the instantaneous phase of the known-to-be-short-lived oscillations

t higher frequencies ( Lundquist et al., 2018 ). We applied the Hilbert

ransform to the FIR-filtered signal to return the analytic signal, from

hich angle we extracted the instantaneous phase. Before estimating

hase-synchronization, we excluded select 500 ms windows contain-

ng Inter-Ictal Epileptic (IIE) events, to counteract any spurious phase-

ynchronization due to filtering artefacts around the epileptic spikes.

e defined IIE as at least 10% of SEEG contacts narrow-band time series

emonstrating abnormal, concurrent sharp peaks in more than half the

8 frequencies. To identify such periods, we searched for “spiky ” periods

n amplitude envelopes of each SEEG contact. We tagged a 500 ms win-

ow as “spiky ” if any of its samples were 5 standard deviations higher

han mean amplitude of the contact. 

.4. Connectome estimation 

We pooled estimates of phase-synchronization between SEEG con-

acts to obtain the group-level inter-regional connectome of phase-

ynchronization. We measured phase-synchronization between SEEG

ontacts with Phase Locking Value ( Lachaux et al., 1999 ): 

 𝐿𝑉 = 

1 
𝑁 

||||||

𝑁 ∑
𝑛 =1 

𝑒 𝑗 ( 𝜃1 ( 𝑛 ) − 𝜃2 ( 𝑛 ) ) 
||||||

here 𝜃1 ( 𝑛 ) and 𝜃2 ( 𝑛 ) are instantaneous phases from a pair of SEEG con-

acts at sample 𝑛 , with 𝑁 being the total number of samples. We es-
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imated the group-level phase-synchronization between a pair of brain

egions as the average PLV over all subjects, of all SEEG contact-pairs

raversing that pair of brain regions. This procedure furnished accu-

ate estimates of group-level phase-synchronization, since it computes

 weighted average of phase-synchronization across subjects, wherein

ubjects contributing higher number of PLV values are assigned a higher

eight in the group-level estimate. The alternative procedure of first av-

raging all PLV values for a pair of brain regions for each subject sepa-

ately, before averaging these subject-level PLV estimates, would assign

qual weight to each subject in the group-level estimate despite some

ubjects contributing higher number of PLV values to the estimate. We

stimated the connectome of phase-synchronization as the group-level

hase-synchronization between every pair of 148 regions in the De-

trieux brain atlas for which we had at least one SEEG contact-pair. We

hen thresholded the connectome by retaining the estimated strengths

f only the top 20 percentile of connections, setting all others to 0. We

erformed this thresholding as a means of emphasizing the topological

rganization of the connectome ( Rubinov and Sporns, 2010 ). We also

etermined the robustness of our results to the specific choice of per-

entile threshold, by also identifying modules on connectomes thresh-

lded by retaining the strengths of the top 10 and top 30 percentile of

onnections. 

Since we did not have complete recording coverage of the brain with

EEG, we had insufficient data to estimate phase-synchronization of

ll connections in the group-level connectome. Rather, we had suffi-

ient coverage with SEEG, to estimate phase-synchronization of 47.2%

f connections in the group-level connectome. Many of these connec-

ions were intra-hemispheric - we estimated phase-synchronization of

8% of connections between just left-hemispheric regions, and of 80%

f connections between just right-hemispheric regions. Hence, we sep-

rately identified modules in the connectome of just left-hemispheric

egions and in the connectome of just right-hemispheric regions. 

We excluded selected contact-pairs from the connectome estima-

ion due to potential artefacts, as per the below criteria. We excluded

ontact-pairs involving SEEG contacts marked by clinical experts as

alling within the epileptogenic or seizure propagation regions. We per-

ormed this step after we removed 500 ms windows containing IIE, as

escribed above ( Section 2.3 ). Further, we excluded contact-pairs whose

espective SEEG contacts were less than 20 mm apart and those with the

ame white-matter reference, both to reduce the effect of volume con-

uction. We have described these steps in further detail, in recent work

sing the same SEEG dataset ( Arnulfo et al., 2020 ). 

.5. Analysing the connectome of phase-synchronization 

.5.1. Identifying modules in connectomes of phase-synchronization 

We used Louvain community detection ( Reichardt and Born-

oldt, 2006 ; Blondel et al., 2008 ; Ronhovde and Nussinov, 2009 ;

un et al., 2009 ) combined with consensus clustering ( Lancichinetti and

ortunato, 2012 ) to identify modules in the connectome of phase-

ynchronization. Modules are sets of strongly interconnected nodes in

 network. The Louvain community detection method iteratively iden-

ifies a partition of network nodes into modules, such that ‘modular-

ty’ of the partition is maximised. The ‘modularity’ objective function

hat is maximised, quantifies the extent to which the network comprises

on-overlapping modules compared to a null model of an equivalent

etwork that would be expected by chance ( Blondel et al., 2008 ). We

hose the Louvain method due to its superior performance in accurately

dentifying network modules compared to alternative community de-

ection methods ( Lancichinetti and Fortunato, 2009 ), and its superior

erformance, when combined with consensus clustering, in recovering

odules in incomplete brain networks ( Williams et al., 2019 ). We used

he implementation of the Louvain method in Brain Connectivity Tool-

ox ( Rubinov and Sporns, 2010 ). We applied the Louvain method to left

nd right hemispheric regions separately, since the low number of inter-

emispheric connections might confound the identification of modules.
4 
o identify modules while accounting for missing values in the group-

evel connectome matrix, we first generated 5000 variants of the connec-

ome wherein we replaced each missing value with a randomly sampled

with replacement) existing value from the group-level connectome. Re-

lacing missing values with existing values from the group-level con-

ectome generates complete connectomes with the same distribution of

hase-synchronization strengths as the original incomplete connectome.

e applied Louvain community detection to identify modules on each of

hese 5000 complete matrices. We identified modules at a range of spa-

ial scales by setting the 𝛾 input parameter of the Louvain method from

.8 to 5, in intervals of 0.1. For each 𝛾 value, we combined the mod-

le assignments of the 5000 connectome variants to obtain a consensus

odule assignment. We performed this step by first generating matrix

epresentations of each module assignment, with number of matrix rows

nd columns being the number of regions. We set each element in the

atrix to 1 or 0 depending respectively on whether that pair of regions

ere in the same module or not. We then obtained a consensus matrix

y averaging the 5000 matrix representations and obtained a consensus

odule assignment by applying the Louvain method to this consensus

atrix. We have demonstrated this consensus clustering approach is su-

erior to other approaches to identify modules in incomplete human

rain networks ( Williams et al., 2019 ). We applied this procedure to

dentify modules at each frequency, for left and right hemispheres sep-

rately. 

.5.2. Determining statistical significance of modular organization 

We determined statistical significance of modular organization by

omparing modularity of connectomes against modularity of corre-

ponding randomized connectomes. Modularity is high when the con-

ectome is divided into internally dense modules. We compared mod-

larity of the original connectomes to their corresponding randomized

onnectomes, with the following steps (1). We estimated modularity of

he original connectome using Louvain community detection in combi-

ation with consensus clustering, for 𝛾 values (spatial scales) from 0.8 to

 (see Section 2.5.1 ). Modularity is the objective maximised by the Lou-

ain method. We used 100 variants of the original connectome for the

onsensus clustering step. (2). We standardised the modularity values of

he original connectomes by z -scoring the estimated modularity at each

value against a null distribution of 100 modularity values generated

y identifying modules on randomly permuted (without replacement)

ersions of the original connectome. We identified modules for each

f these randomized connectomes with the same procedure as we used

o identify modules on the original connectome. We estimated z -scored

odularity for connectomes at each frequency, for left and right hemi-

pheres separately. (3). We determined the statistical significance of the

stimated modularity values of the original connectome by converting

he z -scores to p -values assuming a Gaussian distribution and used False

iscovery Rate (FDR) thresholding ( Benjamini and Hochberg, 1995 ) to

orrect for multiple comparisons across all combinations of 𝛾 and fre-

uency. We considered FDR-corrected p < 0.05 to indicate statistically

ignificant modular organization of the original connectome at a given 𝛾

nd frequency. We performed FDR thresholding separately for connec-

omes of each hemisphere. 

.5.3. Determining statistical significance of percentage of stable regions 

We determined the statistical significance of percentage of stable re-

ions using a permutation-based test to assess the stability of module

ssignment of each brain region, and a second permutation-based test

o assess if the percentage of stable regions is higher than expected by

hance. We performed the following steps (1). We constructed 100 boot-

trapped connectomes with the same procedure as for the original con-

ectomes ( Section 2.4 ), each from a cohort of 67 randomly resampled

with replacement) subjects from the original cohort. (2). We considered

he module assignment of a brain region to be stable if it was assigned to

he same module in the original connectome, as it was assigned to across

he 100 bootstrapped connectomes. Hence, we quantified the stability
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f module assignment of a region as the mean correspondence in its

odule affiliation in the original connectome, to module affiliations of

he same region across the 100 bootstrapped connectomes. For a given

rain region, we specified module affiliation as a vector of ‘1 ′ and ‘0’s,

epending respectively on whether each other brain region was or was

ot assigned to the same module, and we estimated the correspondence

etween module affiliations by the proportion of common ‘1’s and ‘0’s.

ighly stable assignment of modules for a given brain region, were re-

ected in mean correspondences in module affiliation close to 1, for that

rain region. (3). We counted the stability of module assignment of a

rain region as statistically significant if it exceeded the 95-percentile

alue of the null distribution of stability values for that brain region. We

stimated the null distribution of stability values as the mean stability

alues when comparing module affiliation with the original connectome

gainst 100 randomly permuted (without replacement) module affilia-

ion vectors of each of the bootstrapped connectomes. Hence, we had

00 samples in the null distribution of stability values for each brain

egion, one for each bootstrapped connectome. (4). We next estimated

he percentage of brain regions for each combination of spatial scales or

values (from 0.8 to 5) and frequencies, for left and right hemispheres

eparately. (5). Finally, we determined the statistical significance of the

ercentage of stable regions, by z -scoring it against the percentage of re-

ions expected to be stable by chance across the 100 bootstrapped con-

ectomes. We estimated these chance percentages for each bootstrapped

onnectome, as the percentage of brain regions whose null stability val-

es exceeded the 95-percentile value of the null distribution of stabil-

ty values for that bootstrapped connectome. We then converted the z -

cores to p -values assuming a Gaussian distribution and used False Dis-

overy Rate (FDR) thresholding to correct for multiple comparisons due

o testing across every combination of 𝛾 and frequency. We considered

DR-corrected p < 0.05 to indicate statistically significant percentage of

table regions. 

.5.4. Grouping frequencies by similarity of modules 

We used multi-slice community detection ( Mucha et al., 2010 ) to

dentify groups of frequencies with similar modules, simultaneously for

oth left and right hemispheres. First, we generated matrices of module

imilarity between each pair of frequencies, separately for left and right

emispheres. We estimated similarity between module assignments by

rst generating matrix representations of module assignments at each

requency. The number of rows and columns of these matrices were

qual to the number of brain regions, each element being set to 1 or 0

epending respectively on whether the corresponding pair of brain re-

ions were in the same module or not. We measured similarity between

odule assignments using partition similarity ( Ben-Hur et al., 2002 ): 

 𝑆 = 

⟨𝑙 1 , 𝑙 2 ⟩√⟨𝑙 1 , 𝑙 1 ⟩⟨𝑙 2 , 𝑙 2 ⟩
here ⟨𝑙 𝑚, 𝑙 𝑛 ⟩ = 

∑
𝑖,𝑗 

𝐶 

( 𝑚 ) 
𝑖,𝑗 

𝐶 

( 𝑛 ) 
𝑖,𝑗 

, i.e., the dot product between matrix repre-

entations of the module assignments for frequencies 𝑚 and 𝑛 . Note that

his measure of partition similarity effectively extends the measure in

ection 2.5.3 , which compares the module assignments of single brain

egions (in relation to a set of brain regions), to the case of comparing

he module assignments of a set of brain regions. We obtained matrices

f partition similarity for each 𝛾 value (spatial scale) from 0.8 to 5. We

hen estimated a weighted average of these matrices across the 𝛾 dimen-

ion, to yield a matrix indicating similarity of modules between frequen-

ies that was consistent across spatial scales. We assigned weights to the

atrix at each 𝛾 value, as the number of frequencies with statistically

ignificant modular organization at that 𝛾 value. Note however, that

e also compared the frequency groupings we obtained when applying

hese weights, to frequency groupings we obtained when applying equal

unit) weights to the module similarity matrices at all 𝛾 values. 

We entered the left and right hemispheric matrices of module simi-

arity into a multi-slice community detection procedure ( Mucha et al.,
5 
010 ), to identify groups of frequencies with similar modules for both

emispheres. Multi-slice community detection is a principled general-

zation of modularity maximization community detection methods, e.g.,

ouvain, to multiple slices. It does so by formulating the null model for

ommunity structure across multiple slices, in terms of the stability of

ommunities under Laplacian dynamics ( Mucha et al., 2010 ). Multi-slice

ommunity detection has previously been applied to study dynamic re-

onfiguration of human brain networks in learning ( Bassett et al., 2011 ),

nd to relate modules in human brain networks identified for different

ognitive tasks ( Cole et al., 2014 ). 

The method has two input parameters, 𝛾multislice and 𝜔 . 𝛾multislice rep-

esents the spatial scale (just as with 𝛾 for the Louvain method), while

 represents the dependence between communities across the differ-

nt slices . In our context, 𝛾multislice influences the number of identified

roups of frequencies while 𝜔 controls the dependence between the

dentified groups of left and right hemispheres. To select values for these

arameters, we first estimated modularity values for each combination

f 𝛾multislice = 1–1.5 (intervals of 0.05) and 𝜔 = 0.1–1 (intervals of 0.1).

hen, we generated a null distribution of modularity values by applying

he method to identically randomly resampled (without replacement)

eft and right hemispheric matrices of module similarity. We z -scored

he original modularity values against the null distribution and con-

erted them to p -values assuming a Gaussian distribution. Finally, we

nspected frequency groups for selected combinations of 𝛾multislice and 𝜔

ith FDR-thresholded p < 0.05. 

.5.5. Identifying modules across multiple frequencies or spatial scales 

We used a consensus clustering approach ( Section 2.5.1 ) to identify

 single set of modules across frequencies and spatial scales. To do this,

e first generated matrix representations of modules at individual fre-

uencies, at each 𝛾 value (spatial scale) from 0.8 to 5, for left and right

emispheres separately. Matrix representations have number of rows

nd columns equal to the number of brain regions, each element in the

atrix is 1 or 0 depending respectively on whether the corresponding

air of regions are in the same module or not. We then averaged the

atrix representations, first across all frequencies and then across all

patial scales, for left and right hemispheres separately. Finally, we ap-

lied multi-slice community detection to the averaged matrices of left

nd right hemispheres, to identify eight modules representing sets of re-

ions assigned to the same module across frequencies and spatial scales,

or both left and right hemispheres. The rationale for identifying these

onsensus modules was to relate these modules to their putative fMRI

ounterparts, Resting State Networks (RSNs). Hence, we fixed 𝛾multislice 

o 1.6 to return eight modules, while we set 𝜔 = 1 to constrain the mod-

les to be bilaterally symmetric – RSNs are typically reported as between

even and ten bilaterally symmetric modules ( e.g., in Yeo et al., 2011 ). 

.6. Inferring whether regions in a module are functionally related 

We combined Neurosynth meta-analyses decoding ( Yarkoni et al.,

011 ) with comparison to surrogate modules, to assign putative func-

ional roles to each module. We used Neurosynth decoding to find terms

elated to perception, cognition and behavior selectively associated to

he centroid co-ordinates of each brain region, based on a large database

f fMRI studies. Then, we aggregated the terms associated with regions

n each module and compared the occurrence frequencies of these terms

o those of equally sized surrogate modules which were constrained

o comprise anatomically proximal and bilaterally symmetric brain re-

ions. Hence, we determined terms that were common to regions in a

odule, even after accounting for the anatomical proximity of its re-

ions. We z -scored the occurrence frequency of each term in a module

gainst corresponding frequencies of the surrogate modules. We con-

erted these z -scores to p -values assuming a Gaussian distribution and

DR-thresholded at p < 0.05, to reveal those terms selectively associated

o each module. 
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We inferred the putative functional role of each module by the set

f terms it was selectively associated to. We also performed a post-hoc

nalysis to verify the functional specificity of each module. To do this,

e generated an 8 × 8 ‘confusion matrix’ of percentages of selectively

ssociated terms of each module distributed across the eight cognitive

unctions assigned to the modules. High values along the diagonal would

eflect high functional specificity, i.e., that the terms of each module

ere largely confined to a single cognitive function. We compared these

ercentages against the percentages of all terms related to a module, not

ust those selectively associated to each module. We expected these sets

f all terms of each module to be distributed across diverse cognitive

unctions. 

.7. Assessing robustness of modules identified 

We assessed robustness of modules identified, to a range of poten-

ial confounds. First, we assessed the robustness of modules identified

o the specific set of SEEG contact-pairs used to generate the group-

evel connectomes of phase-synchronization. To do this, we identified

nd compared modules identified from split connectomes at 𝛾 = 2, each

f the split connectomes being generated by combining different sets

f SEEG contact-pairs. To generate a split connectome, we estimated

trength of each connection from a randomly selected sample of half

he SEEG contact-pairs used to estimate strength of each estimated con-

ection in the original connectome. We estimated the same connection

n the other split connectome with the other half of SEEG contact-pairs

sed to estimate strength of that connection in the original connectome.

ext, we assessed the robustness of the modules to the community de-

ection method used to identify the modules. To do this, we compared

he original modules obtained with Louvain community detection at

= 2, against modules obtained with Infomap community detection

 Rosvall and Bergstrom, 2008 ). Network density influences the number

f modules with Infomap - we set the network density to 10% since this

alue yielded interpretable modules in previous work ( Williams et al.,

019 ). Further, we assessed the robustness of our results when mod-

les were identified on binarized rather than weighted connectomes,

hen modules were identified by retaining the top 10 and 30 percentile

roup-level connections rather than top 20 percentile, and when mod-

les were identified on connectomes generated with a criterion of at

east 5 and 10 SEEG contact-pairs required to estimate an inter-regional

roup-level connection, rather than at least 1. Finally, we investigated if

dentifying modules is confounded by amplitude of oscillations from in-

ividual nodes in a network. To do this, we compared modules of the 67

ubject-level networks of phase-synchronization before and after remov-

ng amplitude-related differences in functional connection strengths, at

ach of the 18 frequencies, at six spatial scales ( 𝛾 = 1, 1.8, 2.6, 3.4,

.2 and 5). We removed amplitude-related differences by relating the

trengths of each functional connection to average amplitude of corre-

ponding node-pairs via linear regression, and recovering the residuals.

e compared modules identified before and after removing amplitude-

elated differences, with the partition similarity measure ( Section 2.5.4 ).

We have made available MATLAB code to perform each stage of the

nalyses, via our GitHub repository ( https://github.com/nitinwilliams/

eg _ meg _ analysis/tree/master/FC _ modules ). 

. Results 

.1. Whole-brain coverage achieved by broad spatial sampling of SEEG 

ontacts 

We quantified the sampling of brain regions and inter-regional con-

ections ( Arnulfo et al., 2020 ) by the percentage of brain regions and

egion-pairs in Destrieux brain atlas ( Destrieux et al., 2010 ) contain-

ng at least one gray-matter SEEG contact or an inter-regional SEEG-

ontact-pair across subjects, respectively. The cohort sampled with at
6 
east one SEEG contact 97% of brain regions (143 of 148) in the De-

trieux atlas ( Fig. 2 A). The SEEG contacts were sampled more densely

n the right ( N = 45 ± 38, mean ± standard deviation, range 0–123, con-

acts per subject) than the left (32 ± 41, 0–128, contacts per subject)

emisphere. This yielded a coverage of 68% of left-hemispheric, 80%

f right-hemispheric connections and 20% of inter-hemispheric connec-

ions ( Fig. 1 B). We also estimated the numbers of SEEG contacts across

ubjects in each of the Yeo functional systems ( Yeo et al., 2011 ; Fig. 1 C)

nd found them densely sampled, with > 100 contacts in each functional

ystem ( Fig. 1 D). 

Within each hemisphere, we further investigated the coverage of

nter-regional connections with respect to distance, provided by the

EEG recordings. Coverage of inter-regional connections both between

roximal and between distant brain regions would allow the commu-

ity detection method to identify modules comprising both proximal

nd distant brain regions, while coverage of connections between only

roximal brain regions would limit the community detection method

o identifying modules comprising only proximal brain regions. We ex-

ected coverage of connections both between proximal and between dis-

ant brain regions due to the large cohort of subjects we used ( N = 67),

ith recordings from 17 ± 3 (mean ± SD) SEEG shafts from each subject.

o assess the coverage with respect to distance, we (1). determined the

ercentage of connections sampled by at least one SEEG contact-pair,

or four distance categories: very short ( < 30 mm), short (30–60 mm),

edium (60–90 mm) and long ( > 90 mm), for both left and right hemi-

pheres, and (2). determined the percentage of connections sampled by

t least one SEEG contact-pair between regions in every pairwise com-

ination of the following functional subdivisions: frontal, parietal, tem-

oral, occipital, limbic and insula. We found that our SEEG recordings

ampled inter-regional connections at all distance categories, for both

emispheres (Supplementary material, Fig. S1A). Short-distance con-

ections were sampled most densely, with 87% for left hemisphere and

2% for right hemisphere, but we also sampled 25% of long-distance

onnections for left hemisphere and 47% of long-distance connections

or right hemisphere. Crucially, we found the SEEG recordings allowed

ense sampling of inter-regional connections between standard func-

ional subdivisions, i.e. frontal, parietal, temporal, occipital, limbic and

nsular cortices (Supplementary material, Fig. S1B): between 48 and

00% of connections between regions in pairs of functional subdivisions

ere sampled for left hemisphere, and between 55 and 100% of connec-

ions were sampled for right hemisphere. Hence, the SEEG recordings

llowed sampling intra-hemispheric connections both between proximal

nd between distant brain regions, including between regions in differ-

nt functional subdivisions. 

We identified modules on thresholded connectomes, wherein we re-

ained the strengths of the top 20 percentile strongest connections, set-

ing all others to 0. To check the sampling statistics, we investigated the

elationship between the percentage of supra-threshold connections and

onnection distance. We found that the percentage of supra-threshold

onnections was higher for short-distance than long-distance connec-

ions . However, we did find several connections between spatially dis-

ant brain regions, including between regions in different functional sub-

ivisions, i.e. frontal, parietal, temporal, occipital, limbic and insular

ortices (Supplementary material, see Supplementary Text and Fig. S2

or details). 

.2. Connectomes of phase-synchronization are characterized by distinct 

nd stable modules at multiple spatial scales 

We combined Louvain community detection with consensus cluster-

ng to identify modules in connectomes of phase-synchronization. The

resence of distinct and stable modules would suggest that these mod-

les operate as functional systems within the connectome. Hence, we

etermined the distinctness and stability of the identified modules. We

erformed this investigation at multiple spatial scales in order to avoid

issing modules due to the resolution limit imposed by identifying mod-

https://github.com/nitinwilliams/eeg_meg_analysis/tree/master/FC_modules
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Fig. 2. Whole-brain coverage achieved by placement of SEEG contacts. A. Number of SEEG contacts across subjects, in each brain region, for left (dark blue) and 

right (dark red) hemispheres, from lateral (top) and medial (bottom) views. B. Coverage of left-hemispheric (dark blue), right-hemispheric (dark red) and inter- 

hemispheric (gray) connections for a range of minimum number of SEEG contact-pairs across subjects. C. 7 Yeo systems from lateral (top) and medial (bottom) 

views. VIS = Visual, SM = Sensorimotor, DA = Dorsal Attention, VA = Ventral Attention, Lim = Limbic, FP = Fronto-parietal and Def = Default Mode. D. Number of 

SEEG contacts across subjects, in each of 7 Yeo systems, for left (dark blue) and right (dark red) hemispheres. 
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les at a single spatial scale ( Sporns and Betzel, 2016 ). We used Louvain

ommunity detection with a range of the 𝛾 parameter from 0.8 to 5

o identify modules at multiple spatial scales. The numbers of modules

aried from 1 to 18 across the range of spatial scales and filter cen-

er frequencies ( Fig. 3 A). We used permutation-based methods to assess

he distinctness and stability of the identified modules. To assess stabil-

ty of the identified modules, we determined if the percentage of brain

egions consistently assigned to the same module across bootstrapped

ersions ( N = 100) of the original connectome, was more than would be

xpected by chance. To assess distinctness of the identified modules, we

ssessed if modularity of the original connectome was higher than mod-

larity of randomized versions of the original connectome ( N = 100).

odularity is high when the connectome divides into internally dense

odules. We observed that across a wide range of spatial scales and fre-

uencies, 12.2–100% cortical regions had stable module assignments,

ielding statistically significant percentages of stable regions at multi-

le spatial scales ( p < 0.05, FDR-corrected, permutation test) ( Fig. 3 B).

urther, the connectomes had statistically significantly distinct modu-

ar organization ( p < 0.05, FDR-corrected, permutation test) at multiple

patial scales throughout the studied frequency range ( Fig. 3 C). Connec-

omes in beta frequency band (14–20 Hz) exhibited the widest range of

patial scales for which modules were statistically significantly distinct.
7 
he distinctness and stability of the modules, across a range of spatial

cales, suggests that modules of different sizes operate as functional sys-

ems within the connectome. 

We used bootstrapping ( N = 100 connectomes resampled with re-

lacement) to assess statistical significance of the percentage of brain

egions with stable module assignments, and shuffling ( N = 100 shuf-

ed connectomes) to assess statistical significance of modularity of the

riginal connectomes. Since the outcome of permutation-based signifi-

ance tests can be sensitive to the number of samples used, we evaluated

he robustness of our results to the number of samples used to assess

tatistical significance. To do this, we compared z -scores of the percent-

ges of stable brain regions we obtained with the original 100 boot-

trapped connectomes to the corresponding z -scores with 1000 boot-

trapped connectomes. Similarly, we compared the z-scores of the mod-

larity we obtained with the original 100 randomized connectomes to

he corresponding z -scores with 1000 randomized connectomes. In the

riginal analysis, the z -scores were converted to p -values, from which

e assessed statistical significance. We found that the z- scores of per-

entages of stable regions for 100 and 1000 bootstrapped connectomes

ere highly correlated (0.9 for left hemisphere and 0.96 for right hemi-

phere). Similarly, the z -scores of modularity of the connectomes for

00 and 1000 randomized connectomes were highly correlated (0.99
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Fig. 3. Connectomes of phase-synchronization reveal distinct and stable modules at multiple spatial scales. A. Number of identified left and right hemisphere 

modules, for each combination of spatial scale and filter center frequency. B. Percentages of left and right hemisphere regions with stable module assignments, for 

each combination of spatial scale and filter center frequency. C. Modularity for left and right hemisphere, for each combination of spatial scale and filter center 

frequency. Values below statistical significance are gray. D. Translation of colours for each brain region from an inflated to (top) flattened cortical surface (bottom). 

We performed the transformation from the inflated to flattened cortical surface using the tksurfer FreeSurfer command (Fischl et al., 1999). E. Color-coded modules 

for right hemisphere at 14 Hz on flattened cortical surface, at six spatial scales ( 𝛾 = 1 to 5). We converted from HSV to RGB before plotting the modules. Regions 

with unstable module assignments are gray. Small black rectangles in panels A-C indicate 𝛾 values at which modules are visualised in panel E. 
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f  
or both left and right hemispheres). These results demonstrate that the

esults of our permutation-based tests on statistical significance of the

dentified modules are robust to the number of samples used. 

For a given frequency, we illustrate modules on flattened projec-

ions of the cortical surface (Fischl et al., 1999) ( Fig. 3 D). We assigned

olours to modules displayed on the flattened cortical surfaces using the

ollowing procedure: (1). Collapsing the set of region x - y coordinates to

 single hemisphere by first flipping all right-hemispheric coordinates

bout the y -axis and estimating the average of x - y coordinates of the

eft hemisphere and (flipped) right hemisphere, for each brain region.

2). Centering the x - y coordinates by subtracting the mean x and y coor-
8 
inates. (3). For each brain region, estimating Euclidean distance from

he (0,0) center, rescaled between 0.6 and 1, and estimating angle from

he (0,0) center using the arctan function, rescaled between 0 and 1.

4). Assigning the color of each brain region by the Hue Saturation Lu-

inance (HSV) scheme, setting hue as the rescaled angle, luminance as

he rescaled distance, and saturation as 1. (5). Assigning module colours

sing the HSV scheme, setting hue as the circular mean of angles of

onstituent regions, rescaled between 0 and 1, saturation as 1, and lu-

inance as the mean of the rescaled distances from the region centers. 

At a representative frequency of 14 Hz, modules comprised superior-

rontal, inferior-frontal, temporal, parietal and occipital regions at a
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Fig. 4. Modules in connectomes of phase-synchronization cluster into canonical frequency bands. Matrices of module similarity, between modules at every pair of 

frequencies, for left and right hemispheres. Statistically significant clustering common to both hemispheres, into three frequency bands (dashed red outline), i.e. 

3–14 Hz, 20–113 Hz and 135–320 Hz and into six frequency bands (black outline), i.e. 3–4 Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz, are 

shown. 
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oarse spatial scale ( 𝛾 = 1.8). The module of temporal regions split into

odules of superior and inferior-temporal regions at finer spatial scales

 𝛾 = 2.6) ( Fig. 3 E). 

.3. Modules in connectomes of phase-synchronization cluster into 

anonical frequency bands 

Neuronal activity from brain regions fall into distinct frequency

ands, e.g. delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–

0 Hz) and gamma (30–80 Hz), each with specific behavioural corre-

ates ( Buzsáki and Moset, 2013 ; Zhou et al., 2021 ; Spitzer and Hae-

ens, 2017 ; Zielinski et al., 2019 ). Statistical factor analysis on spectral

alues of EEG activity from brain regions yielded clusters of frequencies

hat largely corresponded to these canonical frequency bands ( Lopes da

ilva, 2013 ), but a data-driven clustering of modules at different fre-

uencies has not been performed. We determined if the identified mod-

les clustered into statistically distinct sets of frequencies. To do this, we

rst generated matrices of module similarity, between modules at every

air of frequencies, for left and right hemispheres separately. Then, we

pplied multi-slice community detection ( Mucha et al., 2010 ) to iden-

ify sets of frequencies for which modules were highly similar, for both

eft and right hemispheres ( Fig. 4 ). These module similarity matrices

ere weighted averages of matrices of module similarity at individual

patial scales, where the weights were specified by the number of fre-

uencies for which the connectomes had statistically significant mod-

lar organization at that spatial scale. We found multiple statistically

ignificant ( p < 0.05, FDR-corrected, permutation test, N = 100) group-

ngs of between two and thirteen frequency bands. For further analysis,

e used the groupings into three frequency bands and six frequency

ands, though we note that other equally valid groupings could be

sed. The statistically significant clustering into three frequency bands

 𝛾multislice = 1.1, 𝜔 = 0.2–1) comprised sets of adjacent filter center fre-

uencies, 3–14, 20–113 and 135–320 Hz ( Fig. 4 , dashed red line boxes).

imilarly, the statistically significant clustering into six frequency bands

 𝛾multislice = 1.25, 𝜔 = 0.2–1) comprised sets of adjacent filter center fre-

uencies, 3–4, 5–10, 14–20, 28–57, 80–113 and 135–320 Hz ( Fig. 4 ,

olid black line boxes). Notably, we found an identical clustering into

ix frequency bands (Supplementary material, Fig. S3, solid black line

oxes) when we applied equal (unit) weights to the matrices of module

imilarity at all spatial scales, and the clustering into three frequency

ands was also highly similar (3–10 Hz, 14–80 Hz, 113–320 Hz) (Sup-
9 
lementary material, Fig. S3, dashed red line boxes). The clustering into

ix sets of frequencies yielded frequency bands that are close to canon-

cal frequency bands observed in prior literature, i.e. , delta (3–4 Hz),

heta/alpha (5–10 Hz), beta (14–20 Hz), low gamma (28–57 Hz), high

amma (80–113 Hz) and high-frequency oscillations (135–320 Hz) re-

pectively ( Lopes da Silva, 2013 ; Arnulfo et al., 2020 ). Thus, the identi-

ed modules cluster into statistically distinct sets of frequencies, which

ap to canonical frequency bands. 

.4. Modules in connectomes of phase-synchronization comprise 

natomically contiguous regions 

Module-like structures identified in resting-state fMRI, such as the

efault mode, fronto-parietal, ventral- and dorsal-attention systems in-

lude anatomically non-contiguous regions ( Beckmann et al., 2005 ;

an den Heuvel and Pol, 2010 ). We investigated if modules in connec-

omes of phase-synchronization similarly comprised anatomically non-

ontiguous regions for the statistically significant grouping into three

nd six frequency bands, at different spatial scales ( Fig. 5 ). For the

rouping into three frequency bands (3–14, 20–113 and 135–320 Hz),

e in fact found the modules comprised anatomically contiguous re-

ions for the 3–14 and 20–113 Hz frequency bands, where the mod-

les respectively comprised frontal, temporal, and parietal regions at

 coarse spatial scale ( 𝛾 = 1). For example, for the 3–14 Hz frequency

and, both the left-hemispheric (green) and right-hemispheric (green)

odules comprising frontal regions included fronto-marginal gyrus and

ulcus, middle frontal gyrus and sulcus, orbital and triangular parts

f the inferior frontal gyrus. Similarly, both the left-hemispheric (red)

nd right-hemispheric (red) modules comprising temporal regions in-

luded the temporal pole, inferior temporal gyrus, middle temporal

yrus, superior temporal sulcus and inferior temporal sulcus. Both the

eft-hemispheric (light blue) and right-hemispheric (dark blue) modules

omprising parietal regions included superior parietal gyrus, paracentral

yrus and sulcus, postcentral gyrus and sulcus, and precuneus. At finer

patial scales ( 𝛾 = 2–4), these modules split into smaller sets of regions,

ut the brain regions within a module remained anatomically contigu-

us. For example, the 20–113 Hz frequency band at 𝛾 = 2 yielded a left-

emispheric module (brown) including superior temporal regions such

s transverse temporal sulcus, anterior transverse temporal gyrus and

lanum temporale of the superior temporal gyrus, as well as a module

reddish pink) including inferior temporal regions such as the inferior
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Fig. 5. Modules in connectomes of phase-synchronization up to high-gamma frequencies comprise anatomically contiguous regions. Flattened cortical surface 

representations of modules in connectomes of phase-synchronization for 3–14 Hz, 20–113 Hz and 135–320 Hz, at four spatial scales ( 𝛾 = 1 to 4). Black lines on each 

flattened surface show outlines of consensus modules, i.e. sets of regions assigned to the same module across frequencies and spatial scales. 
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emporal gyrus, inferior temporal sulcus and temporal pole. In contrast

o modules for the 3–14 and 20–113 Hz frequency bands however, the

odules in the 135–320 Hz frequency band included anatomically non-

ontiguous regions, across the range of visualised spatial scales ( 𝛾 = 2–4)

 Fig. 5 ) ( Arnulfo et al., 2020 ). For example, the 135–320 Hz frequency

and at 𝛾 = 1 yielded a right-hemispheric module (orange) traversing

emporal regions such as superior and inferior temporal sulci, parietal

egions such as postcentral gyrus and supramarginal gyrus, and occipital

egions such as anterior occipital sulcus and middle occipital gyrus. Sim-

lar to the modules of the three frequency bands, modules of the six fre-

uency bands (3–4, 5–10, 14–20, 28–57, 80–113 and 135–320 Hz) com-

rised anatomically contiguous regions up to 113 Hz, but the modules in

he 135–320 Hz frequency band included anatomically non-contiguous

egions (Supplementary material, Fig. S4 and 5). Hence, unlike with

esting-state fMRI, modules in connectomes of phase-synchronization

p to high-gamma frequencies comprised anatomically contiguous re-

ions. 

Please find module assignments for left and right hemispheres, at

 number of spatial scales ( 𝛾 = 1,2,3,4), in our shared open dataset

 Williams et al. (2021) ). 
10 
.5. Modules in connectomes of phase-synchronization comprise 

unctionally related regions 

Module-like structures in fMRI functional connectomes, typically

ecognized as resting-state networks or functional brain systems, com-

rise regions that are concurrently active in tasks relating to spe-

ific sensory, motor, or cognitive domains, such as visual, sensorimo-

or, attentional, and executive control processing ( Smith et al., 2009 ;

ower et al., 2011 ). Hence, we investigated if modules in connectomes

f phase-synchronization also comprised regions that are concurrently

ctive in tasks relating to specific cognitive domains. For this purpose,

e used eight consensus modules that represented sets of regions as-

igned to the same module across frequencies and spatial scales. In

he absence of a priori knowledge on the number of consensus mod-

les, we set the number as eight to fall within the range of seven to

en reported for their putative fMRI counterparts ( Beckmann et al.,

005 ; Damoiseaux et al., 2006 ; Yeo et al., 2011 ; Power et al., 2011 ).

he eight consensus modules comprised anatomically contiguous re-

ions and respectively included regions in the superior-frontal (bright

reen), inferior-frontal (pale green), insula (olive), superior-temporal
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Fig. 6. Modules in connectomes of phase-synchronization comprise functionally related regions. A. Terms and putative functional roles specific to each of the 

eight consensus modules displayed in center. Sizes of words are proportional to their frequency of occurrence. sF = superior Frontal, iF = inferior Frontal, Ins = Insula, 

sT = superior Temporal, iT = inferior Temporal, lO = lateral Occipital, mO = medial Occipital, P = Parietal. B. Percentages of terms specific to each module (row) assigned 

to each of eight cognitive functions (left) and percentages of all terms related to each module (row) assigned to the same cognitive functions (right). 
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brown), inferior-temporal (dark pink), parietal (light blue), lateral-

ccipital (dark purple), and medial-occipital (light purple) cortical areas

 Fig. 6 A). Module colours reflect anatomical location of their constituent

egions (see Section 3.2 ). The consensus modules predominantly resem-

led modules at the lower frequencies (14–40 Hz) and intermediate spa-

ial scales ( 𝛾 = 1.5–2.5) (Supplementary material, Fig. S6). 

We first used the Neurosynth meta-analyses-based decoding tool

 Yarkoni et al., 2011 ) to find terms related to perception, cognition

nd behavior, selectively associated with each brain region in the De-

trieux brain atlas, where we identified each region by its centroid coor-

inates. These terms were both sensitively and specifically associated to

MRI activation in the corresponding brain regions, according to a large
11 
atabase of fMRI studies. We then identified terms selectively associated

ith each module by finding terms that occurred more frequently ( p <

.05, FDR-corrected, permutation test, N = 74) across the regions in a

odule, compared to equally sized surrogate modules of anatomically

ontiguous regions. This effectively tested the hypotheses that regions

omprising a module serve shared functional roles, even after account-

ng for their anatomical proximity. 

The terms for the superior-frontal module were related to attention

nd executive function while the inferior-frontal module was associated

ith affective processing and social cognition ( Fig. 6 A). The parietal

odule related to sensorimotor, sensory and motor processing, while

he medial-occipital and lateral-occipital modules were associated with
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asic and advanced visual processing respectively. The superior tempo-

al module was related to language and auditory processing, while the

nferior temporal module was related to memory function. Finally, the

erms for the insula module were associated with somatosensory pro-

essing. The results suggest that, similarly to modules in resting-state

MRI, the modules in connectomes of phase-synchronization comprised

egions with shared functional roles in task-related processing. The pu-

ative functional roles of these modules, inferred from their sets of terms,

ere in good agreement with overarching functions of their constituent

egions ( Gazzaniga et al., 2009 ). 

We sought to further corroborate the functional specificity of mod-

les, i.e., that they are specialised to support particular domains of cog-

itive functions. To verify this, we determined the percentage of selec-

ively associated terms for each module that could be categorised under

very module’s assigned functional role. We compared this against the

ercentage of all terms for each module, i.e., before FDR-thresholding,

hat could be categorised under every module’s assigned cognitive func-

ion. Functional specificity of modules would be reflected by high per-

entages of selectively associated terms for each module being assigned

o their assigned cognitive function, but the set of all terms for each mod-

le being distributed across diverse cognitive functions. As expected, we

ound high percentages of selectively associated terms for each mod-

le were categorised within the cognitive function assigned to them

 Fig. 6 B, left), but the set of all terms for each module were distributed

cross diverse cognitive functions ( Fig. 6 B, right). These results further

erify the functional specificity of the identified modules. 

Please find the set of terms selectively associated to each of the con-

ensus modules, in our shared open dataset ( Williams et al. (2021) ). 

.6. Robustness of results to potential confounds 

The modules identified might be influenced by a number of poten-

ial confounds, for e.g. the community detection method used to identify

odules. Hence, we investigated the robustness of the identified mod-

les to several potential confounds. These tests revealed that the mod-

les identified were robust to (1). the specific sets of SEEG contact-pairs

sed to generate the group-level connectomes, (2). the community de-

ection method used to identify modules, (3). the filter banks used to

solate neuronal activity from different frequencies, (4). the criterion

or the minimum number of SEEG contact-pairs required to estimate a

roup-level inter-regional connections (5). the percentile values used to

et the connectome threshold, and (6). regional amplitude differences.

lease see Supplementary Text and Figs. S7–14 in Supplementary ma-

erial for further details. 

. Discussion 

Modules in the fMRI connectome comprise distinct sets of connected

egions for sensory, motor and cognitive processing ( Valencia et al.,

009 ; Benjaminsson et al., 2010 ; Yeo et al., 2011 ; Power et al., 2011 ;

ee et al., 2012 ). In this study, we investigated whether connectomes

f phase-synchronization among meso ‑ and macroscale assemblies of

euronal oscillations exhibit a modular architecture. We used intrac-

rebral SEEG data from 67 subjects to generate connectomes of phase-

ynchronization ( Arnulfo et al., 2020 ) which are negligibly affected by

olume conduction ( Arnulfo et al., 2015a ). We found that connectomes

f phase-synchronization exhibited distinct and stable modules at mul-

iple spatial scales at all studied frequencies. Furthermore, data-driven

lustering showed that the modules were anatomically similar within

anonical frequency bands, i.e., delta (3–4 Hz), theta/alpha (5–10 Hz),

eta (14–20 Hz), gamma (28–57 Hz), high-gamma (80–113 Hz) and high

requency (135–320 Hz) bands. In contrast to the modules identified in

MRI, we found that modules up to high-gamma frequency band (80–

13 Hz) comprised only anatomically contiguous regions. Importantly,

odules comprised brain regions with significantly shared functional

oles in e.g., attentional and executive function, language and memory.
12 
.1. SEEG recordings can be used to identify modules in connectomes of 

hase-synchronization 

Despite the millimeter scale anatomical specificity and high signal-

o-noise ratio (SNR) offered by intra-cranial EEG methods like Elec-

rocorticography and SEEG ( Parvizi and Kastner, 2018 ), their sparse

patial coverage and artefacts due to epileptogenic activity have mil-

tated against their use to identify modules in connectomes of phase-

ynchronization. Our results demonstrate the viability of combining

EEG recordings with state-of-the-art methods to identify modules in

onnectomes of phase-synchronization. We counteracted sparse SEEG

overage by pooling data from 67 subjects and addressed epilepto-

enic artefacts by removing SEEG contacts and data segments poten-

ially containing epileptic artefactual activity. Further, we used auto-

ated procedures to overcome the problem of assigning SEEG con-

acts to brain regions and used closest-white-matter referencing to min-

mize volume conduction, to accurately estimate connectomes of phase-

ynchronization. Finally, we combined consensus clustering with com-

unity detection to identify modules in the connectomes despite the

resence of missing connections. A recent MEG study ( Zhigalov et al.,

017 ) used a similar procedure with a smaller cohort ( N = 27) to es-

imate the connectome of phase-synchronization, but did not identify

odules in these due to the high proportion of missing connections. A

ecent Electrocorticography (ECoG) study ( Kucyi et al., 2018 ) measured

mplitude correlations between a number of brain regions, but lacked

he spatial coverage to estimate the connectome or modules in the con-

ectome. Hence, our study is the first to our knowledge to harness the

igh SNR and fine anatomical specificity of intra-cranial EEG to study

he modular organization of the connectome of phase-synchronization. 

It should be mentioned that the yet incomplete coverage offered by

EEG combined with connectome thresholding, might result in missing

odules comprising sets of distant ( > 90 mm) brain regions. This should

e considered when weighing the strengths and limitations of our ap-

roach. However, we do reiterate that our investigation of the coverage

ffered by our method revealed that neither the positions of the SEEG

hafts nor thresholding the connectome, precluded identifying modules

omprising distant brain regions, including brain regions in different

unctional subdivisions, i.e. frontal, parietal, temporal, occipital, limbic

nd insular cortices. Rather, we found a number of supra-threshold con-

ections between regions in different functional subdivisions. In fact,

odules identified at a coarse spatial scale for the 135–320 Hz frequency

roup, comprised distant brain regions encompassing parietal, temporal

nd occipital cortices. 

Since SEEG measures LFPs, it is limited in its anatomical specificity,

n for e.g., reconstructing the detailed microscopic arrangement of trans-

embrane currents ( Einevoll et al., 2013 ). However, SEEG’s anatomi-

al specificity at the level of neuronal populations, together with our

losest white-matter referencing scheme, enable accurately estimating

nter-regional phase-synchronization and identifying modules in con-

ectomes of phase-synchronization. Compared to MEG, SEEG provides

igher spatial resolution due to the minimal influence of volume con-

uction on estimates of phase-synchronization ( Arnulfo et al., 2015a ).

urther, SEEG does not have different sensitivities to gyral and sulcal

ources, and source orientations, but MEG does ( Baillet (2017) ). 

.2. SEEG reveals novel modules in connectomes of phase-synchronization 

Some of the distinct modules we identified with SEEG have not previ-

usly been observed with either fMRI or MEG. The relationship between

MRI connectivity to electrophysiology is multi-factorial, including con-

ributions from both amplitude correlations and phase-synchronization,

n multiple frequency bands ( Shafiei et al., 2022 ). Hence, we do not ex-

ect a one-to-one correspondence between the modules we identified in

EEG connectomes of phase-synchronization, and the modules reported

ith fMRI. We identified modules comprising superior frontal regions,

nferior frontal regions, superior temporal regions, inferior temporal re-
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ions, parietal regions, insula, lateral occipital regions and medial occip-

tal regions. Modules comprising occipital regions and temporal regions

ave been identified in resting-state fMRI ( Benjaminsson et al., 2010 ;

eo et al., 2011 ; Power et al., 2011 ). However, we identified separate

odules of medial occipital and lateral occipital regions compared to a

ingle module of occipital regions reported in fMRI, and separate mod-

les of superior temporal and inferior temporal regions compared to a

ingle module of temporal regions reported in fMRI. Further, we iden-

ified separate modules of superior frontal and inferior frontal regions,

ather than the module of fronto-parietal regions reported in fMRI. Fi-

ally, we identified a module of parietal regions, and a module of re-

ions in the insula, both of which have not been previously reported in

MRI. Each of these SEEG modules comprised anatomically contiguous

egions in contrast to, for e.g. , attentional or default-mode brain systems

dentified with fMRI, which include regions distributed across frontal,

arietal, and temporal cortices ( Benjaminsson et al., 2010 ; Yeo et al.,

011 ; Power et al., 2011 ). The only partial overlap in modules we iden-

ified with SEEG to those reported in fMRI is in agreement with the

eak correspondence between fMRI connectomes to electrophysiolog-

cal connectomes of phase-synchronization estimated from MEG data

 Shafiei et al., 2022 ). Correspondence between fMRI and electrophysi-

logical connectomes was highest in sensory and motor cortices rather

han associative cortex ( Shafiei et al., 2022 ), much the same as the mod-

les we identified with SEEG comprising sensory or motor regions, e.g. ,

he module of superior temporal regions (auditory), corresponding to

he module of temporal regions in fMRI data (auditory), but there be-

ng no such correspondence for modules comprising associative brain

egions. 

Previous MEG studies have identified module-like structures rep-

esenting sets of brain regions whose oscillation amplitude envelopes

n specific frequency bands are correlated ( Brookes et al., 2011 ;

e Pasquale et al. 2010 ). Notably, these studies have demonstrated a

trong correspondence to modules identified in fMRI, such as a module

f fronto-parietal regions (fronto-parietal control), a module of occipital

rain regions (visual) and a module comprising regions in the default

ode brain system ( Brookes et al., 2011 ). Correlation between oscil-

ation amplitude envelopes of brain regions is known to be physiologi-

ally distinct to synchronization between oscillation phases ( Engel et al.,

013 ), and to also exhibit different patterns of inter-regional connectiv-

ty ( Siems and Siegel, 2020 ). Hence, we did not expect a strong corre-

pondence between the modules we identified, and previously reported

odule-like structures of regions whose oscillation amplitude envelopes

ere correlated. We observed a partial correspondence for a single mod-

le - while a previous study ( Brookes et al., 2011 ) reported a module

omprising occipital regions, we reported separated modules for me-

ial occipital regions and lateral occipital regions. However, we also

eported modules comprising superior frontal regions, inferior frontal

egions, superior temporal regions, inferior temporal regions, parietal

egions and regions in the insula, which have not been previously re-

orted in MEG studies identifying sets of regions whose oscillation am-

litude envelopes are correlated. 

Results from two MEG studies ( Zhigalov et al., 2017 ; Vidaurre et al.,

018 ) investigating module-like structures in connectomes of phase-

ynchronization, corroborate our identification of modules compris-

ng anatomically contiguous regions up to high-gamma frequencies.

higalov et al. (2017) reported distinct modules comprising occipital

egions, sensorimotor regions and frontal regions. Another recent MEG

tudy ( Vidaurre et al., 2018 ) used Hidden-Markov modeling to identify

patially localised “functional states ”, including those comprising pre-

ominantly occipital regions, sensorimotor regions and frontal regions.

he “functional states ”, were characterised by short-lived patterns of

nter-regional coherence and hence, constituted module-like structures.

owever, in contrast to these MEG studies, we identified separate mod-

les of superior frontal regions and inferior frontal regions and separate

odules of medial occipital regions and lateral occipital regions, and

e identified a module of parietal regions including both sensorimo-
13 
or and posterior parietal regions while both the MEG studies reported

odules of only sensorimotor regions. The low-resolution parcellations

sed with MEG to avoid field spread, might distort modules identified

t finer spatial scales. We also identified modules comprising superior

emporal regions, inferior temporal regions and regions in the insula,

hat have not been reported before. These might be observed due to the

ensitivity of interaction measures, e.g., Phase Locking Value, to near-

ero-lag phase-synchronization when used with SEEG. MEG field spread

r EEG volume conduction produce high amounts of spurious phase-

ynchronization when measures such as Phase Locking Value are applied

o MEG or EEG data. In contrast, the fine anatomical specificity of SEEG

llows using measures sensitive to near-zero-lag phase-synchronization,

hich then reveal novel sets of regions functionally interacting during

esting-state. 

Evidence from animal electrophysiology ( Leopold et al., 2003 ) as

ell as human SEEG recordings ( Arnulfo et al., 2015a ) reveal that

trength of phase-synchronization decreases with increasing inter-site

istance, which is consistent with the presence of modules comprising

natomically contiguous regions. We also observed modules at frequen-

ies higher than 113 Hz to comprise spatially distant regions. These

esults are consistent with evidence from intra-cranial EEG recordings

 Arnulfo et al., 2020 ; Vaz et al., 2019 ; Khodagholy et al., 2017 ), demon-

trating long-distance phase-synchronization at frequencies exceeding

00 Hz. Phase-synchronization from 113 to 320 Hz is proposed to re-

ect broadcasting and transmission of information through High Fre-

uency Oscillations (HFOs), which are generated in deep cortical layers

 Arnulfo et al., 2020 ). 

.3. Modules at multiple spatial scales consistent with hierarchical 

rganization 

Our study is the first to report modular organization at multiple

patial scales in connectomes of phase-synchronization. The module of

rontal regions identified at a coarse spatial scale splits into modules

f superior frontal regions and inferior frontal regions at a finer spatial

cale. Similarly, the module of temporal regions identified at a coarse

patial scale splits into modules of superior temporal regions and infe-

ior temporal regions at a finer spatial scale. This recursive occurrence of

ub-modules within modules is consistent with hierarchical modular or-

anization, and has been observed in resting-state fMRI ( Meunier et al.,

009 ) but not with electrophysiological methods. However, a stricter as-

essment of hierarchical modular organization requires simultaneously

dentifying modules at multiple spatial scales. Separately identifying

odules at multiple spatial scales, as in the current study, make it diffi-

ult to rigorously assess hierarchical modular organization due to the

ery high number of possible permutations when matching modules

cross spatial scales. 

.4. Functional specificity of identified modules suggests their behavioural 

elevance 

We used information from an independent database of fMRI studies

o infer the functional role of each module. Regions in different modules

ad shared involvement in cognitive functions of attention and execu-

ive function, affective processing and social cognition, somatosensory

rocessing, language and auditory processing, memory function, visual

rocessing, advanced visual processing and sensorimotor processing re-

pectively. The demonstrated functional specificity of these modules

uggests that they operate as distinct brain systems. In line with pro-

osed frameworks on brain function ( Tononi et al., 1994 ; Tononi et al.,

998 ; Balduzzi and Tononi, 2008 ; Lord et al., 2017 ; Shine et al., 2018 ),

trong connections within modules might support segregated informa-

ion processing ( Chan et al., 2014 ) while weak connections between

odules might support integrated information processing ( Deco et al.,

015 ; Westphal et al., 2017 ). 
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We speculate that the identified modules impose a functional archi-

ecture of the connectome during resting-state, which is reorganized

o meet task-related demands for segregation and integration. Recent

rameworks propose that cognitive function is implemented by integra-

ion between modules present in the baseline period ( Cole et al., 2014 ;

ig, 2017 ). Some fMRI studies have found evidence to support this,

n the form of associations between cognitive performance and task-

elated functional reorganization of the brain to facilitate interaction be-

ween modules operating at baseline ( Spadone et al., 2015 ; Shine et al.,

016 ; Cohen and D’Esposito 2016 ). While many MEG/EEG studies have

ound task-related phase-synchronization in for e.g., studies of atten-

ion ( Lobier et al., 2018 ), somatosensory processing ( Hirvonen et al.,

018 ) and working memory ( Kitzbichler et al., 2011 ), there are no stud-

es investigating task-related phase-synchronization as reorganization of

he functional architecture imposed by modules during resting-state. Fu-

ure studies could describe task-related phase-synchronization with ref-

rence to the natural framework provided by the identified modules in

onnectomes of phase-synchronization during resting-state, and related

rameworks rooted in electrophysiology have been recently proposed

 Sadaghiani et al., 2022 ). 

Since the modules we identified were in resting-state, we empha-

ize that they naturally accommodate studies on task-related mod-

lations of phase-synchronization, including those in which the dis-

ance between interacting regions is inversely related to the frequency

f interaction. For example, Womelsdorf et al. (2006) reported task-

elated gamma-band of phase-synchronization between macaque vi-

ual areas, Salazar et al. (2012) reported task-related long-distance

eta-band synchronization between macaque frontal and parietal re-

ions and Gross et al. (2004) reported task-related long-distance beta-

and synchronization between human frontal, parietal and temporal

rain regions. As per the framework imposed by the modules we

dentified, the task-related short-distance gamma-band synchronization

 Womelsdorf et al., 2006 ) might reflected segregated information pro-

essing via intra-modular connections while the studies reporting task-

elated long-distance beta-band synchronization ( Salazar et al., 2012 ;

ross et al., 2004 ) might reflect integrated information processing via

nter-modular connections. However, the framework also accommo-

ates divergences from the principle of distance between brain re-

ions being inversely related to the frequency of interaction. For exam-

le, Buschman et al. (2012) reported task-related short-distance alpha-

and and beta-band synchronization between electrodes in macaque

orsolateral prefrontal cortex, Michalareas et al. (2016) reported task-

elated short-distance alpha/beta-band synchronization between visual

reas in human MEG, and Melloni et al. (2007) reported task-related

ong-distance gamma-band synchronization in human EEG. In these

ases, the task-related short-distance alpha/beta-band synchronization

 Buschman et al., 2012 ; Michalareas et al., 2016 ) might reflect segre-

ated information processing via intra-modular connections while the

ask-related long-distance gamma-band synchronization ( Melloni et al.,

007 ) might reflect integrated information processing via inter-modular

onnections. Thus, the modules provide a natural framework to inter-

ret results of studies on task-related phase-synchronization. 

.5. Directions for future work 

We propose two particularly promising directions to build on this

ork. While we studied the anatomical composition of each of the mod-

les, we did not investigate the relationships between modules. Study-

ng the balance between intra-modular and inter-modular connections

f brain regions within each of the modules might provide clues to the

ole of the module within the whole-brain system ( Guimerà and Ama-

al, 2005 ). For example, some modules might serve as “processing sys-

ems ” while others might play the role of “control systems ” ( Power et al.,

011 ). Another promising direction is to consider other means by which

unctional segregation might be implemented, in addition to segrega-

ion made possible by the modular structure defined by the connection
14 
trengths ( Dotson et al., 2014 ). In particular, the phase-lags of the syn-

hronization between every pair of regions could be studied to deter-

ine if for e.g., phase-lags between regions within a module are lower

han phase-lags between regions in different modules, thus reinforcing

he segregation of information processing imposed by the modular or-

anization. 

. Conclusion 

In this study, we combined resting-state SEEG recordings with state-

f-the-art methods to accurately identify modules in connectomes of

hase-synchronization. We found the modules to predominantly com-

rise anatomically contiguous regions, unlike modules identified in

esting-state fMRI. Importantly, each of the modules comprised regions

ith shared involvement in specific cognitive functions. Hence, these

odules might represent distinct brain systems with particular roles in

erceptual, cognitive and motor processing. 
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